51
|
Józsa L, Vasvári G, Sinka D, Nemes D, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Lekli I, Gyöngyösi A, Bácskay I, Fehér P. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196652. [PMID: 36235189 PMCID: PMC9572020 DOI: 10.3390/molecules27196652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltan Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
52
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
53
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Tadalafil-Loaded Self-Nanoemulsifying Chewable Tablets for Improved Bioavailability: Design, In Vitro, and In Vivo Testing. Pharmaceutics 2022; 14:1927. [PMID: 36145675 PMCID: PMC9504296 DOI: 10.3390/pharmaceutics14091927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This research aimed to develop innovative self-nanoemulsifying chewable tablets (SNECT) to increase oral bioavailability of tadalafil (TDL), a nearly insoluble phosphodiesterase-5 inhibitor. Cinnamon essential oil, PEG 40 hydrogenated castor oil (Cremophor® RH 40), and polyethylene glycol 400 served as the oil, surfactant, and cosurfactant in the nanoemulsifying system, respectively. Primary liquid self-nanoemulsifying delivery systems (L-SNEDDS) were designed using phase diagrams and tested for dispersibility, droplet size, self-emulsifying capability, and thermodynamic stability. Adsorption on a carrier mix of silicon dioxide and microcrystalline cellulose was exploited to solidify the optimum L-SNEDDS formulation as self-nanoemulsifying granules (SNEG). Lack of crystalline TDL within the granules was verified by DSC and XRPD. SNEG were able to create a nanoemulsion instantaneously (165 nm), a little larger than the original nanoemulsion (159 nm). SNECT were fabricated by compressing SNEG with appropriate excipients. The obtained SNECT retained their quick dispersibility dissolving 84% of TDL within 30 min compared to only 18% dissolution from tablets of unprocessed TDL. A pharmacokinetic study in Sprague−Dawley rats showed a significant increase in Cmax (2.3-fold) and AUC0−24 h (5.33-fold) of SNECT relative to the unprocessed TDL-tablet (p < 0.05). The stability of TDL-SNECT was checked against dilutions with simulated GI fluids. In addition, accelerated stability tests were performed for three months at 40 ± 2 °C and 75% relative humidity. Results revealed the absence of obvious changes in size, PDI, or other tablet parameters before and after testing. In conclusion, current findings illustrated effectiveness of SNECT to enhance TDL dissolution and bioavailability in addition to facilitating dose administration.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
54
|
Timur B, Usta DY, Teksin ZS. Investigation of the effect of colloidal structures formed during lipolysis of lipid-based formulation on exemestane permeability using the in vitro lipolysis-permeation model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Villalobos-Espinosa JC, García-Armenta E, Alamilla-Beltrán L, Quintanilla-Carvajal MX, Azuara-Nieto E, Hernández-Sánchez H, Perea-Flores MDJ, Gutiérrez-López GF. Effect of pumping and atomisation on the stability of oil/water emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Shrivastava N, Parikh A, Dewangan RP, Biswas L, Verma AK, Mittal S, Ali J, Garg S, Baboota S. Solid Self-Nano Emulsifying Nanoplatform Loaded with Tamoxifen and Resveratrol for Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071486. [PMID: 35890384 PMCID: PMC9318459 DOI: 10.3390/pharmaceutics14071486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for enhancing bioavailability and to obtain synergistic anti-cancer effect against breast cancer. SNEDDS were developed using capmul MCM as oil, Tween 80 as surfactant and transcutol-HP as co-surfactant and optimized by central composite rotatable design. Neusilin US2 concentration was optimized for adsorption of liquid SNEDDS to prepare s-SNEDDS. The developed formulation was characterized and investigated for various in vitro and cell line comparative studies. Optimized TAM-RES-s-SNEDDS showed spherical droplets of a size less than 200 nm. In all in vitro studies, TAM-RES-s-SNEDDS showed significantly improved (p ˂ 0.05) release and permeation across the dialysis membrane and intestinal lumen. Moreover, TAM-RES-s-SNEDDS possessed significantly greater therapeutic efficacy (p < 0.05) and better internalization on the MCF-7 cell line as compared to the conventional formulation. Additionally, oral bioavailability of TAM from SNEDDS was 1.63 folds significantly higher (p < 0.05) than that of combination suspension and 4.16 folds significantly higher (p < 0.05) than TAM suspension. Thus, findings suggest that TAM- RES-s-SNEDDS can be the future delivery system that potentially delivers both drugs to cancer cells for better treatment.
Collapse
Affiliation(s)
- Nupur Shrivastava
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Ankit Parikh
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Largee Biswas
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Anita Kamra Verma
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence: (S.G.); (S.B.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
- Correspondence: (S.G.); (S.B.)
| |
Collapse
|
57
|
Mahmood S, Bhattarai P, Khan NR, Subhan Z, Razaque G, Albarqi HA, Alqahtani AA, Alasiri A, Zhu L. An Investigation for Skin Tissue Regeneration Enhancement/Augmentation by Curcumin-Loaded Self-Emulsifying Drug Delivery System (SEDDS). Polymers (Basel) 2022; 14:2904. [PMID: 35890680 PMCID: PMC9315559 DOI: 10.3390/polym14142904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes, one of the global metabolic disorders, is often associated with delayed wound healing due to the elevated level of free radicals at the wound site, which hampers skin regeneration. This study aimed at developing a curcumin-loaded self-emulsifying drug delivery system (SEDDS) for diabetic wound healing and skin tissue regeneration. For this purpose, various curcumin-loaded SEDDS formulations were prepared and optimized. Then, the SEDDS formulations were characterized by the emulsion droplet size, surface charge, drug content/entrapment efficiency, drug release, and stability. In vitro, the formulations were assessed for the cellular uptake, cytotoxicity, cell migration, and inhibition of the intracellular ROS production in the NIH3T3 fibroblasts. In vivo, the formulations' wound healing and skin regeneration potential were evaluated on the induced diabetic rats. The results indicated that, after being dispersed in the aqueous medium, the optimized SEDDS formulation was readily emulsified and formed a homogenous dispersion with a droplet size of 37.29 ± 3.47 nm, surface charge of -20.75 ± 0.07 mV, and PDI value of less than 0.3. The drug content in the optimized formulation was found to be 70.51% ± 2.31%, with an encapsulation efficiency of 87.36% ± 0.61%. The SEDDS showed a delayed drug release pattern compared to the pure drug solution, and the drug release rate followed the Fickian diffusion kinetically. In the cell culture, the formulations showed lower cytotoxicity, higher cellular uptake, and increased ROS production inhibition, and promoted the cell migration in the scratch assay compared to the pure drug. The in vivo data indicated that the curcumin-loaded SEDDS-treated diabetic rats had significantly faster-wound healing and re-epithelialization compared with the untreated and pure drug-treated groups. Our findings in this work suggest that the curcumin-loaded SEDDS might have great potential in facilitating diabetic wound healing and skin tissue regeneration.
Collapse
Affiliation(s)
- Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan;
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Prapanna Bhattarai
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| | - Nauman Rahim Khan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
| | - Zakia Subhan
- Institute of Medical Sciences, Khyber Medical University, Kohat 26000, KPK, Pakistan;
| | - Ghulam Razaque
- Faculty of Pharmacy, University of Baluchistan, Quetta 87300, Baluchistan, Pakistan;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Lin Zhu
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
58
|
Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs). Pharmaceutics 2022; 14:pharmaceutics14051082. [PMID: 35631668 PMCID: PMC9147480 DOI: 10.3390/pharmaceutics14051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
This research demonstrates the use of fused deposition modeling (FDM) 3D printing to control the delivery of multiple drugs containing bioactive self-nano emulsifying drug-delivery systems (SNEDDSs). Around two-thirds of the new chemical entities being introduced in the market are associated with some inherent issues, such as poor solubility and high lipophilicity. SNEDDSs provide for an innovative and easy way to develop a delivery platform for such drugs. Combining this platform with FDM 3D printing would further aid in developing new strategies for delivering poorly soluble drugs and personalized drug-delivery systems with added therapeutic benefits. This study evaluates the performance of a 3D-printed container system containing curcumin (CUR)- and lansoprazole (LNS)-loaded SNEDDS. The SNEDDS showed 50% antioxidant activity (IC50) at concentrations of around 330.1 µg/mL and 393.3 µg/mL in the DPPH and ABTS radical scavenging assay, respectively. These SNEDDSs were loaded with no degradation and leakage from the 3D-printed container. We were able to delay the release of the SNEDDS from the hollow prints while controlling the print wall thickness to achieve lag phases of 30 min and 60 min before the release from the 0.4 mm and 1 mm wall thicknesses, respectively. Combining these two innovative drug-delivery strategies demonstrates a novel option for tackling the problems associated with multi-drug delivery and delivery of drugs susceptible to degradation in, i.e., gastric pH for targeting disease conditions throughout the gastrointestinal tract (GIT). It is also envisaged that such delivery systems reported herein can be an ideal solution to deliver many challenging molecules, such as biologics, orally or near the target site in the future, thus opening a new paradigm for multi-drug-delivery systems.
Collapse
|
59
|
Qader AB, Kumar S, Kohli K, Hussein AA. Garlic oil loaded rosuvastatin solid self-nanoemulsifying drug delivery system to improve level of high-density lipoprotein for ameliorating hypertriglyceridemia. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Adnan Burhan Qader
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| | - Ahmed Abbas Hussein
- Department of Pharmaceutics, College of Pharmacy, Baghdad University, Baghdad, Iraq
| |
Collapse
|
60
|
Chaudhuri A, Shrivastava N, Kumar S, Singh AK, Ali J, Baboota S. Designing and development of omega-3 fatty acid based self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel with enhanced biopharmaceutical attributes for management of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Formulation and Evaluation of Self-Nanoemulsifying Drug Delivery System Derived Tablet Containing Sertraline. Pharmaceutics 2022; 14:pharmaceutics14020336. [PMID: 35214068 PMCID: PMC8880292 DOI: 10.3390/pharmaceutics14020336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Being a biopharmaceutics classification system class II drug, the absorption of sertraline from the gut is mainly limited by its poor aqueous solubility. The objective of this investigation was to improve the solubility of sertraline utilizing self-nanoemulsifying drug delivery systems (SNEDDS) and developing it into a tablet dosage form. Ternary phase diagrams were created to identify nanoemulsion regions by fixing oil (glycerol triacetate) and water while varying the surfactant (Tween 80) and co-surfactant (PEG 200) ratio (Smix). A three-factor, two-level (23) full factorial design (batches F1–F8) was utilized to check the effect of independent variables on dependent variables. Selected SNEDDS (batch F4) was solidified into powder by solid carrier adsorption method and compressed into tablets. The SNEDDS-loaded tablets were characterized for various pharmaceutical properties, drug release and evaluated in vivo in Wistar rats. A larger isotropic region was noticed with a Smix ratio of 2:1 and the nanoemulsion exhibited good stability. Screening studies’ data established that all three independent factors influence the dependent variables. The prepared tablets displayed optimal pharmaceutical properties within acceptable limits. In vitro sertraline release demonstrated from solid SNEDDS was statistically significant (p < 0.0001) as compared to pure sertraline. Differential Scanning Calorimetry and X-Ray Diffraction data established the amorphous state of the drug in SNEDDS formulation, while FTIR spectra indicate the compatibility of excipients and drug. Pharmacokinetic evaluation of the SNEDDS tablet demonstrated significant increment (p < 0.0001) in AUC0-α (~5-folds), Cmax (~4-folds), and relative bioavailability (386%) as compared to sertraline suspension. The current study concludes that the solid SNEDDS formulation could be a practicable and effective strategy for oral therapy of sertraline.
Collapse
|
62
|
El-Dakroury WA, Zewail MB, Elsabahy M, Shabana ME, Asaad GF. Famotidine-loaded solid self-nanoemulsifying drug delivery system demonstrates exceptional efficiency in amelioration of peptic ulcer. Int J Pharm 2022; 611:121303. [PMID: 34798155 DOI: 10.1016/j.ijpharm.2021.121303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Famotidine (FMD) is a highly potent H2-receptor antagonist used in peptic ulcer treatment. However, the drug possesses poor aqueous solubility and permeability. FMD-loaded solid self-nanoemulsifying drug delivery system (FMD-S-SNEDDS) comprised of Labrafil® M 1944 CS, Tween® 20 and PEG 400, adsorbed on Aerosil® 200, has been developed. FMD-S-SNEDDS has demonstrated acceptable micromeritic properties, and upon reconstitution in water, spherical nanosized particles were released, as demonstrated by dynamic light scattering studies and transmission electron microscopy imaging. High encapsulation efficiency of FMD in the developed SNEDDS has been attained, and the saturated solubility of the drug has increased by 20-fold when it was incorporated in the SNEDDS. Several in vitro characterizations have been carried out, including, Fourier transform-infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and drug dissolution studies. In vivo, upon administration of the free drug suspension, marketed product (FAMOTIN®) and FMD-S-SNEDDS (40 mg/kg) in peptic ulcer rat models, FMD-S-SNEDDS and the marketed FMD demonstrated 12.5- and 4.7-fold reduction in ulcers number, and 28.7- and 7.2-fold reduction in ulcer severity, respectively, compared to the control untreated animals. FMD-S-SNEDDS showed a significant (p < 0.05) increase in the levels of depleted glutathione and endothelial nitric oxide synthase, and significantly (p < 0.05) reduced the elevated level of malondialdehyde, as compared to the free and marketed FMD. Only FMD-S-SNEDDS could restore the elevated proton pump activity and cyclic adenosine monophosphate RNA expression to their normal levels. Hence, FMD-S-SNEDDS provides a great potential as a nanotherapeutic system for treatment of peptic ulcer.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| | - Marwa E Shabana
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
63
|
Sharma PK, Shukla VK, Kumar A. Physical Characterization and In Vitro Evaluation of Dissolution Rate from Cefpodoxime Proxetil Loaded Self Solidifying Solid SNEDDS. Curr Drug Deliv 2022; 19:395-406. [PMID: 34353259 DOI: 10.2174/1567201818666210805153859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cefpodoxime Proxetil (CPD) is a broad-spectrum cephalosporin indicated in respiratory and urinary tract infections. CPD is a BCS class IV drug with pH-dependent solubility and has poor bioavailability. This study investigated the challenges of developing ternary components based on solid SNEDDS of CPD for in vitro dissolution rate enhancement and self-solidifying behaviour. METHODS Tween 80, Transcutol and PEG6000 were employed as surfactants, solvents and solidifiers for a base of ternary components to develop self-solidifying solid SNEDDS, respectively. Ternary phase diagrams were used to characterize solidifying behaviour of ternary components in different proportions. S-SNEDDS formulations were drawn on the solidification areas available in the phase diagram and characterized for IR, XRD, DSC and in vitro drug release in various pH media. RESULTS Ternary components for the preparation of self-solidifying solid SNEDDS were selected based on drug solubility. FTIR and DSC characterization studies ruled out any drug interaction between CPD and components chosen to prepare S-SNEDDS. CPD was transformed from a crystalline into an amorphous state in ternary dispersions as revealed from XRD data. Optimized formulation (S-S 1) demonstrated more than 95% of drug release irrespective of the pH environments of the medium. Calculation of dissolution efficiency and similarity factors indicate that S SNEDDS resulted in a higher drug dissolution rate over binary dispersion (p<0.01). The stability studies showed that the S SNEDDS were stable in performances and CPD assay. CONCLUSION The present investigation provides an alternative approach for enhancing the CPD dissolution rate using self-solidifying solid SNEDDS exhibited solidification behaviour at ambient temperature conditions and drug loading, which could be exploited over conventional dosage form.
Collapse
Affiliation(s)
- Pankaj Kumar Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, 201303, Uttar Pradesh, India
| | - Vikesh Kumar Shukla
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, 201303, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Uttar Pradesh, India
| |
Collapse
|
64
|
Nazlı H, Mesut B, Özsoy Y. In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility. Pharmaceuticals (Basel) 2021; 14:ph14111089. [PMID: 34832871 PMCID: PMC8621193 DOI: 10.3390/ph14111089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aprepitant (APR) belongs to Class II of the Biopharmaceutical Classification System (BCS) because of its low aqueous solubility. The objective of the current work is to develop self-nanoemulsifying drug delivery systems (SNEDDS) of APR to enhance its aqueous solubility. Preformulation studies involving screening of excipients for solubility and emulsification efficiency were carried out. Pseudo ternary phase diagrams were constructed with blends of oil (Imwitor® 988), cosolvent (Transcutol® P), and various surfactants (Kolliphor® RH40, Kolliphor® ELP, Kolliphor® HS15). The prepared SNEDDS were characterized for droplet size and nanoemulsion stability after dilution. Supersaturated SNEDDS (super-SNEDDS) were prepared to increase the quantity of loaded APR into the formulations. HPMC, PVP, PVP/VA, and Soluplus® were used as polymeric precipitation inhibitors (PPI). PPIs were added to the formulations at 5% and 10% by weight. The influence of the PPIs on drug precipitation was investigated. In vitro lipolysis test was carried out to simulate digestion of formulations in the gastrointestinal tract. Optimized super-SNEDDS were formulated into free-flowing granules by adsorption on the porous carriers such as Neusilin® US2. In vitro dissolution studies of solid super-SNEDDS formulation revealed an increased dissolution rate of the drug due to enhanced solubility. Consequently, a formulation to improve the solubility and potentially bioavailability of the drug was developed.
Collapse
Affiliation(s)
- Hakan Nazlı
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne 22030, Turkey;
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
- Correspondence: ; Tel.: +90-0212-440-00-00-13498
| |
Collapse
|
65
|
Saafan HA, Ibrahim KM, Thabet Y, Elbeltagy SM, Eissa RA, Ghaleb AH, Ibrahim F, Elsabahy M, Eissa NG. Intratracheal Administration of Chloroquine-Loaded Niosomes Minimize Systemic Drug Exposure. Pharmaceutics 2021; 13:1677. [PMID: 34683971 PMCID: PMC8539513 DOI: 10.3390/pharmaceutics13101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary administration provides a useful alternative to oral and invasive routes of administration while enhancing and prolonging the accumulation of drugs into the lungs and reducing systemic drug exposure. In this study, chloroquine, as a model drug, was loaded into niosomes for potential pulmonary administration either via dry powder inhalation or intratracheally. Chloroquine-loaded niosomes have been prepared and extensively characterized. Furthermore, drug-loaded niosomes were lyophilized and their flowing properties were evaluated by measuring the angle of repose, Carr's index, and Hausner ratio. The developed niosomes demonstrated a nanosized (100-150 nm) spherical morphology and chloroquine entrapment efficiency of ca. 24.5%. The FT-IR results indicated the incorporation of chloroquine into the niosomes, whereas in vitro release studies demonstrated an extended-release profile of the drug-loaded niosomes compared to the free drug. Lyophilized niosomes exhibited poor flowability that was not sufficiently improved after the addition of lactose or when cryoprotectants were exploited throughout the lyophilization process. In vivo, intratracheal administration of chloroquine-loaded niosomes in rats resulted in a drug concentration in the blood that was 10-fold lower than the oral administration of the free drug. Biomarkers of kidney and liver functions (i.e., creatinine, urea, AST, and ALT) following pulmonary administration of the drug-loaded nanoparticles were of similar levels to those of the control untreated animals. Hence, the use of a dry powder inhaler for administration of lyophilized niosomes is not recommended, whereas intratracheal administration might provide a promising strategy for pulmonary administration of niosomal dispersions while minimizing systemic drug exposure and adverse reactions.
Collapse
Affiliation(s)
- Hesham A. Saafan
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
| | - Kamilia M. Ibrahim
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
| | - Yasmeena Thabet
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - Sara M. Elbeltagy
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
| | - Rana A. Eissa
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
| | - Ashraf H. Ghaleb
- Galala University, Galala, Suez 43527, Egypt;
- Department of Surgery, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Fathy Ibrahim
- International Center for Bioavailability, Pharmaceutical and Clinical Research, Obour City 11828, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt; (H.A.S.); (K.M.I.); (Y.T.); (S.M.E.); (R.A.E.)
| | - Noura G. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
66
|
Alothaid H, Aldughaim MS, Yusuf AO, Yezdani U, Alhazmi A, Habibullah MM, Khan MG. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv 2021; 28:2119-2126. [PMID: 34612775 PMCID: PMC8510591 DOI: 10.1080/10717544.2021.1986601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Albendazolum (ABZ) is a BCS class II drug. It has challenging biopharmaceutical properties, which include poor solubility and dissolution rate. These properties have laid the ground for developing a supersaturated self-nanoemulsifying drug delivery system (S-SNEDDS) to form oil-in-water nanoemulsion in situ to improve the oral bioavailability of ABZ. Based on the ABZ solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal self-nanoemulsifying drug delivery system (SNEDDS) consisting of oleic acid, Tween® 20, and PEG 600 (X:Y:Z, w/w) was identified, having 10% (w/w) hydroxypropyl methylcellulose (HPMC) E15 lv as its precipitation inhibitor. The optimized system possessed a small mean globule size value (89.2 nm), good dispersion properties (polydispersity index (PDI): 0.278), and preserved the supersaturated state of ABZ. S-SNEDDS was transformed into solid supersaturated self-nanoemulsifying drug delivery systems (SS-SNEDDS) using microcrystalline cellulose as a solid material. The developed S-SNEDDS were characterized for globule size, pH, turbidity, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and flow properties. The data obtained from the results suggest that this S-SNEDDS formulation can enhance the solubility and oral bioavailability of ABZ for appropriate clinical application.
Collapse
Affiliation(s)
- Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al Baha University, Al-Baha, Saudi Arabia
| | | | | | - Umama Yezdani
- Department of Pharmacy Practice, MRM College of Pharmacy, Hyderabad, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Mahmoud M Habibullah
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
67
|
Abd El-Halim SM, Mamdouh MA, Eid SM, Ibrahim BMM, Aly Labib DA, Soliman SM. The Potential Synergistic Activity of Zolmitriptan Combined in New Self-Nanoemulsifying Drug Delivery Systems: ATR-FTIR Real-Time Fast Dissolution Monitoring and Pharmacodynamic Assessment. Int J Nanomedicine 2021; 16:6395-6412. [PMID: 34566412 PMCID: PMC8456549 DOI: 10.2147/ijn.s325697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The current work aimed to overcome the poor permeability and undesirable adverse effects of Zolmitriptan (ZMT) and to increase its efficacy in the treatment of acute migraine by exploiting the synergistic effect of the essential oil, lavender, to fabricate ZMT self-nanoemulsifying drug delivery systems (ZMT-SNEDDS). Methods ZMT-SNEDDS were fabricated based on full factorial design (32) to statistically assess the impact of oil and surfactant concentrations on the nanoemulsion globule size, zeta potential and percentage drug dissolution efficiency. An ATR-FTIR method was developed and validated for continuous real-time monitoring of ZMT dissolution and permeation. The dose of the optimized ZMT-SNEDDS used in the efficacy study was selected according to the acute toxicity study. The efficacy study was performed on migraineous rats induced by nitroglycerin and was evaluated by the activity cage and thermal tests, electroencephalogram, electroconvulsive stimulation, and biochemical analysis of brain tissue. Finally, histopathological and immunohistochemical examinations of the cerebra were carried out. Results Upon dilution, the optimized ZMT-SNEDDS (F5) exhibited nanosized spherical droplets of 19.59±0.17 nm with narrow size distribution, zeta potential (-23.5±1.17mV) and rapid emulsification characteristics. ATR-FTIR spectra elucidated the complete time course of dissolution and permeation, confirming F5 superior performance. Moreover, ZMT-SNEDDS (F5) showed safety in an acute toxicity study. ZMT concentration in rat brain tissues derived from F5 was lower compared to that of ZMT solution, yet its effect was better on the psychological state, algesia, as well as maintaining normal brain electrical activity and delayed convulsions. It counteracted the cerebral biochemical alternations induced by nitroglycerin, which was confirmed by histopathological examination. Conclusion In a nutshell, these findings corroborated the remarkable synergistic efficacy and the high potency of lavender oil-based ZMT-SNEDDS in migraine management compared to the traditional zolmitriptan solution.
Collapse
Affiliation(s)
- Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, 12622, Egypt
| | - Dina A Aly Labib
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, 11559, Egypt
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
68
|
Kazi M, Alqahtani A, Ahmad A, Noman OM, Aldughaim MS, Alqahtani AS, Alanazi FK. Development and optimization of sitagliptin and dapagliflozin loaded oral self-nanoemulsifying formulation against type 2 diabetes mellitus. Drug Deliv 2021; 28:100-114. [PMID: 33345632 PMCID: PMC7875557 DOI: 10.1080/10717544.2020.1859001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Control of hyperglycemia and prevention of glucose reabsorption (glucotoxicity) are important objectives in the management of type 2 diabetes. This study deals with an oral combined dosage form design for two anti-diabetic drugs, sitagliptin and dapagliflozin using self-nanoemulsifying drug delivery systems (SNEDDS). The SNEDDS were developed using naturally obtained bioactive medium-chain/long-chain triglycerides oil, mixed glycerides and nonionic surfactants, and droplet size was measured followed by the test for antioxidant activities. Equilibrium solubility and dynamic dispersion experiments were conducted to achieve the maximum drug loading. The in vitro digestion, in vivo bioavailability, and anti-diabetic effects were studied to compare the representative SNEDDS with marketed product Dapazin®. The representative SNEDDS containing black seed oil showed excellent self-emulsification performance with transparent appearance. Characterization of the SNEDDS showed nanodroplets of around 50–66.57 nm in size (confirmed by TEM analysis), in addition to the high drug loading capacity without causing any precipitation in the gastro-intestinal tract. The SNEDDS provided higher antioxidant activity compared to the pure drugs. The in vivo pharmacokinetic parameters of SNEDDS showed significant increase in Cmax (1.99 ± 0.21 µg mL−1), AUC (17.94 ± 1.25 µg mL−1), and oral absorption (2-fold) of dapagliflozin compared to the commercial product in the rat model. The anti-diabetic studies showed the significant inhibition of glucose level in treated diabetic mice by SNEDDS combined dose compared to the single drug therapy. The combined dose of sitagliptin-dapagliflozin using SNEDDS could be a potential oral pharmaceutical product for the improved treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M Noman
- Medicinal Aromatic, and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
69
|
Khanfar M, Al-Nimry S, Attar S. Solid self nano-emulsifying system for the enhancement of dissolution and bioavailability of Prasugrel HCl: in vitro and in vivo studies. Pharm Dev Technol 2021; 26:1021-1033. [PMID: 34435939 DOI: 10.1080/10837450.2021.1973495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prasugrel Hydrochloride (PHCl) is an antiplatelet drug. It is a class II drug with variable bioavailability. The objective of this work was to enhance the solubility and hence the bioavailability and efficacy of PHCl. A Self Nano-Emulsifying Drug Delivery System (SNEDDS) was prepared using Kolliphor El, Maisine 35-1, and Transcutol P as surfactant, oil, and co-surfactant, respectively in a ratio 10:72:18 v/v%. The SNEDDS was converted into solid by adsorption onto Neusilin. In vitro release of the drug from SNEDDS in (pH = 4) at 37 °C and 75 rpm for 45 min was studied. The results were compared to those from the unprocessed PHCl and Lexar® (the commercial drug). In-vivo studies (platelet Aggregation and bleeding time) were conducted using rats as animal models. It was found that the particle size of the SNEDDS ranged between 80 and 155 nm and EE% was in the range of 90.2% ± 0.4. The release from SNEDDS was about 84% compared to around 25% from unprocessed PHCl and 65% from Lexar® after 15 min. The platelet aggregation of the formula was lower than the PHCl, and Lexar® indicating higher bioavailability. In conclusion, SNEDDS with high EE% was prepared and was successful in enhancing the solubility, dissolution rate, and the bioavailability.
Collapse
Affiliation(s)
- Mai Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Suhair Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Shatha Attar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
70
|
Enhanced Bioavailability of AC1497, a Novel Anticancer Drug Candidate, via a Self-Nanoemulsifying Drug Delivery System. Pharmaceutics 2021; 13:pharmaceutics13081142. [PMID: 34452103 PMCID: PMC8398171 DOI: 10.3390/pharmaceutics13081142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
AC1497 is an effective dual inhibitor of malate dehydrogenase 1 and 2 targeting cancer metabolism. However, its poor aqueous solubility results in low bioavailability, limiting its clinical development. This study was conducted to develop an effective self-nanoemulsifying drug delivery system (SNEDDS) of AC1497 to improve its oral absorption. Based on the solubility of AC1497 in various oils, surfactants, and cosurfactants, Capryol 90, Kolliphor RH40, and Transcutol HP were selected as the components of SNEDDS. After testing various weight ratios of Capryol 90 (20–30%), Kolliphor RH40 (35–70%), and Transcutol HP (10–35%), SNEDDS-F4 containing 20% Capryol 90, 45% Kolliphor RH40, and 35% Transcutol HP was identified as an optimal SNEDDS with a narrow size distribution (17.8 ± 0.36 nm) and high encapsulation efficiency (93.6 ± 2.28%). Drug release from SNEDDS-F4 was rapid, with approximately 80% of AC1497 release in 10 min while the dissolution of the drug powder was minimal (<2%). Furthermore, SNEDDS-F4 significantly improved the oral absorption of AC1497 in rats. The maximum plasma concentration and area under the plasma concentration–time curve of AC1497 were, respectively 6.82- and 3.14-fold higher for SNEDDS-F4 than for the drug powder. In conclusion, SNEDDS-F4 with Capryol 90, Kolliphor RH40, and Transcutol HP (20:45:35, w/w) effectively improves the solubility and oral absorption of AC1497.
Collapse
|
71
|
Luo X, Wang D, Wang M, Deng S, Huang Y, Xia Z. Development of phospholipid complex loaded self-microemulsifying drug delivery system to improve the oral bioavailability of resveratrol. Nanomedicine (Lond) 2021; 16:721-739. [PMID: 33860675 DOI: 10.2217/nnm-2020-0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to develop a formulation that combines a phospholipid complex (PC) and self-microemulsifying drug delivery system (SMEDDS) to improve the bioavailability of poorly water-soluble resveratrol (RES), called RPC-SMEDDS. Methods: RES-PC (RPC) and RPC-SMEDDS were optimized by orthogonal experiment and central composite design, respectively. The characteristics and mechanism of intestinal absorption were studied by Ussing chamber model. The pharmacokinetics was evaluated in rats. Results: RES was the substrate of MRP2 and breast cancer resistance protein (BCRP) rather than P-gp. The prepared RPC-SMEDDS prevented the efflux mediated by MRP2 and BCRP and improved the bioavailability of RES. Conclusion: These results suggested that the combination system of PC and SMEDDS was a promising method to improve the oral bioavailability of RES.
Collapse
Affiliation(s)
- Xinxin Luo
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Dandan Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Suya Deng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
72
|
Supersaturable self-microemulsifying delivery systems: an approach to enhance oral bioavailability of benzimidazole anticancer drugs. Drug Deliv Transl Res 2021; 11:675-691. [PMID: 33738676 DOI: 10.1007/s13346-021-00904-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
This study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium (pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.
Collapse
|
73
|
Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. Int J Pharm 2021; 600:120493. [PMID: 33744452 DOI: 10.1016/j.ijpharm.2021.120493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator used for treatment and protection against postmenopausal osteoporosis. The drug has been used for protection against breast cancer and more recently, for management of the disease by virtue of its estrogen antagonist action. However, the drug has reduced bioavailability related to low water solubility and first pass metabolism. To surmount these pitfalls, this study aimed at developing and optimizing RLX-loaded semisolid self-nanoemulsifying system (SSNES) with minimized globule size to improve the drug solubility, tumor penetration, and consequently antitumor activity. A simplex lattice mixture design was employed for the formulation and optimization of SSNESs. The mixture components, namely, Compritol® 888 ATO, Tween 20, and polyethylene glycol 200 exhibited significant effect on globule size at P < 0.05. The optimized formulation with globule size of 109.19 ± 2.11 nm showed acceptable thermodynamic stability under stress conditions. Anti-cancer efficacy of the obtained formulation was evaluated in MCF-7 breast cancer cell line. MTT viability assay revealed that RLX-loaded SSNES notably inhibited MCF-7 cell proliferation. Flow cytometry and dual staining with annexin V-FITC/PI were used to assay this anti-proliferative effect and induction of apoptosis, respectively. Cells treated with RLX-loaded SSNES showed significant arrest at G2/M phase associated with significant increase in early/late-stages of apoptotic and necrotic cells. The results exhibited that RLX-loaded SSNES induces apoptosis via the activation of caspase-3 and loss of mitochondrial membrane potential. Accordingly, the proposed SSNES could be regarded as a promising platform for enhancing RLX antitumor activity against breast cancer.
Collapse
|
74
|
Teaima MH, Yasser M, El-Nabarawi MA, Helal DA. Proniosomal Telmisartan Tablets: Formulation, in vitro Evaluation and in vivo Comparative Pharmacokinetic Study in Rabbits. Drug Des Devel Ther 2021; 14:1319-1331. [PMID: 32280201 PMCID: PMC7127815 DOI: 10.2147/dddt.s245013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022] Open
Abstract
Objective The purpose of this study was to prepare proniosomal vesicles of Telmisartan (TEL) to be compressed into tablets which will be further evaluated in vitro and in vivo. Materials and Methods An experimental design was adopted using surfactants of different HLB values (span 40-brij 35), different cholesterol ratios (20–50%) and different phospholipid types (egg yolk-soyabean). Different responses were measured followed by tablet manufacturing. The highest EE was shown in F3 (85%) while the lowest value was obtained in F7 (8.4%). Finally, zeta potential results were in the range of −0.67 to −27.6 mv. Compressibility percent revealed that F5 showed an excellent flowability characteristic with a value of 9.74±1.61 while F3 and F6 showed good flowability characteristics. By the end of the release, F6 showed approximately 90% drug release. Results F6 was selected for the in vivo study; Cmax was increased by 1.5-fold while AUC0-∞ also increased significantly by 3-fold when compared with commercial tablet and finally, tmax was increased by 3-fold indicating sustained release pattern. The relative bioavailability was also increased by 3.2-fold. Conclusion The results of this study suggested that the formulation of compressed tablets containing more stable proniosomal powder extended the release of TEL and increased its bioavailability as well.
Collapse
Affiliation(s)
- Mahmoud Hasan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, North Sinai, Egypt
| | - Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa Ahmed Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
75
|
Ansari MJ, Alnakhli M, Al-Otaibi T, Meanazel OA, Anwer MK, Ahmed MM, Alshahrani SM, Alshetaili A, Aldawsari MF, Alalaiwe AS, Alanazi AZ, Zahrani MA, Ahmad N. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Preparation and In vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
77
|
Kanwal T, Saifullah S, Rehman JU, Kawish M, Razzak A, Maharjan R, Imran M, Ali I, Roome T, Simjee SU, Shah MR. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
78
|
Chatzitaki AT, Tsongas K, Tzimtzimis EK, Tzetzis D, Bouropoulos N, Barmpalexis P, Eleftheriadis GK, Fatouros DG. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Saifullah S, Kanwal T, Ullah S, Kawish M, Habib SM, Ali I, Munir A, Imran M, Shah MR. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem Phys Lipids 2021; 235:105052. [PMID: 33482099 DOI: 10.1016/j.chemphyslip.2021.105052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
Current study was aimed to design and develop muco-adhesive self-nano emulsifying drug delivery system (SNEDDs) for improved pharmacokinetics of Cefixime (CFX) in rabbits. The components of SNEDDs formulation i.e., cinnamon oil, Tween® 80, and PEG 200 as oil, surfactant, and co-surfactant respectively were selected based on their high solubilizing capability of the drug. SNEDDs formulation was optimized using Design of experiments (D-optimal design) in terms of droplet size, poly dispersity index and zeta potential. The optimized SNEDDs formulation was studied for various parameters like droplet size, morphology, zeta potential, emulsification, optical clarity, thermodynamic stability, GIT stability, and robustness to dilution. CFX was loaded to optimized formulation to form CFX-SNEDDs. Furthermore, acyl-chitosan, a muco-adhesive agent, was added to CFX-SNEDDS to prepare CHT-CFX-SNEDDS. In vitro drug release showed the controlled release behavior reached a maximum value of 70 % at pH 6.8 within 24 h. The droplet size, atomic force microscopy, and optical clarity analysis revealed the formation of nanosized emulsion (156 ± 25 nm) with spherical morphology. Also in vivo pharmacokinetic studies on rabbits showed an increased drug plasma concentration for CHT-CFX-SNEDDs (15 ± 3 μg/mL) and CFX-SNEDDs (9 ± 2 μg/mL) in comparison with control CFX (4 ± 1 μg/mL). The results indicated that the developed CHT-CFX-SNEDDs with an increased degree of solubilization, permeation, and nanosized range emulsion enhance the oral performance of CFX.
Collapse
Affiliation(s)
- Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shafi Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Kawish
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shahida Muhammad Habib
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Imdad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Abubakar Munir
- Faculty of Pharmacy, Superior University, 6km Raiwind Road, Lahore, Pakistan.
| | - Muhammad Imran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
80
|
Sun C, Li W, Zhang H, Adu-Frimpong M, Ma P, Zhu Y, Deng W, Yu J, Xu X. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:45. [PMID: 33439366 DOI: 10.1208/s12249-020-01901-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the solubility, oral bioavailability, and hypolipidemic effects of syringic acid (SA), a bioactive and poorly-soluble polyphenol. Based on the response surface methodology-central composite design (RSM-CCD), an optimum formulation of SA-SMEDDS, consisting of ethyl oleate (oil, 12.30%), Cremophor-EL (surfactant, 66.25%), 1,2-propanediol (cosurfactant, 21.44%), and drug loading (50 mg/g), was obtained. The droplets of SA-SMEDDS were nanosized (16.38 ± 0.12 nm), spherically shaped, and homogeneously distributed (PDI = 0.058 ± 0.013) nanoparticles with high encapsulation efficiency (98.04 ± 1.39%) and stability. In vitro release study demonstrated a prolonged and controlled release of SA from SMEDDS. In vitro cell studies signified that SA-SMEDDS droplets substantially promoted cellular internalization. In comparison with the SA suspension, SA-SMEDDS showed significant prolonged Tmax, t1/2, and MRT after oral administration. Also, SA-SMEDDS exhibited a delayed in vivo elimination, increased bioavailability (2.1-fold), and enhanced liver accumulation. Furthermore, SA-SMEDDS demonstrated significant improvement in alleviating serum lipid profiles and hepatic steatosis in high-fat diet-induced hyperlipidemia in mice. Collectively, SMEDDS demonstrated potential as a nanosystem for the oral delivery of SA with enhanced bioavailability and hypolipidemic effects.
Collapse
|
81
|
Hosny KM, Al Nahyah KS, Alhakamy NA. Self-Nanoemulsion Loaded with a Combination of Isotretinoin, an Anti-Acne Drug, and Quercetin: Preparation, Optimization, and In Vivo Assessment. Pharmaceutics 2020; 13:pharmaceutics13010046. [PMID: 33396942 PMCID: PMC7823934 DOI: 10.3390/pharmaceutics13010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Acne vulgaris is a common skin disease that affects everybody at least once in their lives. The treatment is challenging because the stratum corneum contains rigid corneocytes surrounded by intercellular lamellae that are difficult to bypass. In the present study, we intended to formulate an effective nanoemulsion that could deliver isotretinoin (ITT) with enhanced solubility, permeability, and bioavailability across the skin. ITT can have a serious hepatotoxic effect if given too frequently or erratically. Therefore, to overcome the aforesaid limitation, quercetin (QRS), a hepatoprotective agent, was incorporated into the formulation. Initially, the ITT solubility was determined in various surfactants and cosurfactants to select the essential ingredients to be used in the formulation and to optimize a nanoemulsion that could enhance the solubility and permeability of ITT and its antimicrobial activity against Staphyloccocus aureus, which is the main microorganism responsible for acne vulgaris. The mixture design was applied to study the interactions and optimize the independent variables that could match the prerequisites of selected dependent responses. A formulation containing 0.25 g of rosehip oil, 0.45 g of surfactant (Lauroglycol-90), and 0.3 g of cosurfactant (propylene glycol) was chosen as an optimized desirable formulation. The optimized batch was loaded with QRS and evaluated for in vitro and ex vivo permeation. The in vivo hepatotoxicity was assessed through topical administration. Permeability studies confirmed the enhanced permeation percentage of ITT (52.11 ± 2.85%) and QRS (25.44 ± 3.18%) of the optimized formulation, with an enhanced steady-state flux (Jss). The in vivo studies conducted on experimental animals demonstrated superior hepatoprotective activity of the prepared optimized formulation compared with other formulations of drugs and commercially marketed products. We anticipate that this optimized ITT formulation, followed up with good clinical evaluations, can be a breakthrough in the safe treatment of acne vulgaris.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.S.A.N.); (N.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-5-9272-2634
| | - Khalid S. Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.S.A.N.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.S.A.N.); (N.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
82
|
Mehanna MM, Mneimneh AT, Domiati S, Allam AN. Tadalafil-Loaded Limonene-Based Orodispersible Tablets: Formulation, in vitro Characterization and in vivo Appraisal of Gastroprotective Activity. Int J Nanomedicine 2020; 15:10099-10112. [PMID: 33363369 PMCID: PMC7754088 DOI: 10.2147/ijn.s288552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastric ulcer is a prevalent disease with various etiologies, including non-steroidal anti-inflammatory drugs and alcohol consumption. This study aimed to explore the dual gastric protection effect of tadalafil and limonene as a self-nanoemulsifying system (SNES)-based orodispersible tablets. METHODS Tadalafil-loaded limonene-based SNES was prepared, and the optimum formula was characterized in terms of particle size (PS), polydispersity index (PDI), and zeta potential (ZP) then loaded on various porous carriers to formulate lyophilized orodispersible tablets (ODTs). The ODTs were evaluated via determining hardness, friability, content uniformity, wetting, and disintegration time. The selected ODT was examined for its gastric ulcer protective effect against alcohol-induced ulcers in rat model. Ulcer score and ulcer index were computed for rats stomachs that were inspected macroscopically and histopathologically. RESULTS The prepared SNES had droplet size of 104 nm, polydispersity index of 0.2, and zeta potential of -15.4 mV. From the different ODTs formulated, the formula with superior wetting time: 23.67 s, outstanding disintegration time: 28 s, accepted hardness value: 3.11 kg/cm2 and friability: 0.6% was designated. A significant gastroprotective effect of the unloaded and tadalafil-loaded ODTs was recognized compared to the omeprazole pre-treated group. Moreover, the histopathological analysis displayed very mild inflammation in the limonene-based ODTs group and intact structure in the tadalafil-loaded pre-treated animals. CONCLUSION Limonene gastroprotective effect functioned along with tadalafil in the form of SNES-incorporated ODTs could serve as a promising revenue for better efficacy in gastric ulcer prevention.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Amina Tarek Mneimneh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ahmed N Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
83
|
Hosny KM, Alhakamy NA, Almodhwahi MA, Kurakula M, Almehmady AM, Elgebaly SS. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111124. [PMID: 33233372 PMCID: PMC7700536 DOI: 10.3390/pharmaceutics12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Sildenafil citrate is a drug used throughout the world primarily to treat erectile dysfunction. Several problems with the commercially available product decrease its efficacy, such as limited solubility, delayed onset of action, and low bioavailability with a large variability in the absorption profile. This study aimed to develop an optimized self-nanoemulsifying lyophilized tablet for the drug to conquer the foresaid problems. Sildenafil solubility in various surfactants, oils, and cosurfactants was attempted. An optimized formulation of a loaded self-nanoemulsion with a small droplet size was developed by applying a special cubic model of the mixture design. Sixteen formulations were prepared and characterized for droplet size. On the basis of solubility studies, a clove oil/oleic acid mixture, polysorbate 20 (Tween 20), and propylene glycol were selected as the proposed oil, surfactant, and cosurfactant, respectively. On the basis of desirability, an optimized sildenafil citrate-loaded self-nanoemulsifying delivery system containing 10% of the oil mixture, 60% of the surfactant, and 30% of the cosurfactant had a droplet size of 65 nm. Subsequently, the tablet form was fabricated with optimum ratios of 0.4% fumed silica, 0.1% hydroxypropyl methylcellulose, and 0.4% sodium starch glycolate. This formula showed satisfactory results in both disintegration and dissolution studies. In vivo pharmacokinetic studies indicated a higher bioavailability (1.44 times) and rapid absorption profile for the study’s tablets compared with commercially available tablets. In conclusion, highly bioavailable oral lyophilized flash tablets of sildenafil were successfully prepared. They will be a good alternative to the conventional solid-dosage form.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef 62511, Egypt
- Correspondence: ; Tel.: +96-656-168-2377
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maeen A. Almodhwahi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Mallesh Kurakula
- Department of Biomedical Engineering, The Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Samar S. Elgebaly
- Department of Medical Engineer, Elko-Medical Company, Algomhoria Street, Cairo 22132, Egypt;
| |
Collapse
|
84
|
Kim JS, Ud Din F, Lee SM, Kim DS, Choi YJ, Woo MR, Kim JO, Youn YS, Jin SG, Choi HG. Comparative study between high-pressure homogenisation and Shirasu porous glass membrane technique in sildenafil base-loaded solid SNEDDS: Effects on physicochemical properties and in vivo characteristics. Int J Pharm 2020; 592:120039. [PMID: 33152479 DOI: 10.1016/j.ijpharm.2020.120039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to compare two types of emulsification techniques in a solid self-nanoemulsifying drug delivery system (SNEDDS); high-pressure homogenisation (HPH) and Shirasu porous glass membrane (SPG). Those two emulsification processes enhanced the solubility, dissolution and oral bioavailability of poorly water-soluble sildenafil base (SB) by producing fine and well-dispersed nanoemulsion droplet. The liquid SNEDDS consisting of Labrasol/Transcutol HP/coconut oil at the weight of 72/18/10, gave the smallest emulsion droplet size among the prepared liquid SNEDDS formulations. Then, the SB-loaded liquid SNEDDS was dissolved in the deionised water and applied to HPH or SPG techniques. Aerosil 200 was suspended as a mesoporous carrier and spray-dried, producing an SB-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of each emulsification process were compared to the solid SNEDDS fabricated without any treatment of additional emulsification. Moreover, the physicochemical properties of all formulations were compared. The crystalline state of the drug in all products was converted to the amorphous state. The solid SNEDDS, subjected to HPH technique, provided fine and well-dispersed nanoemulsion. Additionally, it increasingly improved the drug solubility and dissolution as compared to the others, including SB powder, non-treated (NT) and SPG. Furthermore, it gave improved Cmax and increased AUC compared to SB powder and SPG, indicating HPH enhanced the oral bioavailability of SB the most. Thus, this solid SNEDDS with HPH would be strongly suggested as an oral SB-loaded pharmaceutical product.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Sang Min Lee
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yoo Jin Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
85
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
86
|
Abdelmonem R, Azer MS, Makky A, Zaghloul A, El-Nabarawi M, Nada A. Development, Characterization, and in-vivo Pharmacokinetic Study of Lamotrigine Solid Self-Nanoemulsifying Drug Delivery System. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4343-4362. [PMID: 33116420 PMCID: PMC7585523 DOI: 10.2147/dddt.s263898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Purpose This study aimed to prepare solid self-nanoemulsified drug delivery system (S-SNEDDS) of lamotrigine (LMG) for enhancing its dissolution and oral bioavailability (BA). Methods Nineteen liquid SNEDDS were prepared (R1-R19) using D-optimal design with different ratios of oil, surfactant (S), and cosurfactant (Cos). The formulations were characterized regarding robustness to dilution, droplet size, thermodynamic stability testing, self-emulsification time, in-vitro release in 0.1 N HCl and phosphate buffer (PB; pH 6.8). Design Expert® 11 software was used to select the optimum formulations. Eight S-SNEDDS were prepared (S1-S8) using 23 factorial design, and characterized by differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and scanning electron microscopy (SEM). The optimum formulation was chosen regarding in-vitro drug released in 0.1 N HCl and PB, compared to pure LMG and commercial tablet (Lamictal®). The BA of LMG from the optimized S-SNEDDS formulation was evaluated in rabbits compared to pure LMG and Lamictal®. Results The optimized S-SNEDDS was S2, consisting of R9 adsorbed on Aeroperl® 300 in a ratio of 1:1, with the best results regarding in-vitro drug released in 0.1 N HCl at 15 min (100%) compared to pure LMG (73.40%) and Lamictal® (79.43%), and in-vitro drug released in PB at 45 min (100%) compared to pure LMG (30.46%) and Lamictal® (92.08%). DSC, PXRD, and SEM indicated that LMG was molecularly dispersed within the solid nano-system. The BA of S2 was increased 2.03 and 1.605 folds compared to pure LMG, and Lamictal®, respectively. Conclusion S2 is a promising S-SNEDDS formulation. It can be a potential carrier for improving dissolution, and BA of LMG.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Marian Sobhy Azer
- Department of Pharmaceutics, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelazim Zaghloul
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Nada
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
87
|
Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, Killedar SG, Kawtikwar PS. Capsaicin Loaded Solid SNEDDS for Enhanced Bioavailability and Anticancer Activity: In-Vitro, In-Silico, and In-Vivo Characterization. J Pharm Sci 2020; 110:280-291. [PMID: 33069713 DOI: 10.1016/j.xphs.2020.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
In this investigation, the fabrication of capsaicin loaded self nano emulsifying drug delivery system (SNEDDS) was attempted to improve the effectiveness of capsaicin through the oral route. A pseudo-ternary phase diagram was constructed at different km values (1:1, 2:1, & 3:1). Nine liquid formulations (L-CAP-1 to L-CAP-9) were prepared at km = 3, evaluated & converted to solid free-flowing granules using neusilin® US2. L-CAP-3 comprising of 15% isopropyl myristate, 33.75% Labrafil, & 11.25% ethanol exhibited higher % transmittance (98.90 ± 1.24%) & lower self-emulsification time (18.19 ± 0.46 s). FT-IR spectra showed no incompatibility whereas virtual analysis confirmed hydrogen bond interaction between amino hydrogen in the capsaicin & oxygen of the neusilin. DSC & XRD study revealed the amorphization & molecular dispersion of capsaicin in S-SNEDDS. TEM analysis confirmed the nano-sized spherical globules. Within 15 min, L-SNEDDS, S-SNEDDS, & pure capsaicin showed 87.36 ± 3.25%, 85.19 ± 4.87%, & 16.61 ± 3.64% drug release respectively. S-CAP-3 significantly (P < 0.001) inhibited the proliferation of HT-29 colorectal cancer cells than capsaicin. Apoptosis assay involving Annexin V/PI staining for S-CAP-3 treated cells demonstrated a significant (P < 0.001) apoptotic rate. Remarkably, 3.6 fold increase in bioavailability was observed after oral administration of capsaicin-SNEDDS than plain capsaicin.
Collapse
Affiliation(s)
| | - Pratik A Swami
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | | | - Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belgavi, 590 010, Karnataka, India
| | - Harinath N More
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Suresh G Killedar
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | - Pravin S Kawtikwar
- Sudhakarrao Naik Institute of Pharmacy, Pusad 445 204, Maharashtra, India
| |
Collapse
|
88
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Kapoor B, Vyas M, Khursheed R, Awasthi A, Kaur J, Corrie L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson's disease rat model. Food Chem Toxicol 2020; 144:111590. [DOI: 10.1016/j.fct.2020.111590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
89
|
Kumar R, Kumar R, Khursheed R, Awasthi A, Ramanunny AK, Kaur J, Khurana N, Singh SK, Khurana S, Pandey NK, Kapoor B, Sharma N. Validated Reverse Phase-High-Performance Liquid Chromatography Method for Estimation of Fisetin in Self-Nanoemulsifying Drug Delivery System. Assay Drug Dev Technol 2020; 18:274-281. [DOI: 10.1089/adt.2020.983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shelly Khurana
- Deparment of Pharmacy, Government Polytechnic College, Amritsar, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
90
|
Friedl JD, Steinbring C, Zaichik S, Le NMN, Bernkop-Schnürch A. Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine (Lond) 2020; 15:1829-1841. [PMID: 32781886 DOI: 10.2217/nnm-2020-0127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Comparison of the impact of polyethylene glycol (PEG) and polyglycerol (PG) surface decoration on self-emulsifying drug delivery system (SEDDS)-membrane interaction and cellular uptake. Materials & methods: PEG-, PEG/PG- and PG-SEDDS were assessed regarding their self-emulsifying properties, surface charge, bile salt fusibility, cellular uptake and interaction with endosome-mimicking membranes. Results: SEDDS exhibited droplet sizes between 150 and 175 nm, a narrow size distribution and self-emulsified within 7 min. Higher PEG-surfactant amounts in SEDDS resulted in charge-shielding and thus in a decrease of ζ potential up to Δ11 mV. The inert PEG-surface hampered bile salt fusion and interfered SEDDS-cell interaction. By reducing the PEG-surfactant amount to 10%, cellular uptake increased twofold compared with PEG-SEDDS containing 40% PEG-surfactant. PG-SEDDS containing no PEG-surfactants showed a threefold increased cellular uptake. Furthermore, complete replacement of PEG-surfactants by PG-surfactants led to enhanced cellular interaction and improved disruption endosome-like membranes. Conclusion: PG-surfactants demonstrated high potential to address PEG-surface associated drawbacks in SEDDS.
Collapse
Affiliation(s)
- Julian David Friedl
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Nguyet-Minh Nguyen Le
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria.,Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
91
|
El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
92
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
93
|
Al-Kandari BM, Al-Soraj MH, Hedaya MA. Dual Formulation and Interaction Strategies to Enhance the Oral Bioavailability of Paclitaxel. J Pharm Sci 2020; 109:3386-3393. [PMID: 32745564 DOI: 10.1016/j.xphs.2020.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
A self-microemulsifying drug delivery system (SMEDDS) was developed to enhance Paclitaxel (PTX) solubility and membrane permeability, thus improve its bioavailability. Pre-formulation studies were performed to optimize PTX-SMEDDS formulation. Then, in vitro characteristics of the formulation were determined and PTX oral absorption was investigated in rabbits. The optimized PTX-SMEDDS showed emulsification time of 31 ± 4 s, droplet size of 19.4 ± 0.5 nm, poly-dispersibility index of 0.35 ± 0.08, percentage transmittance after dilution of 99 ± 0.02%, zeta potential of 36.82 ± 1.8 mv, cloud point of 78 ± 0.5 °C and infinite dilution capability. The formulation maintained its physical and chemical stability during storage at 4 °C for three months. Oral administration of 10 mg/kg of 1.5% w/w PTX-loaded SMEDDS to rabbits increased PTX bioavailability by 4.5 fold in comparison to untreated PTX suspension. While when the rabbits received 1.5% w/w PTX-loaded SMEDDS after pretreated with 1 dose and 2 doses of cyclosporine A, PTX bioavailability increased by 4.4 and 7.8 fold, respectively. This indicates that the combined effect of the SMEDDS formulation in addition to pretreatment with P-gp and CYP3A4 inhibitor, can improve the oral bioavailability of poorly soluble and poorly permeable drugs such as PTX in rabbits.
Collapse
Affiliation(s)
| | | | - Mohsen A Hedaya
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University.
| |
Collapse
|
94
|
Alghananim A, Özalp Y, Mesut B, Serakinci N, Özsoy Y, Güngör S. A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies. Pharmaceuticals (Basel) 2020; 13:ph13080162. [PMID: 32722238 PMCID: PMC7465256 DOI: 10.3390/ph13080162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constructed, and then SNEDDS formation assessment studies and solubility of DFX in selected SNEDDSs formulations were performed. DFX loaded SNEDDS were prepared and characterized. The optimum DFX-SNEDDS formulations were developed. The relative safety of the optimized SNEDDS formulation was examined in a human immortalized myelogenous leukemia cell line, K562 cells, using the MTT cell viability test. Cytotoxicity studies revealed more cell viability (71.44%) of DFX loaded SNEDDS compared to pure DFX (3.99%) at 40 μM. The selected DFX-SNEDDS formulation was converted into S-SNEDDS by adsorbing into porous carriers, in order to study its dissolution behavior. The in vitro drug release studies indicated that DFX release (Q5%) from S-SNEDDS solidified with Neusilin UFL2 was significantly higher (93.6 ± 0.7% within 5 min) compared with the marketed product (81.65 ± 2.10%). The overall results indicated that the S-SNEDDS formulation of DFX could have the potential to enhance the solubility of DFX, which would in turn have the potential to improve its oral bioavailability as a safe novel delivery system.
Collapse
Affiliation(s)
- Alaa Alghananim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash 26150, Jordan
| | - Yıldız Özalp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Nedime Serakinci
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia 99010, Cyprus;
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences Near East University, Nicosia 99010, Cyprus
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
- Correspondence: ; Tel.: +90-212-440-00-00 (ext. 13493)
| |
Collapse
|
95
|
Jianxian C, Saleem K, Ijaz M, Ur-Rehman M, Murtaza G, Asim MH. Development and in vitro Evaluation of Gastro-protective Aceclofenac-loaded Self-emulsifying Drug Delivery System. Int J Nanomedicine 2020; 15:5217-5226. [PMID: 32801687 PMCID: PMC7384876 DOI: 10.2147/ijn.s250242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
AIM Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs) is commonly associated with gastric irritation and gastric ulceration. Therefore, the aim of study was to develop a novel oral drug delivery system with minimum gastric effects and improved dissolution rate for aceclofenac (ACF), a model BCS class-II drug. METHODS Self-emulsifying drug delivery systems (SEDDS) were formulated to increase the solubility and ultimately the oral bioavailability of ACF. Oleic acid was used as an oil phase, Tween 80 (T80) and Kolliphor EL (KEL) were used as surfactants, whereas, polyethylene glycol 400 (PEG 400) and propylene glycol (PG) were employed as co-surfactants. Optimized formulations (F1, F2, F3 and F4) were analyzed for droplet size, poly dispersity index (PDI), cell viability studies, in vitro dissolution in both simulated gastric fluid and simulated intestinal fluid, ex vivo permeation studies and thermodynamic stability. RESULTS The optimized formulations showed mean droplet sizes in the range of 111.3 ± 3.2 nm and 470.9 ± 12.52 nm, PDI from 244.6 nm to 389.4 ± 6.51 and zeta-potential from -33 ± 4.86 mV to -38.5 ± 5.15 mV. Cell viability studies support the safety profile of all formulations for oral administration. The in vitro dissolution studies and ex vivo permeation analysis revealed significantly improved drug release ranging from 95.68 ± 0.02% to 98.15 ± 0.71% when compared with control. The thermodynamic stability studies confirmed that all formulations remain active and stable for a longer period. CONCLUSION In conclusion, development of oral SEDDS might be a promising tool to improve the dissolution of BCS class-II drugs along with significantly reduced exposure to gastric mucosa.
Collapse
Affiliation(s)
- Chen Jianxian
- School of Economics, Capital University of Economics and Business, Beijing, People’s Republic of China
- Chapter of traditional Chinese Medicine, China Information Industry Association, Beijing, China
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Muhammad Ijaz
- COMSATS University Islamabad, Lahore Campus, Lahore54000, Pakistan
| | - Masood Ur-Rehman
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Ghulam Murtaza
- COMSATS University Islamabad, Lahore Campus, Lahore54000, Pakistan
| | - Mulazim Hussain Asim
- Institute of Pharmaceutical Technology, University of Innsbruck, Innsbruck6020, Austria
| |
Collapse
|
96
|
Investigating the Potential of Transmucosal Delivery of Febuxostat from Oral Lyophilized Tablets Loaded with a Self-Nanoemulsifying Delivery System. Pharmaceutics 2020; 12:pharmaceutics12060534. [PMID: 32531910 PMCID: PMC7356236 DOI: 10.3390/pharmaceutics12060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gout is the most familiar inflammatory arthritis condition caused by the elevation of uric acid in the bloodstream. Febuxostat (FBX) is the latest drug approved by the United States Food and Drug Administration (US FDA) for the treatment of gout and hyperuricemia. FBX is characterized by low solubility resulting in poor gastrointestinal bioavailability. This study aimed at improving the oral bioavailability of FBX by its incorporation into self-nanoemulsifying delivery systems (SNEDS) with minimum globule size and maximum stability index. The SNEDS-incorporated FBX was loaded into a carrier substrate with a large surface area and lyophilized with other excipients to produce a fluffy, porous-like structure tablet for the transmucosal delivery of FBX. The solubility of FBX was studied in various oils, surfactants, and cosurfactants. Extreme vertices design was utilized to optimize FBX-SNEDS, and subsequently loaded into lyophilized tablets along with suitable excipients. The percentages of the main tablet excipients were optimized using a Box–Behnken design to develop self-nanoemulsifying lyophilized tablets (SNELTs) with minimum disintegration time and maximum drug release. The pharmacokinetics parameters of the optimized FBX-SNELTs were tested in healthy human volunteers in comparison with the marketed FBX tablets. The results revealed that the optimized FBX-SNELTs increased the maximum plasma concentration (Cmax) and decreased the time to reach Cmax (Tmax) with a large area under the curve (AUC) as a result of the enhanced relative oral bioavailability of 146.4%. The significant enhancement of FBX bioavailability is expected to lead to reduced side effects and frequency of administration during the treatment of gout.
Collapse
|
97
|
van Staden D, du Plessis J, Viljoen J. Development of a Self-Emulsifying Drug Delivery System for Optimized Topical Delivery of Clofazimine. Pharmaceutics 2020; 12:E523. [PMID: 32521671 PMCID: PMC7356627 DOI: 10.3390/pharmaceutics12060523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
A quality-by-design and characterization approach was followed to ensure development of self-emulsifying drug delivery systems (SEDDSs) destined for topical delivery of the highly lipophilic clofazimine. Solubility and water-titration experiments identified spontaneous emulsification capacity of different excipient combinations and clofazimine. After identifying self-emulsification regions, check-point formulations were selected within the self-emulsification region by considering characteristics required to achieve optimized topical drug delivery. Check-point formulations, able to withstand phase separation after 24 h at an ambient temperature, were subjected to characterization studies. Experiments involved droplet size evaluation; size distribution; zeta-potential; self-emulsification time and efficacy; viscosity and pH measurement; cloud point assessment; and thermodynamic stability studies. SEDDSs with favorable properties, i.e., topical drug delivery, were subjected to dermal diffusion studies. Successful in vitro topical clofazimine delivery was observed. Olive oil facilitated the highest topical delivery of clofazimine probably due to increased oleic acid levels that enhanced stratum corneum lipid disruption, followed by improved dermal clofazimine delivery. Finally, isothermal microcalometric experiments studied the compatibility of excipients. Potential interactions were depicted between argan oil and clofazimine as well as between Span®60 and argan-, macadamia- and olive oil, respectively. However, despite some mundane incompatibilities, successful development of topical SEDDSs achieved enhanced topical clofazimine delivery.
Collapse
Affiliation(s)
| | | | - Joe Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom, North-West Province 2520, South Africa; (D.v.S.); (J.d.P.)
| |
Collapse
|
98
|
Khattab A, Mohamed M, Basalious EB. Design of self-nanoemulsifying system to enhance absorption and bioavailability of poorly permeable Aliskiren hemi-fumarate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99
|
Yousry C, Zikry PM, Basalious EB, El-Gazayerly ON. Self-nanoemulsifying System Optimization for Higher Terconazole Solubilization and Non-Irritant Ocular Administration. Adv Pharm Bull 2020; 10:389-398. [PMID: 32665897 PMCID: PMC7335989 DOI: 10.34172/apb.2020.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/20/2023] Open
Abstract
Purpose: Eye drops’ formulations of poorly water-soluble drugs, offer the advantage of crossing the lipophilic cornea, but their limited aqueous solubility may lead to low ocular bioavailability limiting their therapeutic uses. Terconazole (TZ) is an antifungal drug with low aqueous solubility, restricting its application in ocular fungal infection. Thus, the aim of the work in this study is to enhance TZ solubilization, permitting better ocular permeation and higher bioavailability. To achieve this goal, different self-nanoemulsifying systems (SNESs) were prepared using different oils, surfactants and co-surfactants. Methods: Ternary phase diagrams were constructed to identify self nano-emulsification regions for each oil system examined; either Labrafil® M2125CS or Capryol™ 90. TZ saturated solubility in the different formulated systems were measured and systems showing highest potential for TZ solubilization were selected. The optimized systems were chosen based on their globule size, polydispersity index, self-emulsification characteristics. Finally, TZ release as well as the irritation effect via Hen’s Egg test-chorioallantoic membrane (HET-CAM test) of the optimized system was observed in vitro. Results: The optimized system was formulated using 20% w/w Labrafil® M2125 CS, 50% w/w Tween® 80 and 30% w/w Transcutol® HP. Oil globules showed size range of 15.13 nm and self-emulsification time of 12.80 seconds. The system released 100% of the drug within half an hour compared to 2 hours in case of TZ-suspension. Finally, HET-CAM test showed non-irritating response and normal vascularization of the chorioallantoic membrane. Conclusion: The formulated SNES could be a promising approach to enhance ocular efficacy of TZ.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Pakinam Mohsen Zikry
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Emad Basalious Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Omaima Naem El-Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
100
|
Raafat KM, El-Zahaby SA. Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chin Med 2020; 15:40. [PMID: 32377229 PMCID: PMC7195756 DOI: 10.1186/s13020-020-00321-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fumaria officinalis (F. officinalis, FO) has been used in many inflammatory and painful-ailments. The main aim of this work is to perform an in-depth bio-guided phytochemical investigation of F. officinalis by identifying its main-active ingredients. Optimizing pharmacokinetics via niosomal-preparation will also be done to enhance their in vivo antineuropathic and anti-inflammatory potentials, and to explore their possible-mechanism of actions. METHODS Bio-guided phytochemical-investigations including fractionation, isolation, chromatographic-standardization, and identification of the most active compound(s) were done. Optimized niosomal formulations of F. officinalis most active compound(s) were prepared and characterized. An in vivo biological-evaluation was done exploring acute, subchronic, and chronic alloxan-induced diabetes and diabetic-neuropathy, and carrageenan-induced acute inflammatory-pain and chronic-inflammatory edema. RESULTS In-vivo bio-guided fractionation and chromatographic phytochemical-analysis showed that the alkaloid-rich fraction (ARF) is the most-active fraction. ARF contained two major alkaloids; Stylopine 48.3%, and Sanguinarine 51.6%. In-vitro optimization, analytical, and in vivo biological-investigations showed that the optimized-niosome, Nio-2, was the most optimized niosomal formulation. Nio-2 had particle size 96.56 ± 1.87 nm and worked by improving the pharmacokinetic-properties of ARF developing adequate entrapment-efficiency, rapid-degradation, and acceptable stability in simulated GI conditions. FO, ARF, and Nio 2 were the most potent antidiabetic and anti-inflammatory compounds. The reduction of the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha) and Interleukin 6 (IL-6), and elevation the anti-inflammatory factor IL-10 levels and amelioration of the in vivo oxidative-stress might be the main-mechanism responsible for their antinociceptive and anti-inflammatory activities. CONCLUSIONS Fumaria officinalis most-active fraction was identified as ARF. This study offers an efficient and novel practical oral formulation ameliorating various inflammatory conditions and diabetic complications especially neuropathic-pain.
Collapse
Affiliation(s)
- Karim M. Raafat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, 115020 Lebanon
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|