51
|
Hsu YJ, Wu MF, Lee MC, Huang CC. Exercise training combined with Bifidobacterium longum OLP-01 treatment regulates insulin resistance and physical performance in db/db mice. Food Funct 2021; 12:7728-7740. [PMID: 34296722 DOI: 10.1039/d0fo02939d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic disease characterized by hyperglycemia and insulin resistance. Regular exercise is one of the effective lifestyle interventions for maintaining healthy weight and blood glucose levels in the normal range and lowering risk factors. Probiotics, live microorganisms that are beneficial to health, are involved in the regulation of host metabolism. We thus hypothesize that the combination of exercise training and Bifidobacterium longum OLP-01 (OLP-01) could improve insulin sensitivity, blood glucose control and body composition in db/db mice. Twenty-four C57BL/6 J db/db male mice (20-weeks old) were divided into four groups (n = 6 per group): vehicle, OLP-01 supplementation (OLP-01), exercise training (EX) and exercise training with OLP-01 supplementation (EX + OLP-01). Animals in the EX and EX + OLP-01 groups underwent strength exercise training for 6 weeks, 5 days per week. After the exercise training, we tested forelimb grip strength, exhaustive running, oral glucose tolerance test (OGTT) and serum biomarkers. Results: Combined intervention of EX and OLP-01 prevented elevation of body weight and body fat. Grip strength and exhaustive swimming time were significantly higher in the EX + OLP-01 group than in the other groups. We found that EX OLP-01 reduced glycolipid parameters (fasting blood glucose and hemoglobin A1c), improved insulin sensitivity (oral glucose tolerance test and HOMA-IR), relieved liver injury parameters (aspartate aminotransferase and alanine aminotransferase) and repaired pancreas damage. Based on our findings, we speculate that the positive effects of combining EX with OLP-01 on capacity for physical activity, blood glucose control and body composition suggest an integrative approach to treating type 2 diabetes. Altogether, the combination of EX with OLP-01 treatment might be a good candidate for preventing and treating diabetes.
Collapse
Affiliation(s)
- Yi-Ju Hsu
- Graduate Institute of Sports Science, Natioal Taiwan Sport University, Taoyuan City 33301, Taiwan.
| | | | | | | |
Collapse
|
52
|
McKenna CF, Salvador AF, Hughes RL, Scaroni SE, Alamilla RA, Askow AT, Paluska SA, Dilger AC, Holscher HD, De Lisio M, Khan NA, Burd NA. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am J Physiol Endocrinol Metab 2021; 320:E900-E913. [PMID: 33682457 DOI: 10.1152/ajpendo.00574.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.0 g·kg-1·day-1) or higher (HIGH: ∼1.6 g·kg-1·day-1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. In all, 50 middle-aged adults (age: 50 ± 8 yr, BMI: 27.2 ± 4.1 kg/m2) were randomized to either MOD or HIGH protein intake during a 10-wk resistance training program (3 × wk). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate postexercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P < 0.050). There was a main effect of time for LBM (P < 0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P < 0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.NEW & NOTEWORTHY Our research evaluates the efficacy of higher in comparison with moderate animal-based protein intake on resistance exercise training-induced muscle strength, clinical biomarkers, and gut microbiota in middle-aged adults through a dietary counseling-controlled intervention. Higher protein intake did not potentiate training adaptations, nor did the intervention effect disease biomarkers. Both diet and exercise modified gut microbiota composition. Collectively, moderate amounts of high-quality, animal-based protein is sufficient to promote resistance exercise adaptations at the onset of aging.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amadeo F Salvador
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Riley L Hughes
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Susannah E Scaroni
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rafael A Alamilla
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Andrew T Askow
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Division of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics and Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|