51
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
52
|
Carriero F, Rubino V, Leone S, Montanaro R, Brancaleone V, Ruggiero G, Terrazzano G. Regulatory T R3-56 Cells in the Complex Panorama of Immune Activation and Regulation. Cells 2023; 12:2841. [PMID: 38132162 PMCID: PMC10742044 DOI: 10.3390/cells12242841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The interplay between immune activation and immune regulation is a fundamental aspect of the functional harmony of the immune system. This delicate balance is essential to triggering correct and effective immune responses against pathogens while preventing excessive inflammation and the immunopathogenic mechanisms of autoimmunity. The knowledge of all the mechanisms involved in immune regulation is not yet definitive, and, probably, the overall picture is much broader than what has been described in the scientific literature so far. Given the plasticity of the immune system and the diversity of organisms, it is highly probable that numerous other cells and molecules are still to be ascribed to the immune regulation process. Here, we report a general overview of how immune activation and regulation interact, based on the involvement of molecules and cells specifically dedicated to these processes. In addition, we discuss the role of TR3-56 lymphocytes as a new cellular candidate in the immune regulation landscape.
Collapse
Affiliation(s)
- Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Valentina Rubino
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Stefania Leone
- Hematopoietic Stem Cell Transplantation Unit, Azienda Ospedaliera A. Cardarelli, 80131 Naples, Italy;
| | - Rosangela Montanaro
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Giuseppina Ruggiero
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| |
Collapse
|
53
|
Li H, Zhou J, Zhou L, Zhang X, Shang J, Feng X, Yu L, Fan J, Ren J, Zhang R, Duan X. Identification of the shared gene signatures and molecular pathways in systemic lupus erythematosus and diffuse large B-cell lymphoma. J Gene Med 2023; 25:e3558. [PMID: 37392050 DOI: 10.1002/jgm.3558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) incidence is higher in systemic lupus erythematosus (SLE) patients than the general population, but the molecular mechanisms behind this link remain ambiguous. The aim of this study was to investigate shared gene signatures and molecular pathways between SLE and DLBCL. METHODS We procured expression profiles of SLE and DLBCL from public databases and identified common differentially expressed genes (DEGs). Functional pathway enrichment and protein-protein interaction (PPI) analyses were performed on these shared genes. The molecular complex detection technology (MCODE) and eXtreme Gradient Boosting (XGBoost) machine learning algorithm were used to select core shared genes, followed by Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis. RESULTS We identified 54 DEGs as shared genes, among which CD177, CEACAM1, GPR84 and IFIT3 were identified as core shared genes. These genes showed strong associations with inflammatory and immune response pathways. We found a significant positive correlation between GPR84 and IFIT3 expression levels and the immune microenvironment. Decreased expression levels of GPR84 and IFIT3 were linked to enhanced immune therapy sensitivity, potentially due to lower dysregulation scores during low expression. We also discovered that TP53 mutations might elevate CD177 and GPR84 expression and that reduced expression levels of GPR84 and IFIT3 were linked with better overall survival and progression-free survival in DLBCL patients. CONCLUSIONS Our study provides valuable insights into the shared molecular mechanisms underpinning the pathogenesis of SLE and DLBCL. These findings could potentially offer new biomarkers and therapeutic targets for SLE and DLBCL.
Collapse
Affiliation(s)
- Haoguang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueqin Feng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Le Yu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
54
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
55
|
Rzymski P, Szuster-Ciesielska A. Epstein-Barr virus and autoimmunity: effective preventive and therapeutic strategies are urgently needed. Reumatologia 2023; 61:327-330. [PMID: 37970114 PMCID: PMC10634406 DOI: 10.5114/reum/171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
56
|
Mertowska P, Mertowski S, Smolak K, Kita G, Guz K, Kita A, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Could Immune Checkpoint Disorders and EBV Reactivation Be Connected in the Development of Hematological Malignancies in Immunodeficient Patients? Cancers (Basel) 2023; 15:4786. [PMID: 37835480 PMCID: PMC10572023 DOI: 10.3390/cancers15194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immunodeficiencies (PIDs) and secondary immunodeficiencies (SIDs) are characterized by compromised immune function, rendering individuals susceptible to infections and potentially influencing cancer development. Epstein-Barr virus (EBV), a widespread herpesvirus, has been linked to cancer, particularly in those with weakened immune systems. This study aims to compare selected immune parameters, focusing on immune checkpoint molecules (PD-1/PD-L1, CTLA-4/CD86, CD200R/CD200), and EBV reactivation in patients with chronic lymphocytic leukemia (CLL, a representative of SIDs) and common variable immunodeficiency (CVID, a representative of PIDs). We performed a correlation analysis involving patients diagnosed with CLL, CVID, and a healthy control group. EBV reactivation was assessed using specific antibody serology and viral load quantification. Peripheral blood morphology, biochemistry, and immunophenotyping were performed, with emphasis on T and B lymphocytes expressing immune checkpoints and their serum concentrations. Our findings revealed elevated EBV reactivation markers in both CLL and CVID patients compared with healthy controls, indicating increased viral activity in immunodeficient individuals. Furthermore, immune checkpoint expression analysis demonstrated significantly altered percentages of T and B lymphocytes expressing PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200 in CLL and CVID patients. This suggests a potential interplay between immune checkpoint dysregulation and EBV reactivation in the context of immunodeficiency. In conclusion, our study underscores the intricate relationship between immune dysfunction, EBV reactivation, and immune checkpoint modulation in the context of immunodeficiency-associated cancers. The altered expression of immune checkpoints, along with heightened EBV reactivation, suggests a potential mechanism for immune evasion and tumor progression. These findings provide insights into the complex interactions that contribute to cancer development in immunocompromised individuals, shedding light on potential therapeutic targets for improved management and treatment outcomes. Further investigations are warranted to elucidate the underlying mechanisms and to explore potential interventions to mitigate cancer risk in these patient populations.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Gabriela Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Guz
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Jolanta Smok-Kalwat
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| |
Collapse
|
57
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
58
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family. Mol Neurobiol 2023; 60:4966-4982. [PMID: 37209263 PMCID: PMC10199280 DOI: 10.1007/s12035-023-03381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Kristyna Frydlova
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Allan Kluttz
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| |
Collapse
|
59
|
Ailioaie LM, Ailioaie C, Litscher G. Infection, Dysbiosis and Inflammation Interplay in the COVID Era in Children. Int J Mol Sci 2023; 24:10874. [PMID: 37446047 PMCID: PMC10342011 DOI: 10.3390/ijms241310874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
For over three years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children and adolescents has generated repercussions, especially a few weeks after infection, for symptomatic patients who tested positive, for asymptomatic ones, or even just the contacts of an infected person, and evolved from severe forms such as multisystem inflammatory syndrome in children (MIS-C) to multifarious clinical manifestations in long COVID (LC). Referred to under the umbrella term LC, the onset of persistent and highly heterogeneous symptoms such as fatigue, post-exertion malaise, cognitive dysfunction, and others have a major impact on the child's daily quality of life for months. The first aim of this review was to highlight the circumstances of the pathophysiological changes produced by COVID-19 in children and to better understand the hyperinflammation in COVID-19 and how MIS-C, as a life-threatening condition, could have been avoided in some patients. Another goal was to better identify the interplay between infection, dysbiosis, and inflammation at a molecular and cellular level, to better guide scientists, physicians, and pediatricians to advance new lines of medical action to avoid the post-acute sequelae of SARS-CoV-2 infection. The third objective was to identify symptoms and their connection to molecular pathways to recognize LC more easily. The fourth purpose was to connect the triggering factors of LC with related sequelae following acute SARS-CoV-2 injuries to systems and organs, the persistence of the virus, and some of its components in hidden reservoirs, including the gut and the central nervous system. The reactivation of other latent infectious agents in the host's immune environments, the interaction of this virus with the microbiome, immune hyperactivation, and autoimmunity generated by molecular mimicry between viral agents and host proteins, could initiate a targeted and individualized management. New high-tech solutions, molecules, probiotics, and others should be discovered to innovatively solve the interplay between RNA persistent viruses, microbiota, and our immune system.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German–Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|
60
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|