51
|
Volumetric modulated arc therapy: a dosimetric comparison with dynamic IMRT and step-and-shoot IMRT. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAim:The aim of this study was to compare volumetric modulated arc therapy (VMAT) with dynamic intensity-modulated radiation therapy (dIMRT) and step-and-shoot IMRT (ssIMRT) for different treatment sites.Materials and methods:Twelve patients were selected for the planning comparison study. This included three head and neck, three brain, three rectal and three cervical cancer patients. Total dose of 50 Gy was given for all the plans. Plans were done for Elekta synergy with Monaco treatment planning system. All plans were generated with 6 MV photons beam. Plan evaluation was based on the ability to meet the dose volume histogram, dose homogeneity index, conformity index and radiation delivery time, and monitor unit needs to deliver the prescribed dose.Results:The VMAT and dIMRT plans achieved the better conformity (CI98% = 0·965 ± 0·023) and (CI98% = 0·939 ± 0·01), respectively, while ssIMRT plans were slightly inferior (CI98% = 0·901 ± 0·038). The inhomogeneity in the planning target volume (PTV) was highest with ssIMRT with HI equal to 0·097 ± 0·015 when compared to VMAT with HI equal to 0·092 ± 0·0369 and 0·095 ± 0·023 with dIMRT. The integral dose is found to be inferior with VMAT 105·31 ± 53·6 (Gy L) when compared with dIMRT 110·75 ± 52·9 (Gy L) and ssIMRT 115 38 ± 55·1(Gy L). All the techniques respected the planning objective for all organs at risk. The delivery time per fraction for VMAT was much lower than dIMRT and ssIMRT.Findings:Our results indicate that dIMRT and VMAT provide better sparing of normal tissue, homogeneity and conformity than ssIMRT with reduced treatment delivery time.
Collapse
|
52
|
Konishi T, Ogawa H, Najima Y, Hashimoto S, Wada A, Adachi H, Konuma R, Kishida Y, Nagata A, Yamada Y, Kaito S, Mukae J, Marumo A, Noguchi Y, Toya T, Igarashi A, Kobayashi T, Ohashi K, Doki N, Karasawa K. Safety of total body irradiation using intensity-modulated radiation therapy by helical tomotherapy in allogeneic hematopoietic stem cell transplantation: a prospective pilot study. JOURNAL OF RADIATION RESEARCH 2020; 61:969-976. [PMID: 32888029 PMCID: PMC7674702 DOI: 10.1093/jrr/rraa078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 05/28/2023]
Abstract
Total body irradiation using intensity-modulated radiation therapy total body irradiation (IMRT-TBI) by helical tomotherapy in allogeneic hematopoietic stem cell transplantation (allo-HSCT) allows for precise evaluation and adjustment of radiation dosage. We conducted a single-center pilot study to evaluate the safety of IMRT-TBI for allo-HSCT recipients. Patients with hematological malignancies in remission who were scheduled for allo-HSCT with TBI-based myeloablative conditioning were eligible. The primary endpoint was the incidence of adverse events (AEs). Secondary endpoints were engraftment rate, overall survival, relapse rate, non-relapse mortality, and the incidence of acute and chronic graft-versus-host disease (aGVHD and cGVHD, respectively). Between July 2018 and November 2018, ten patients were recruited with a median observation duration of 571 days after allo-HSCT (range, 496-614). D80% for planning target volume (PTV) in all patients was 12.01 Gy. Average D80% values for lungs, kidneys and lenses (right/left) were 7.50, 9.03 and 4.41/4.03 Gy, respectively. Any early AEs (within 100 days of allo-HSCT) were reported in all patients. Eight patients experienced oral mucositis and gastrointestinal symptoms. One patient experienced Bearman criteria grade 3 regimen-related toxicity (kidney and liver). All cases achieved neutrophil engraftment. There was no grade III-IV aGVHD or late AE. One patient died of sinusoidal obstruction syndrome 67 days after allo-HSCT. The remaining nine patients were alive and disease-free at final follow-up. Thus, IMRT-TBI was well tolerated in terms of early AEs in adult patients who underwent allo-HSCT; this warrants further study with longer observation times to monitor late AEs and efficacy.
Collapse
Affiliation(s)
| | | | - Yuho Najima
- Corresponding author. Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Hon-Komagome, Bunkyo-ku, Tokyo, Japan, 1138677, Phone: +81-3-3823-2101, Fax: +81-3-3823-5433,
| | - Shinpei Hashimoto
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Atsushi Wada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Hiroto Adachi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Ryosuke Konuma
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Yuya Kishida
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Akihito Nagata
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Yuta Yamada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Satoshi Kaito
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Junichi Mukae
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Atsushi Marumo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Yuma Noguchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Aiko Igarashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Katsuyuki Karasawa
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| |
Collapse
|
53
|
Rahman M, Brůža P, Langen KM, Gladstone DJ, Cao X, Pogue BW, Zhang R. Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements. Phys Med Biol 2020; 65:165014. [PMID: 32428888 DOI: 10.1088/1361-6560/ab9452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this work was to create a technique that could measure all possible spatial and temporal delivery rates used in pencil-beam scanning (PBS) proton therapy. The proposed system used a fast scintillation screen for full-field imaging to resolve temporal and spatial patterns as it was delivered. A fast intensified CMOS camera used continuous mode with 10 ms temporal frame rate and 1 × 1 mm2 spatial resolution, imaging a scintillation screen during clinical proton PBS delivery. PBS plans with varying dose, dose rate, energy, field size, and spot-spacing were generated, delivered and imaged. The captured images were post processed to provide dose and dose rate values after background subtraction, perspective transformation, uniformity correction for the camera and the scintillation screen, and calibration into dose. The linearity in scintillation response with respect to varying dose rate, dose, and field size was within 2%. The quenching corrected response with varying energy was also within 2%. Large spatio-temporal variations in dose rate were observed, even for plans delivered with similar dose distributions. Dose and dose rate histograms and maximum dose rate maps were generated for quantitative evaluations. With the fastest PBS delivery on a clinical system, dose rates up to 26.0 Gy s-1 were resolved. The scintillation imaging technique was able to quantify proton PBS dose rate profiles with spot weight as low as 2 MU, with spot-spacing of 2.5 mm, having a 1 × 1 mm2 spatial resolution. These dose rate temporal profiles, spatial maps, and cumulative dose rate histograms provide useful metrics for the potential evaluation and optimization of dose rate in treatment plans.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | | | | | | | | | | | | |
Collapse
|
54
|
Jeong Y, Oh JG, Kang JK, Moon SR, Lee KK. Three-dimensional dose reconstruction-based pretreatment dosimetric verification in volumetric modulated arc therapy for prostate cancer. Radiat Oncol J 2020; 38:60-67. [PMID: 32229810 PMCID: PMC7113150 DOI: 10.3857/roj.2020.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose We performed three-dimensional (3D) dose reconstruction-based pretreatment verification to evaluate gamma analysis acceptance criteria in volumetric modulated arc therapy (VMAT) for prostate cancer. Materials and Methods Pretreatment verification for 28 VMAT plans for prostate cancer was performed using the COMPASS system with a dolphin detector. The 3D reconstructed dose distribution of the treatment planning system calculation (TC) was compared with that of COMPASS independent calculation (CC) and COMPASS reconstruction from the dolphin detector measurement (CR). Gamma results (gamma failure rate and average gamma value [GFR and γAvg]) and dose-volume histogram (DVH) deviations, 98%, 2% and mean dose-volume difference (DD98%, DD2% and DDmean), were evaluated. Gamma analyses were performed with two acceptance criteria, 2%/2 mm and 3%/3 mm. Results The GFR in 2%/2 mm criteria were less than 8%, and those in 3%/3 mm criteria were less than 1% for all structures in comparisons between TC, CC, and CR. In the comparison between TC and CR, GFR and γAvg in 2%/2 mm criteria were significantly higher than those in 3%/3 mm criteria. The DVH deviations were within 2%, except for DDmean (%) for rectum and bladder. Conclusions The 3%/3 mm criteria were not strict enough to identify any discrepancies between planned and measured doses, and DVH deviations were less than 2% in most parameters. Therefore, gamma criteria of 2%/2 mm and DVH related parameters could be a useful tool for pretreatment verification for VMAT in prostate cancer.
Collapse
Affiliation(s)
- Yuri Jeong
- Department of Radiation Oncology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| | - Jeong Geun Oh
- Department of Radiation Oncology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| | - Jeong Ku Kang
- Department of Radiation Oncology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| | - Sun Rock Moon
- Department of Radiation Oncology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| | - Kang Kyoo Lee
- Department of Radiation Oncology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
55
|
Chang KH, Lee YH, Park BH, Han MC, Kim J, Kim H, Cho MS, Kang H, Lee H, Kim DW, Park K, Cho J, Kim YB, Kim JS, Hong CS. Statistical Analysis of Treatment Planning Parameters for Prediction of Delivery Quality Assurance Failure for Helical Tomotherapy. Technol Cancer Res Treat 2020; 19:1533033820979692. [PMID: 33302821 PMCID: PMC7734483 DOI: 10.1177/1533033820979692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This study aimed to investigate the parameters with a significant impact on delivery quality assurance (DQA) failure and analyze the planning parameters as possible predictors of DQA failure for helical tomotherapy. METHODS In total, 212 patients who passed or failed DQA measurements were retrospectively included in this study. Brain (n = 43), head and neck (n = 37), spinal (n = 12), prostate (n = 36), rectal (n = 36), pelvis (n = 13), cranial spinal irradiation and a treatment field including lymph nodes (n = 24), and other types of cancer (n = 11) were selected. The correlation between DQA results and treatment planning parameters were analyzed using logistic regression analysis. Receiver operating characteristic (ROC) curves, areas under the curves (AUCs), and the Classification and Regression Tree (CART) algorithm were used to analyze treatment planning parameters as possible predictors for DQA failure. RESULTS The AUC for leaf open time (LOT) was 0.70, and its cut-off point was approximately 30%. The ROC curve for the predicted probability calculated when the multivariate variable model was applied showed an AUC of 0.815. We confirmed that total monitor units, total dose, and LOT were significant predictors for DQA failure using the CART. CONCLUSIONS The probability of DQA failure was higher when the percentage of LOT below 100 ms was higher than 30%. The percentage of LOT below 100 ms should be considered in the treatment planning process. The findings from this study may assist in the prediction of DQA failure in the future.
Collapse
Affiliation(s)
- Kyung Hwan Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hyun Lee
- Eretec Inc. 401, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, South Korea
| | - Byung Hun Park
- Eretec Inc. 401, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Hyokyeong Kang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangwoo Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| |
Collapse
|
56
|
Huh SJ, Park W, Choi DH. Recent trends in intensity-modulated radiation therapy use in Korea. Radiat Oncol J 2019; 37:249-253. [PMID: 31918461 PMCID: PMC6952714 DOI: 10.3857/roj.2019.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/12/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose We aimed to analyze the trend in intensity-modulated radiation therapy (IMRT) use in Korea from 2011 to 2018. Materials and Methods We collected data from the Health and Insurance Review and Assessment Service (HIRA) big data based on the National Health Insurance Service claims and reimbursements records using primary treatment planning codes (HD 041) for IMRT from 2011 to 2018. We analyzed the changing patterns in clinical application to specific tumor sites and regional differences in IMRT utilization. Results The use of IMRT has exhibited an 18-fold steep rise from 1,921 patients in 2011 to 34,759 in 2018. With regard to IMRT in 2018, 70% of patients (24,248/34,759) were treated in metropolitan areas (Seoul, Incheon, and Gyeonggi Province). IMRT was most commonly used to treat breast, lung, and prostate cancers in 2018. Among these, the use of IMRT for breast cancer shows the most remarkable increase from 2016 when the National Health Insurance began to cover IMRT for all solid tumors. Conclusion The use of IMRT is steadily increasing to treat cancer and is concentrated in metropolitan areas.
Collapse
Affiliation(s)
- Seung Jae Huh
- Healthcare Review and Assessment Committee, Health Insurance Review and Assessment Service, Seoul, Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Pakela JM, Tseng HH, Matuszak MM, Ten Haken RK, McShan DL, El Naqa I. Quantum-inspired algorithm for radiotherapy planning optimization. Med Phys 2019; 47:5-18. [PMID: 31574176 DOI: 10.1002/mp.13840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Modern inverse radiotherapy treatment planning requires nonconvex, large-scale optimizations that must be solved within a clinically feasible timeframe. We have developed and tested a quantum-inspired, stochastic algorithm for intensity-modulated radiotherapy (IMRT): quantum tunnel annealing (QTA). By modeling the likelihood probability of accepting a higher energy solution after a particle tunneling through a potential energy barrier, QTA features an additional degree of freedom (the barrier width, w) not shared by traditional stochastic optimization methods such as Simulated Annealing (SA). This additional degree of freedom can improve convergence rates and achieve a more efficient and, potentially, effective treatment planning process. METHODS To analyze the character of the proposed QTA algorithm, we chose two stereotactic body radiation therapy (SBRT) liver cases of variable complexity. The "easy" first case was used to confirm functionality, while the second case, with a more challenging geometry, was used to characterize and evaluate the QTA algorithm performance. Plan quality was assessed using dose-volume histogram-based objectives and dose distributions. Due to the stochastic nature of the solution search space, extensive tests were also conducted to determine the optimal smoothing technique, ensuring balance between plan deliverability and the resulting plan quality. QTA convergence rates were investigated in relation to the chosen barrier width function, and QTA and SA performances were compared regarding sensitivity to the choice of solution initializations, annealing schedules, and complexity of the dose-volume constraints. Finally, we investigated the extension from beamlet intensity optimization to direct aperture optimization (DAO). Influence matrices were calculated using the Eclipse scripting application program interface (API), and the optimizations were run on the University of Michigan's high-performance computing cluster, Flux. RESULTS Our results indicate that QTA's barrier-width function can be tuned to achieve faster convergence rates. The QTA algorithm reached convergence up to 46.6% faster than SA for beamlet intensity optimization and up to 26.8% faster for DAO. QTA and SA were ultimately found to be equally insensitive to the initialization process, but the convergence rate of QTA was found to be more sensitive to the complexity of the dose-volume constraints. The optimal smoothing technique was found to be a combination of a Laplace-of-Gaussian (LOG) edge-finding filter implemented as a penalty within the objective function and a two-dimensional Savitzky-Golay filter applied to the final iteration; this achieved total monitor units more than 20% smaller than plans optimized by commercial treatment planning software. CONCLUSIONS We have characterized the performance of a stochastic, quantum-inspired optimization algorithm, QTA, for radiotherapy treatment planning. This proof of concept study suggests that QTA can be tuned to achieve faster convergence than SA; therefore, QTA may be a good candidate for future knowledge-based or adaptive radiation therapy applications.
Collapse
Affiliation(s)
- Julia M Pakela
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Huan-Hsin Tseng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel L McShan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
58
|
Chung MJ, Cho WK, Oh D, Eom KY, Kim JH, Kim WC, Lee JH. A multi-institutional and case-matched control study on treatment outcomes of consolidative radiotherapy after a full course of R-CHOP compared with R-CHOP alone in Stage I-II diffuse large B-cell lymphoma (KROG 17-02). JOURNAL OF RADIATION RESEARCH 2019; 60:677-684. [PMID: 31251343 PMCID: PMC6806014 DOI: 10.1093/jrr/rrz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/07/2019] [Indexed: 06/09/2023]
Abstract
We compared treatment outcomes between rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy alone with R-CHOP followed by consolidative radiation therapy (RT) in diffuse large B-cell lymphoma (DLBCL). We analyzed 404 patients with Stage I-II DLBCL who received six to eight cycles of R-CHOP and achieved a good response after a full course of chemotherapy. Propensity-score matching was used to assess the role of consolidative RT. The R-CHOP alone group (n = 184) was matched in a 1:2 ratio with the R-CHOP plus RT group (n = 92). Twenty-four (13.0%) of 184 patients receiving R-CHOP alone and 8 (8.7%) of 92 patients receiving R-CHOP plus RT had bulky diseases (>7.5 cm). A Deauville score of 1-2 was achieved for 159 (86.4%) of 184 patients receiving R-CHOP alone and 84 (91.3%) of 92 patients receiving R-CHOP plus RT. After a median follow-up time of 42 months, the recurrence-free survival (RFS) rate (86.7% vs 93.0%, P = 0.464) and overall survival rate (88.3% vs 95.1%, P = 0.295) at 5 years did not differ significantly between the R-CHOP alone and R-CHOP plus RT arms. In the additional multivariate analyses, large tumor size (>7.5 cm) was significantly associated with decreased RFS (hazard ratio, 2.368 and confidence interval, 1.837-6.697; P = 0.048). Consolidative radiation was not a significant factor for RFS (P = 0.563). Tumor size was a significant factor for RFS in the rituximab era. The outcome of omitting consolidative RT for good responders after six to eight cycles of R-CHOP chemotherapy was acceptable in early-stage DLBCL without a bulky disease.
Collapse
Affiliation(s)
- Mi Joo Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keun-Yong Eom
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Inha University Hospital, Inha University of Medicine, Inchon, Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, 442-723, 93-6, Ji-dong, Paldal-gu, Suwon, Kyeonggi-do, Republic of Korea
| |
Collapse
|
59
|
Brooks ED, Ning MS, Verma V, Zhu XR, Chang JY. Proton therapy for non-small cell lung cancer: the road ahead. Transl Lung Cancer Res 2019; 8:S202-S212. [PMID: 31673525 PMCID: PMC6795573 DOI: 10.21037/tlcr.2019.07.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Proton therapy is an evolving radiotherapy modality with indication for numerous cancer types. With the benefits of reducing dose and sparing normal tissue, protons offer a clear physical and dosimetric advantage over photon radiotherapy for many patients. However, its impact on one type of disease, non-small cell lung cancer (NSCLC), is still not fully understood. Our review aims to highlight the data for using proton therapy in NSCLC, with a focus on the clinical data-or lack thereof-supporting proton treatment for early and advanced stage disease. In evaluating these data, we consider how future directions and advances in proton technology give rise for hope in defining a role for protons in improving NSCLC outcomes. We close with considerations for next steps and the challenges ahead in using proton therapy for this unique patient population.
Collapse
Affiliation(s)
- Eric D. Brooks
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - X. Ronald Zhu
- Proton Therapy Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
60
|
Dose perturbation by metallic biliary stent in external beam radiotherapy of pancreato-biliary cancers. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:745-756. [PMID: 31286454 DOI: 10.1007/s13246-019-00774-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022]
Abstract
This study aims to investigate dose perturbations caused by a metallic biliary stent (MBS) in patients undergoing external beam radiotherapy for cancers in the pancreato-biliary region. Four MBSs with nitinol mesh were examined in the EasyCube® phantom including a custom stent holder fabricated by a 3D printer. For experimental models, three-dimensional conformal radiotherapy plans using a single anterior-posterior (AP) and four-field box (4FB) as well as volumetric modulated arc therapy (VMAT) plan were prepared to deliver the photon beam of 8 Gy to the stent holder. EBT3 film was used to measure dose distributions at four sides surrounding MBS. All MBSs in the AP beam demonstrated mean dose enhancements of 2.3-8.2% at the proximal, left, and right sides. Maximum dose enhancements of 12.3-19.5% appeared at regions surrounding the radiopaque markers. At the location distal to the source, there were mean dose reductions of - 3.6 to - 10.9% and minimum doses of - 11.1 to - 9.5%. The mean and maximum doses with the 4FB plan were in the ranges of - 0.1 to 3.6% and 6.7-14.9%, respectively. The VMAT produced mean doses of - 0.9 to 4.8% and maximum doses of 6.0-15.3%. Dose perturbations were observed with maximum and minimum spots near the stent surface. The use of multiple beams including parallel-opposed pairs reduced dose perturbations caused by the nitinol and radiopaque components within the stent. Special attention is required for patients in whom the radiopaque markers are closely located near critical structures or the target volume.
Collapse
|
61
|
Evaluation of the plan delivery accuracy of intensity-modulated radiation therapy by texture analysis using fluence maps. Phys Med 2019; 59:64-74. [DOI: 10.1016/j.ejmp.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
|