51
|
Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int 2019; 19:283. [PMID: 31719796 PMCID: PMC6839104 DOI: 10.1186/s12935-019-0998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tripartite motif‑containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. Methods In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. Results Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. Conclusions This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.
Collapse
Affiliation(s)
- Liang Ma
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China.,Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Ninghua Yao
- 3Departments of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Zhixiang Zhuang
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China
| |
Collapse
|
52
|
Quinacrine-Mediated Inhibition of Nrf2 Reverses Hypoxia-Induced 5-Fluorouracil Resistance in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20184366. [PMID: 31491980 PMCID: PMC6770959 DOI: 10.3390/ijms20184366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
5-Fluorouracil (5-FU) is an important chemotherapeutic agent for the systemic treatment of colorectal cancer (CRC), but its effectiveness against CRC is limited by increased 5-FU resistance caused by the hypoxic tumor microenvironment. The purpose of our study was to assess the feasibility of using quinacrine (QC) to increase the efficacy of 5-FU against CRC cells under hypoxic conditions. QC reversed the resistance to 5-FU induced by hypoxia in CRC cell lines, as determined using ATP-Glo cell viability assays and clonogenic survival assays. Treatment of cells with 5-FU under hypoxic conditions had no effect on the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a regulator of cellular resistance to oxidative stress, whereas treatment with QC alone or in combination with 5-FU reduced Nrf2 expression in all CRC cell lines tested. Overexpression of Nrf2 effectively prevented the increase in the number of DNA double-strand breaks induced by QC alone or in combination with 5-FU. siRNA-mediated c-Jun N-terminal kinase-1 (JNK1) knockdown inhibited the QC-mediated Nrf2 degradation in CRC cells under hypoxic conditions. The treatment of CRC xenografts in mice with the combination of QC and 5-FU was more effective in suppressing tumor growth than QC or 5-FU alone. QC increases the susceptibility of CRC cells to 5-FU under hypoxic conditions by enhancing JNK1-dependent Nrf2 degradation.
Collapse
|
53
|
Wu L, Chen Y, Chen Y, Yang W, Han Y, Lu L, Yang K, Cao J. Effect of HIF-1α/miR-10b-5p/PTEN on Hypoxia-Induced Cardiomyocyte Apoptosis. J Am Heart Assoc 2019; 8:e011948. [PMID: 31480879 PMCID: PMC6818010 DOI: 10.1161/jaha.119.011948] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Few reports have addressed the mechanism by which microRNA miR-10b-5p regulates post-myocardial infarction (post-MI) cardiomyocyte apoptosis under hypoxic conditions. Methods and Results C57BL/6 mice underwent surgical ligation of the left anterior descending artery to create an MI or ischemia/reperfusion animal model. The expression of miR-10b-5p, PTEN (phosphatase and tensin homolog), and HIF-1α (hypoxia-inducible factor 1α) was detected in infarct border zone tissues at various time points. After precordial injections of the negative control or miR-10b-5p, overexpression lentiviruses were made in the areas surrounding the MI sites at 1 week, and myocardial infarct size, cardiac function, and cardiomyocyte apoptosis were examined. A miR-10b-5p mimic was transfected into primary mouse cardiomyocytes to analyze its effects on cardiomyocyte apoptosis and PTEN expression. Meanwhile, PTEN as a target of miR-10b-5p was verified via luciferase reporter gene assays. Cotransfection of miR-10b-5 and PTEN verified the relationship between miR-10b-5 and PTEN. Under hypoxic stress, the expression of HIF-1α and miR-10b-5p was examined. The results showed that miR-10b-5p expression was markedly reduced in the infarct border zone. Overexpression of miR-10b-5p in the murine model of MI significantly reduced MI size, improved cardiac function, and inhibited apoptosis. Overexpression of miR-10b-5p in vitro antagonized hypoxia-induced cardiomyocyte apoptosis and specifically inhibited the expression of the apoptosis-related gene PTEN, but overexpression of PTEN weakened these effects. We also found that hypoxia-induced accumulation of HIF-1α resulted in decreased expression of miR-10b-5p. Interfering with the activation of the HIF-1α signaling pathway promoted Pri-miR-10b and miR-10b-5p expression and inhibited PTEN expression. Conclusions MicroRNA miR-10b-5p antagonizes hypoxia-induced cardiomyocyte apoptosis, indicating that miR-10b-5p may serve as a potential future clinical target for the treatment of MI.
Collapse
Affiliation(s)
- Liping Wu
- Department of Geratology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yafen Chen
- Department of Geratology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yuanyuan Chen
- Institute of Cardiovascular Disease Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wenbo Yang
- Institute of Cardiovascular Disease Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yanxin Han
- Institute of Cardiovascular Disease Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lin Lu
- Institute of Cardiovascular Disease Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ke Yang
- Institute of Cardiovascular Disease Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiumei Cao
- Department of Geratology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
54
|
Nakagawa Y, Kuranaga Y, Tahara T, Yamashita H, Shibata T, Nagasaka M, Funasaka K, Ohmiya N, Akao Y. Induced miR-31 by 5-fluorouracil exposure contributes to the resistance in colorectal tumors. Cancer Sci 2019; 110:2540-2548. [PMID: 31162779 PMCID: PMC6676105 DOI: 10.1111/cas.14090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
Drug resistance makes treatment difficult in cancers. The present study identifies and analyzes drug resistance‐related miRNA in colorectal cancer. We established 4 types of 5‐fluorouracil (5‐FU)‐resistant colon cancer cell lines in vitro and in vivo. We then analyzed the miRNA expression profile by miRNA array in these 4 cell lines, and identified the drug resistance‐related miRNAs. We examined the expression levels of the identified miRNA in 112 colorectal tumor samples from the patients. We identified 12 possible miRNAs involved in 5‐FU resistance by miRNA arrays. We then examined the relationship between miR‐31, which was the most promising among them, and drug resistance. The ectopic expression of mimic miR‐31 showed significant 5‐FU resistance in the parental DLD‐1 cells, while anti–miR‐31 caused significant growth inhibition in DLD/F cells; that is, 5‐FU‐resistant colon cancer cell line DLD‐1 under exposure to 5‐FU. When we exposed high doses of 5‐FU to parent or 5‐FU‐resistant cells, the expression levels of miR‐31 were raised higher than those of controls. Notably, the expression levels of miR‐31 were positively correlated with the grade of clinical stages of colorectal tumors. The protein expression levels of factors inhibiting hypoxia‐inducible factor 1 were downregulated by transfection of mimic miR‐31 into DLD‐1 cells. This study provides evidence supporting the association of miR‐31 with 5‐FU drug resistance and clinical stages of colorectal tumors.
Collapse
Affiliation(s)
- Yoshihito Nakagawa
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuki Kuranaga
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tomomitsu Tahara
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiromi Yamashita
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Kohei Funasaka
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yukihiro Akao
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
55
|
Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang RW. Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids. Front Oncol 2019; 9:487. [PMID: 31245292 PMCID: PMC6581719 DOI: 10.3389/fonc.2019.00487] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) resulting from different defensive mechanisms in cancer is one of the major obstacles of clinical treatment. To circumvent MDR many reversal agents have been developed, but most of them fail in clinical trials due to severely adverse effects. Recently, certain natural products have been reported to overcome MDR, including flavonoids which are abundant in plants, foods, and herbs. The structure of flavonoids can be abbreviated as C6-C3-C6 (C for carbon), and further categorized into flavonoids, iso-flavonoids and neo-flavonoids, according to their structural backbones. Flavonoids possess multiple bioactivities, and a growing body of research has indicated that both flavonoids and iso-flavonoids can either kill or re-sensitize conventional chemotherapeutics to resistant cancer cells. Here, we summarize the research and discuss the underlying mechanisms, concluding that these flavonoids do not function as specific regulators of target proteins, but rather as multi-functional agents that negatively regulate the key factors contributing to MDR.
Collapse
Affiliation(s)
| | - Kai Liu
- Hainan General Hospital, Haikou, China
| | - Qun Shen
- Hainan General Hospital, Haikou, China
| | | | - Jinghui Hao
- Jiaozuo Second People's Hospital, Jiaozuo, China
| | | | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
56
|
Jingyue S, Xiao W, Juanmin Z, Wei L, Daoming L, Hong X. TFAP2E methylation promotes 5‑fluorouracil resistance via exosomal miR‑106a‑5p and miR‑421 in gastric cancer MGC‑803 cells. Mol Med Rep 2019; 20:323-331. [PMID: 31115533 PMCID: PMC6579997 DOI: 10.3892/mmr.2019.10237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
Hypermethylation of transcription factor activating enhancer-binding protein 2e (TFAP2E) has been reported to be associated with chemoresistance to 5-fluorouracil (5-FU) in gastric cancer (GC). In the present study, the molecular mechanism governing this chemoresistance was investigated. Drug-resistant human GC MGC-803/5-FU cells were established and TFAP2E expression and methylation levels were assessed. Autocrine exosomes from GC culture medium were isolated and characterized. MicroRNA (miRNA) microarray analysis was used to determine the miRNA expression profile of GC cell-derived exosomes. Exosomes collected from MGC-803/5-FU cells were co-cultured with control cells, and 5-Aza-2′-deoxycytidine (5Aza) was added into MGC-803/5-FU cells to investigate the relationship between TFAP2E, exosomes and chemosensitivity. In the present study, it was demonstrated that hypermethylation of TFAP2E resulted in its reduced expression and 5-FU chemoresistance in GC cells. miRNAs miR-106a-5p and miR-421 were highly expressed and regulated the chemoresistance induced by TFAP2E methylation. Target gene prediction using miRBase, TargetScan and PicTar revealed that E2F1, MTOR and STAT3 may be TFAP2E target genes in GC. Collectively, our data support an important role of exosomes and exosomal miRNAs in TFAP2E methylation-induced chemoresistance to 5-FU in GC. These results highlight their potential for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Sun Jingyue
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Zha Juanmin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Wei
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Daoming
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xu Hong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
57
|
Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:490-515. [PMID: 35582567 PMCID: PMC8992506 DOI: 10.20517/cdr.2019.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 04/28/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
| | - Ibrahim H. Kankia
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Yusuf Y. Deeni
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Correspondence Address: Prof. Yusuf Y Deeni, Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom. E-mail:
| |
Collapse
|
58
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
59
|
Guerra AR, Duarte MF, Duarte IF. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10663-10685. [PMID: 30227704 DOI: 10.1021/acs.jafc.8b04104] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recognition of neoplastic metabolic reprogramming as one of cancer's hallmarks has paved the way for developing novel metabolism-targeted therapeutic approaches. The use of plant-derived natural bioactive compounds for this endeavor is especially promising, due to their diverse structures and multiple targets. Hence, over the past decade, a growing number of studies have assessed the impact of phytochemicals on tumor cell metabolism, aiming at improving current knowledge on their mechanisms of action and, at the same time, evaluating their potential as anti-cancer metabolic modulators. In this Review, we focus on three classes of plant-derived compounds with promising anti-cancer activity-phenolic compounds, isoprenoids, and alkaloids-to describe their effects on major energetic and biosynthetic pathways of human tumor cells. Such a comprehensive and integrated account of the ability of these compounds to hit different metabolic targets is expected to contribute to the rational design and critical assessment of novel anti-cancer therapies based on natural-product-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Angela R Guerra
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas , Universidade de Évora , Pólo da Mitra, 7006-554 Évora , Portugal
| | - Iola F Duarte
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
60
|
Lu L, Zhao Z, Liu L, Gong W, Dong J. Combination of baicalein and docetaxel additively inhibits the growth of non-small cell lung cancer in vivo. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018500131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective: The objective of this study is to preliminarily evaluate the efficacy of the combination of baicalein and docetaxel on non-small cell lung cancer (NSCLC) in vivo. Methods: The subcutaneous model was established by inoculation of A549 cells, and then these tumor-bearing mice were randomly assigned to eight groups to receive normal saline (NS) as control, baicalein alone, Taxotere[Formula: see text] (docetaxel injection) alone or the combination of baicalein and Taxotere[Formula: see text]. The effect of the combination treatment was evaluated by [Formula: see text] value. Tumors were harvested for TUNEL and CD31 immunohistochemical staining and important organs for H&E staining. Results: Baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg significantly reduced tumor weight and inhibited the growth rate of tumor, displaying the additive effect indicated by the [Formula: see text] value. Increased apoptosis and decreased tumor angiogenesis also provided pathological evidence. Additionally, baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg did not increase toxicity in lung, liver and kidney. Conclusion: Baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg additively inhibits the growth of NSCLC in vivo, and the mechanism underlying remains to be discovered.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
61
|
EghbaliFeriz S, Taleghani A, Tayarani-Najaran Z. Scutellaria: Debates on the anticancer property. Biomed Pharmacother 2018; 105:1299-1310. [PMID: 30021367 DOI: 10.1016/j.biopha.2018.06.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
The widespread use of plants as accessible anticancer agents leads to the identification of many natural source chemotherapeutic agents. Scutellaria one of the popular genus of flowering plants has been used for various human illnesses for thousands of years. Scutellaria has anti-metastatic, anti-proliferative, anti-invasion, anti-angiogenic and apoptosis effects in vitro as well as in vivo. Despite numerous reports on the cytotoxic-antitumor activity of the plant, there are still some issues need further consideration. Issues such as unjustified interpretations, lack of attention to the pharmacokinetics profile and weak study design may affect the final decision about the use of plants as anticancer agents and possibly needs reconsideration. In this review, we have summarized the potential health benefits of Scutellaria and its active components also the underlying mechanism of cytotoxicity and antitumor activity. Meanwhile we have discussed concerns may interfere with the precise conclusion.
Collapse
Affiliation(s)
- Samira EghbaliFeriz
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
62
|
Gong T, Cui L, Wang H, Wang H, Han N. Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med 2018; 16:164. [PMID: 29898734 PMCID: PMC6000925 DOI: 10.1186/s12967-018-1543-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia-mediated chemoresistance has been regarded as an important obstacle in the development of cancer treatment. Knockdown of krüppel-like factor 5 (KLF5) was reported to inhibit hypoxia-induced cell survival and promote cell apoptosis in non-small cell lung cancer (NSCLC) cells via direct regulation of hypoxia inducible factor-1α (HIF-1α) expression. However, the roles of KLF5 in the development of hypoxia-induced cisplatin (DDP) resistance and its underlying mechanism in NSCLC cells remain to be further elucidated. METHODS Western blot was performed to determine the protein levels of KLF5, P-glycoprotein (P-gp) and HIF-1α in treated NSCLC cells. Cell survival was examined by MTT assay. The effect of KLF5 knockdown on hypoxia-induced glycolysis was assessed by measuring glucose consumption and lactate production. The effect of KLF5 knockdown on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway was analyzed by western blot. RESULTS Hypoxia upregulated the expression of KLF5 in NSCLC cells. KLF5 knockdown suppressed hypoxia-induced DDP resistance in NSCLC cells, as demonstrated by the increased cytotoxic effects of DDP and reduced P-gp expression in NSCLC cells in hypoxia. Moreover, KLF5 knockdown inhibited hypoxia-induced HIF-1α expression and glycolysis, and KLF5 knockdown suppressed hypoxia-induced DDP resistance by inhibiting HIF-1α-dependent glycolysis in NSCLC cells. Furthermore, KLF5 knockdown suppressed hypoxia-induced activation of the PI3K/Akt/mTOR pathway in NSCLC cells and KLF5 overexpression promoted hypoxia-induced DDP resistance in NSCLC cells through activation of the PI3K/Akt/mTOR pathway. CONCLUSIONS KLF5 knockdown could suppress hypoxia-induced DDP resistance, and its mechanism may be due to the inhibition of HIF-1α-dependent glycolysis via inactivation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tianxiao Gong
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Haili Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Haoxun Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Na Han
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| |
Collapse
|
63
|
Hussain I, Waheed S, Ahmad KA, Pirog JE, Syed V. Scutellaria baicalensis
targets the hypoxia‐inducible factor‐1α and enhances cisplatin efficacy in ovarian cancer. J Cell Biochem 2018; 119:7515-7524. [DOI: 10.1002/jcb.27063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Imran Hussain
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Sana Waheed
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Kashif A. Ahmad
- Carle Illinois College of MedicineUniversity of Illinois Urbana ChampaignChampaignIllinois
| | - John E. Pirog
- College of Health and WellnessAcupuncture and Chinese Medicine ProgramNorthwestern Health Sciences UniversityBloomingtonMinnesota
| | - Viqar Syed
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
- John P. Murtha Cancer Center at Walter Reed National Military Medical CenterBethesdaMaryland
- Department of Molecular and Cell BiologyUniformed Services UniversityBethesdaMaryland
| |
Collapse
|
64
|
Zhong C, Zhuang M, Wang X, Li J, Chen Z, Huang Y, Chen F. 12-Lipoxygenase promotes invasion and metastasis of human gastric cancer cells via epithelial-mesenchymal transition. Oncol Lett 2018; 16:1455-1462. [PMID: 30008824 PMCID: PMC6036329 DOI: 10.3892/ol.2018.8808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
The role of 12-lipoxygenase (12-LOX) in tumorigenesis has been well established in several types of human cancer, including gastric cancer. It was reported that epithelial-mesenchymal transition (EMT) contributes to tumor invasion and metastasis. However, whether 12-LOX promotes the invasion and metastasis of human gastric cancer cells via EMT remains to be elucidated. In the present study, the expression of 12-LOX and EMT markers, N-cadherin and E-cadherin, was evaluated in gastric cancer and adjacent normal mucosa samples by immunohistochemical analysis. 12-LOX-overexpressing gastric cancer cells were established via lentiviral transfection of SCG-7901 cells. Wound-healing and Transwell assays were performed to examine the regulation of cell metastasis and invasion by 12-LOX. Furthermore, the regulation of N-cadherin expression by 12-LOX was evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that the expression of 12-LOX and N-cadherin was significantly higher in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). By contrast, the expression of E-cadherin was significantly decreased in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). Furthermore, the expression of 12-LOX was positively associated with N-cadherin expression in gastric cancer tissues. 12-LOX-overexpressing gastric cancer cells exhibited significantly increased invasion and migration abilities compared with the empty vector and control groups. The expression of N-cadherin in 12-LOX-overexpressing gastric cancer cells was increased compared with that in the empty vector and control groups. The present study suggests that EMT may be involved in the promotion of the invasion and metastasis of human gastric cancer cells by 12-LOX.
Collapse
Affiliation(s)
- Canmei Zhong
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Mingkai Zhuang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiazhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianying Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yuehong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
65
|
Wu X, Yang Z, Dang H, Peng H, Dai Z. Baicalein Inhibits the Proliferation of Cervical Cancer Cells Through the GSK3β-Dependent Pathway. Oncol Res 2018; 26:645-653. [PMID: 28835320 PMCID: PMC7844692 DOI: 10.3727/096504017x15031557924141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT-GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Xiaoling Wu
- *Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Zhiqin Yang
- †Department of Traditional Chinese Medicine, Yan’an People’s Hospital, Yan’an, P.R. China
| | - Huimin Dang
- ‡Department of Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Huixia Peng
- *Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Zhijun Dai
- §Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| |
Collapse
|
66
|
Li J, Duan B, Guo Y, Zhou R, Sun J, Bie B, Yang S, Huang C, Yang J, Li Z. Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity. Biomed Pharmacother 2018; 98:806-812. [DOI: 10.1016/j.biopha.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022] Open
|
67
|
Lu C, Wang H, Chen S, Yang R, Li H, Zhang G. Baicalein inhibits cell growth and increases cisplatin sensitivity of A549 and H460 cells via miR-424-3p and targeting PTEN/PI3K/Akt pathway. J Cell Mol Med 2018; 22:2478-2487. [PMID: 29392841 PMCID: PMC5867147 DOI: 10.1111/jcmm.13556] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of death in individuals with malignant disease. Non‐small‐cell lung cancer (NSCLC) is the most common type of lung cancer, and chemotherapy drugs such as cisplatin are the most widely used treatment for this disease. Baicalein is a purified flavonoid compound that has been reported to inhibit cancer cell growth and metastasis and increase sensitization to chemotherapeutic drugs via different pathways. Therefore, we assessed the effects of baicalein on the proliferation, apoptosis and cisplatin sensitivity in the NSCLC A549 and H460 cell lines and determined the pathways through which baicalein exerts its effects. Baicalein was slightly toxic to normal human bronchial NHBE cells but inhibited growth, induced apoptosis and increased cisplatin sensitivity in A549 and H460 cells. Baicalein down‐regulated miR‐424‐3p, up‐regulated PTEN expression and down‐regulated expression of PI3K and p‐Akt in A549 and H460 cells. Dual‐luciferase reporter assay demonstrated that PTEN is a target gene of miR‐424‐3p, and overexpression of miR‐424‐3p or silencing of PTEN partially attenuated the effects of baicalein on A549 and H460 cells. Taken together, we concluded that baicalein inhibits cell growth and increases cisplatin sensitivity to A549 and H460 cells via down‐regulation of miR‐424‐3p and targeting the PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
68
|
Ma Y, Wei X, Wu Z. HNF-4α promotes multidrug resistance of gastric cancer cells through the modulation of cell apoptosis. Oncol Lett 2017; 14:6477-6484. [PMID: 29344114 PMCID: PMC5754880 DOI: 10.3892/ol.2017.7095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) typically leads to treatment failure, and is associated with disease progression of gastric cancer (GC). In the present study, a total of 15 aberrantly activated transcription factors (TFs) were detected in chemo-resistant GC cells using a TF Activation Profiling Plate Array. Among these TFs, hepatocyte nuclear factor (HNF)-4α was significantly upregulated in multidrug-resistant GC cells (P=0.019). The overexpression of HNF-4α was able to cause resistance to multiple chemotherapeutics, whereas inhibition of HNF-4α appeared to reverse cancer cell resistance. Further studies demonstrated that HNF-4α had no clear influence on drug transportation; however, inhibition of drug-induced cell apoptosis occurred as B-cell lymphoma 2 (Bcl-2) expression increased in GC cells. Additionally, immunohistochemistry demonstrated that HNF-4α was overexpressed in human GC tissues, and associated with tumor stage and lymph node metastasis. In conclusion, the results of the present study indicate the involvement of TFs in MDR in GC, and suggest that HNF-4α may enhance MDR in GC by regulating cell apoptosis and Bcl-2 expression.
Collapse
Affiliation(s)
- Yubo Ma
- The First Clinical College, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
69
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|
70
|
Wang G, Wang JJ, Guan R, Du L, Gao J, Fu XL. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids. Nutr Cancer 2017; 69:534-554. [PMID: 28323500 DOI: 10.1080/01635581.2017.1295090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The imbalance between glucose metabolism and cancer cell growth in tumor microenvironment (TME), which are closely related with the occurrence and progression of cancer. Accumulating evidence has demonstrated that flavonoids exert many biological properties, including antioxidant and anticarcinogenic activities. Recently, the roles and applications of flavonoids, particularly in relation to glucose metabolism in cancers, have been highlighted. Thus, the identification of flavonoids targeting alternative glucose metabolism pathways in TME may represent an attractive approach to the more effective therapeutic strategies for cancer. In this review, we will focus on the roles of flavonoids in regulating glucose metabolism and cancer cell growth in TME, such as proliferation advantage, cell mobility, and chemoresistance to cancer, as well as modifiers of thermal sensitivity. Not only have such large-scale endeavors been useful in providing fundamental insights into natural and synthesized flavonoids that can prevent and treat cancer, but also have led to the discovery of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Rui Guan
- b Hubei University of Medicine , Shiyan , China
| | - Li Du
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
| | - Jing Gao
- c Jiangsu University Health Science Center , Jiangsu , China
| | - Xing-Li Fu
- c Jiangsu University Health Science Center , Jiangsu , China
| |
Collapse
|
71
|
Yu M, Qi B, Xiaoxiang W, Xu J, Liu X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother 2017; 90:677-685. [PMID: 28415048 DOI: 10.1016/j.biopha.2017.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Baicalein, a bioactive flavonoid, exhibits anti-inflammatory and anti-cancer activities. However, few studies reported the interaction of baicalein with chemotherapeutic agents. Our study showed that baicalein significantly enhanced the chemosensitivity of cisplatin (CDDP) in vivo and in vitro. We found that A549/CDDP (resistant to CDDP) cells not only acquired epithelial-mesenchymal transition (EMT) phenotype, but also showed increased NF-κB activity compared with A549 cells (sensitive to CDDP). Our study further demonstrated that PI3K/Akt/NF-κB pathway controlled CDDP resistance via EMT and NF-κB-mediated apoptosis. Baicalein significantly suppressed the PI3K/Akt/NF-κB pathway, leading to conversion of EMT to mesenchymal-epithelial transition (MET, the reciprocal mesenchymal to epithelial transition), and inhibition of NF-κB-mediated antiapoptotic proteins in A549/CDDP cells. In conclusion, our study demonstrated that baicalein reversed the resistance of human A549 lung adenocarcinoma cells to cisplatin by inhibiting EMT and attenuating apoptosis via PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Benquan Qi
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Wu Xiaoxiang
- Department of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Jian Xu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Xiaolin Liu
- Department of Neurology, Bengbu Medical College, Anhui, Bengbu, 233030, PR China.
| |
Collapse
|
72
|
Ge GF, Shi WW, Yu CH, Jin XY, Zhang HH, Zhang WY, Wang LC, Yu B. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits. Toxicol Appl Pharmacol 2017; 318:23-32. [DOI: 10.1016/j.taap.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
|
73
|
Zhang Q, Feng Y, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci 2017; 74:777-801. [PMID: 27622244 PMCID: PMC11107623 DOI: 10.1007/s00018-016-2362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Yunjiang Feng
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
74
|
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17:ijms17101681. [PMID: 27735841 PMCID: PMC5085714 DOI: 10.3390/ijms17101681] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein's anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yutong Gao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhipeng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
75
|
Wu H, Liang Y, Shen L, Shen L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol Open 2016; 5:563-70. [PMID: 27095441 PMCID: PMC4874347 DOI: 10.1242/bio.015008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a conserved class of ∼22 nucleotide RNAs that playing important roles in various biological processes including chemoresistance. Recently, many studies have revealed that miR-204 is significantly attenuated in colorectal cancer (CRC), suggesting that this miRNA may have a function in CRC. However, whether miR-204 modulates chemosensitivity to 5-fluorouracil (5-Fu) in colorectal cancer is still unclear. In our present study, we discuss this possibility and the potential mechanism exerting this effect. We identified high mobility group protein A2 (HMGA2) as a novel direct target of miR-204 and showed that miR-204 expression was decreased while HMGA2 expression was increased in CRC cell lines. Additionally, both MiR-204 overexpression and HMGA2 inhibition attenuated cell proliferation, whereas forced expression of HMGA2 partly restored the inhibitory effect of miR-204 on HCT116 and SW480 cells. Moreover, the miR-204/HMGA2 axis modulated the resistance of tumor cells to 5-Fu in HCT-116 and SW480 colon cancer cells via activation of the PI3K/AKT pathway. These results demonstrate that the miR-204/HMGA2 axis could play a vital role in the 5-Fu resistance of colon cancer cells. Taken together, our present study elucidated that miR-204 upregulated 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provided significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients. More importantly, our present study suggested that miR-204 has potential as a therapeutic strategy for 5-Fu-resistant colorectal cancer. Summary: miR-204 upregulates 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provides significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha 410008, China
| | - Yu Liang
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha 410008, China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha 410008, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha 410008, China
| |
Collapse
|
76
|
Synergistic Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Microenvironment and Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1490738. [PMID: 27042656 PMCID: PMC4793102 DOI: 10.1155/2016/1490738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022]
Abstract
The interaction of tumor cells with the microenvironment is like a relationship between the “seeds” and “soil,” which is a hotspot in recent cancer research. Targeting at tumor microenvironment as well as tumor cells has become a new strategy for cancer treatment. Conventional cancer treatments mostly focused on single targets or single mechanism (the seeds or part of the soil); few researches intervened in the whole tumor microenvironment and achieved ideal therapeutic effect as expected. Traditional Chinese medicine displays a broad range of biological effects, and increasing evidence has shown that it may relate with synergistic effect on regulating tumor microenvironment and cancer cells. Based on literature review and our previous studies, we summarize the synergistic effect and the molecular mechanisms of traditional Chinese medicine on regulating tumor microenvironment and cancer cells.
Collapse
|
77
|
Hong SE, Jin HO, Kim HA, Seong MK, Kim EK, Ye SK, Choe TB, Lee JK, Kim JI, Park IC, Noh WC. Targeting HIF-1α is a prerequisite for cell sensitivity to dichloroacetate (DCA) and metformin. Biochem Biophys Res Commun 2015; 469:164-70. [PMID: 26616058 DOI: 10.1016/j.bbrc.2015.11.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022]
Abstract
Recently, targeting deregulated energy metabolism is an emerging strategy for cancer therapy. In the present study, combination of DCA and metformin markedly induced cell death, compared with each drug alone. Furthermore, the expression levels of glycolytic enzymes including HK2, LDHA and ENO1 were downregulated by two drugs. Interestingly, HIF-1α activation markedly suppressed DCA/metformin-induced cell death and recovered the expressions of glycolytic enzymes that were decreased by two drugs. Based on these findings, we propose that targeting HIF-1α is necessary for cancer metabolism targeted therapy.
Collapse
Affiliation(s)
- Sung-Eun Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Eun-Kyu Kim
- Department of Surgery, Breast Cancer Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Tae-Boo Choe
- Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Kyung Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jong-Il Kim
- Department of Food Science & Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| |
Collapse
|
78
|
Liu ZQ, Han YC, Fang JM, Hu F, Zhang X, Xu Q. WITHDRAWN: Hypoxia-induced STAT3 contributes to chemoresistance and epithelial-mesenchymal transition in prostate cancer cells. Biochem Biophys Res Commun 2015:S0006-291X(15)00244-2. [PMID: 25701777 DOI: 10.1016/j.bbrc.2015.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Zhu-Qing Liu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Ying-Chao Han
- Department of Spine Surgery, Shanghai East Hospital, Tongji University, School of Medicine, 150 JiMo Road, Shanghai 200120, China
| | - Jue-Min Fang
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Fei Hu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Xi Zhang
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|