51
|
Winkler T, Hong SG, Decker JE, Morgan MJ, Wu C, Hughes WM, Yang Y, Wangsa D, Padilla-Nash HM, Ried T, Young NS, Dunbar CE, Calado RT. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Invest 2013; 123:1952-63. [PMID: 23585473 DOI: 10.1172/jci67146] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/14/2013] [Indexed: 01/04/2023] Open
Abstract
Critically short telomeres activate p53-mediated apoptosis, resulting in organ failure and leading to malignant transformation. Mutations in genes responsible for telomere maintenance are linked to a number of human diseases. We derived induced pluripotent stem cells (iPSCs) from 4 patients with aplastic anemia or hypocellular bone marrow carrying heterozygous mutations in the telomerase reverse transcriptase (TERT) or the telomerase RNA component (TERC) telomerase genes. Both mutant and control iPSCs upregulated TERT and TERC expression compared with parental fibroblasts, but mutant iPSCs elongated telomeres at a lower rate compared with healthy iPSCs, and the deficit correlated with the mutations' impact on telomerase activity. There was no evidence for alternative lengthening of telomere (ALT) pathway activation. Elongation varied among iPSC clones derived from the same patient and among clones from siblings harboring identical mutations. Clonal heterogeneity was linked to genetic and environmental factors, but was not influenced by residual expression of reprogramming transgenes. Hypoxia increased telomere extension in both mutant and normal iPSCs. Additionally, telomerase-mutant iPSCs showed defective hematopoietic differentiation in vitro, mirroring the clinical phenotype observed in patients and demonstrating that human telomere diseases can be modeled utilizing iPSCs. Our data support the necessity of studying multiple clones when using iPSCs to model disease.
Collapse
Affiliation(s)
- Thomas Winkler
- Hematology Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, Maryland 0892-1202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
53
|
Yehezkel S, Shaked R, Sagie S, Berkovitz R, Shachar-Bener H, Segev Y, Selig S. Characterization and rescue of telomeric abnormalities in ICF syndrome type I fibroblasts. Front Oncol 2013; 3:35. [PMID: 23450006 PMCID: PMC3584450 DOI: 10.3389/fonc.2013.00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in the human DNA methyltransferase 3B (DNMT3B) gene lead to ICF (immunodeficiency, centromeric region instability, and facial anomalies) syndrome type I. We have previously described a telomere-related phenotype in cells from these patients, involving severe hypomethylation of subtelomeric regions, abnormally short telomeres and high levels of telomeric-repeat-containing RNA (TERRA). Here we demonstrate that ICF-patient fibroblasts carry abnormally short telomeres at a low population doubling (PD) and enter senescence prematurely. Accordingly, we attempted to rescue the senescence phenotype by ectopic expression of human telomerase, which led to elongated telomeres with hypomethylated subtelomeres. The senescence phenotype was overcome under these conditions, thus dissociating subtelomeric-DNA hypomethylation per se from the senescence phenotype. In addition, we examined whether the subtelomeric methylation could be restored by expression of a normal copy of full length DNMT3B1 in ICF fibroblasts. Ectopic expression of DNMT3B1 failed to rescue the abnormal hypomethylation at subtelomeres. However, partial rescue of subtelomeric-hypomethylation was achieved by co-expression of DNMT3B1 together with DNA methyltransferase 3-like (DNMT3L), encoding a protein that functions as a stimulator of DNMT3A and DNMT3B. DNMT3B1 and DNMT3L are predominantly expressed during early embryonic development, suggesting that de novo subtelomeric DNA methylation during crucial stages of human embryonic development may be necessary for setting and maintaining normal telomere length.
Collapse
Affiliation(s)
- Shiran Yehezkel
- Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Molecular Medicine Laboratory, Technion-Israel Institute of Technology Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
54
|
Parkinson's Disease in a Dish: What Patient Specific-Reprogrammed Somatic Cells Can Tell Us about Parkinson's Disease, If Anything? Stem Cells Int 2012; 2012:926147. [PMID: 23316244 PMCID: PMC3539381 DOI: 10.1155/2012/926147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 12/03/2012] [Indexed: 01/17/2023] Open
Abstract
Technologies allowing for the derivation of patient-specific neurons from somatic cells are emerging as powerful in vitro tools to investigate the intrinsic cellular pathological behaviours of the diseases that affect these patients. While the use of patient-derived neurons to model Parkinson's disease (PD) has only just begun, these approaches have allowed us to begin investigating disease pathogenesis in a unique way. In this paper, we discuss the advances made in the field of cellular reprogramming to model PD and discuss the pros and cons associated with the use of such cells.
Collapse
|
55
|
Ronen D, Benvenisty N. Genomic stability in reprogramming. Curr Opin Genet Dev 2012; 22:444-9. [PMID: 23040504 DOI: 10.1016/j.gde.2012.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/15/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
The genetic stability of induced pluripotent stem (iPS) cells has a significant impact on their potential use in regenerative medicine and basic research. Analysis of the genomic integrity of iPS cells suggests a tendency to develop aberrations ranging from whole chromosome trisomies to single nucleotide mutations. Furthermore, fluctuations in telomere elongation and changes in mitochondrial DNA are also observed. Some mutations may already exist in the founder cells or result from prolonged culturing, however, many of the mutations occur during the reprogramming event. Thus, great care should be given to the initial characterization and subsequent culturing of new iPS cell lines in order to avoid the use of potentially aberrant cells.
Collapse
Affiliation(s)
- Daniel Ronen
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
56
|
|
57
|
Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 2012; 3:132. [PMID: 22811697 PMCID: PMC3395882 DOI: 10.3389/fgene.2012.00132] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/28/2012] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical regulators of transcription, epigenetic processes, and gene silencing, which make them ideal candidates for insight into molecular evolution and a better understanding of the molecular pathways of neuropsychiatric disease. Here, we provide an overview of the current state of knowledge regarding various classes of ncRNAs and their role in neural plasticity and cognitive function, and highlight the potential contribution they may make to the development of a variety of neuropsychiatric disorders, including schizophrenia, addiction, and fear-related anxiety disorders.
Collapse
Affiliation(s)
- Paola A Spadaro
- Psychiatric Epigenomics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
58
|
Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, Xu X, Lieberman PM, Dahmane N. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci 2012; 125:4383-94. [PMID: 22641694 DOI: 10.1242/jcs.108118] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeres play crucial roles in the maintenance of genome integrity and control of cellular senescence. Most eukaryotic telomeres can be transcribed to generate a telomeric repeat-containing RNA (TERRA) that persists as a heterogeneous nuclear RNA and can be developmentally regulated. However, the precise function and regulation of TERRA in normal and cancer cell development remains poorly understood. Here, we show that TERRA accumulates in highly proliferating normal and cancer cells, and forms large nuclear foci, which are distinct from previously characterized markers of DNA damage or replication stress. Using a mouse model for medulloblastoma driven by chronic Sonic hedgehog (SHH) signaling, TERRA RNA was detected in tumor, but not adjacent normal cells using both RNA fluorescence in situ hybridization (FISH) and northern blotting. RNA FISH revealed the formation of TERRA foci (TERFs) in the nuclear regions of rapidly proliferating tumor cells. In the normal developing cerebellum, TERRA aggregates could also be detected in highly proliferating zones of progenitor neurons. SHH could enhance TERRA expression in purified granule progenitor cells in vitro, suggesting that proliferation signals contribute to TERRA expression in responsive tissue. TERRA foci did not colocalize with γH2AX foci, promyelocytic leukemia (PML) or Cajal bodies in mouse tumor tissue. We also provide evidence that TERRA is elevated in a variety of human cancers. These findings suggest that elevated TERRA levels reflect a novel early form of telomere regulation during replication stress and cancer cell evolution, and the TERRA RNA aggregates may form a novel nuclear body in highly proliferating mammalian cells.
Collapse
Affiliation(s)
- Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Gourronc FA, Klingelhutz AJ. Therapeutic opportunities: telomere maintenance in inducible pluripotent stem cells. Mutat Res 2012; 730:98-105. [PMID: 21605571 PMCID: PMC3179558 DOI: 10.1016/j.mrfmmm.2011.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.
Collapse
|
60
|
Muchkaeva I, Dashinimaev E, Terskikh V, Sukhanov Y, Vasiliev A. Molecular mechanisms of induced pluripotency. Acta Naturae 2012; 4:12-22. [PMID: 22708059 PMCID: PMC3372987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered.
Collapse
Affiliation(s)
- I.A. Muchkaeva
- Koltzov Institute of Developmental Biology, Russian Academy of
Sciences
| | - E.B. Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of
Sciences
| | - V.V. Terskikh
- Koltzov Institute of Developmental Biology, Russian Academy of
Sciences
| | - Y.V. Sukhanov
- Koltzov Institute of Developmental Biology, Russian Academy of
Sciences
| | - A.V. Vasiliev
- Koltzov Institute of Developmental Biology, Russian Academy of
Sciences
| |
Collapse
|
61
|
Abstract
Telomeres are long (TTAGGG)(n) nucleotide repeats and an associated protein complex located at the end of the chromosomes. They shorten with every cell division and, thus are markers for cellular aging, senescence, and replicative capacity. Telomere dysfunction is linked to several bone marrow disorders, including dyskeratosis congenita, aplastic anemia, myelodysplastic syndrome, and hematopoietic malignancies. Hematopoietic stem cell transplantation (HSCT) provides an opportunity in which to study telomere dynamics in a high cell proliferative environment. Rapid telomere shortening of donor cells occurs in the recipient shortly after HSCT; the degree of telomere attrition does not appear to differ by graft source. As expected, telomeres are longer in recipients of grafts with longer telomeres (e.g., cord blood). Telomere attrition may play a role in, or be a marker of, long term outcome after HSCT, but these data are limited. In this review, we discuss telomere biology in normal and abnormal hematopoiesis, including HSCT.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20852, USA.
| | | |
Collapse
|
62
|
Wang X. Computational analysis of expression of human embryonic stem cell-associated signatures in tumors. BMC Res Notes 2011; 4:471. [PMID: 22041030 PMCID: PMC3217937 DOI: 10.1186/1756-0500-4-471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/19/2022] Open
Abstract
Background The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach. Results We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells. Conclusions The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
63
|
Ly H. Telomere dynamics in induced pluripotent stem cells: Potentials for human disease modeling. World J Stem Cells 2011; 3:89-95. [PMID: 22110834 PMCID: PMC3220723 DOI: 10.4252/wjsc.v3.i10.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023] Open
Abstract
Recent advances in reprograming somatic cells from normal and diseased tissues into induced pluripotent stem cells (iPSCs) provide exciting possibilities for generating renewed tissues for disease modeling and therapy. However, questions remain on whether iPSCs still retain certain markers (e.g. aging) of the original somatic cells that could limit their replicative potential and utility. A reliable biological marker for measuring cellular aging is telomere length, which is maintained by a specialized form of cellular polymerase known as telomerase. Telomerase is composed of the cellular reverse transcriptase protein, its integral RNA component, and other cellular proteins (e.g. dyskerin). Mutations in any of these components of telomerase can lead to a severe form of marrow deficiency known as dyskeratosis congenita (DC). This review summarizes recent findings on the effect of cellular reprograming via iPS of normal or DC patient-derived tissues on telomerase function and consequently on telomere length maintenance and cellular aging. The potentials and challenges of using iPSCs in a clinical setting will also be discussed.
Collapse
Affiliation(s)
- Hinh Ly
- Hinh Ly, Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, United States
| |
Collapse
|
64
|
Sugimoto M, Furuichi Y, Ide T, Goto M. Involvement of WRN helicase in immortalization and tumorigenesis by the telomeric crisis pathway (Review). Oncol Lett 2011; 2:609-611. [PMID: 22848235 DOI: 10.3892/ol.2011.298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/21/2011] [Indexed: 11/06/2022] Open
Abstract
The repeated replication of cells shortens telomeres, culminating in their instability, after which most cells cease to replicate and die. However, a small fraction of the cells become immortalized by maintaining telomeres with activated telomerase activity. It has been proposed that WRN helicase encoded by the WRN gene, the causative gene of Werner syndrome (WS), is required for immortalization by the telomeric crisis pathway (TCP) in a system that uses lymphoblastoid cell lines transformed by the Epstein-Barr virus. Taken together, these characteristics indicate that WRN helicase is also required for the immortalization of epithelial cells by TCP and consequent carcinogenesis, suggesting that the tumorigenesis of epithelial cells by TCP is suppressed in WS lacking the WRN helicase function. Notably, in WS the pathway of alternative lengthening of telomeres without activation of telomerase activity has been suggested to be involved in immortalization and tumorigenesis. This factor is consistent with the abundance of non-epithelial cancers in WS in that the ratio of epithelial to non-epithelial cancers is approximately 1:1 in WS patients compared to 10:1 in the general population. A hypothetical scheme showing the role of WRN helicase in immortalization by means of the supposed 'breakage-fusion-bridge cycle' of chromosomes at telomeric crisis is described.
Collapse
|
65
|
Cox LS, Mason PA. Prospects for rejuvenation of aged tissue by telomerase reactivation. Rejuvenation Res 2011; 13:749-54. [PMID: 21226558 DOI: 10.1089/rej.2010.1140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human aging is associated with loss of tissue homeostasis and a greatly elevated risk of debilitating disease, with associated costs in terms of diminished quality of life for the individual and financial burdens on health-care providers. Any advances that hold out the realistic prospect of tackling age-related morbidity are therefore to be welcomed. The recent report by Jeskelioff et al. published in 2010 that telomerase reactivation in adult male mice can not only halt but actually reverse significant tissue pathologies provides a long-awaited proof of principle that it is possible to rejuvenate aged tissues. This review assesses the impact of this new work and considers possible problems and potential benefits of telomerase activation as a therapy to tackle the morbidities associated with human aging.
Collapse
Affiliation(s)
- Lynne S Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
66
|
Abstract
The unique abilities of human pluripotent stem cells to self-renew and to differentiate into cells of the three germ layers make them an invaluable tool for the future of regenerative medicine. However, the same properties also make them tumorigenic, and therefore hinder their clinical application. Hence, the tumorigenicity of human embryonic stem cells (HESCs) has been extensively studied. Until recently, it was assumed that human induced pluripotent stem cells (HiPSCs) would behave like their embryonic counterparts in respect to their tumorigenicity. However, a rapidly accumulating body of evidence suggests that there are important genetic and epigenetic differences between these two cell types, which seem to influence their tumorigenicity.
Collapse
Affiliation(s)
- Uri Ben-David
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|