51
|
Hamann F, Enders M, Ficner R. Structural basis for RNA translocation by DEAH-box ATPases. Nucleic Acids Res 2019; 47:4349-4362. [PMID: 30828714 PMCID: PMC6486627 DOI: 10.1093/nar/gkz150] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
DEAH-box adenosine triphosphatases (ATPases) play a crucial role in the spliceosome-mediated excision of pre-mRNA introns. Recent spliceosomal cryo-EM structures suggest that these proteins utilize translocation to apply forces on ssRNAs rather than direct RNA duplex unwinding to ensure global rearrangements. By solving the crystal structure of Prp22 in different adenosine nucleotide-free states, we identified two missing conformational snapshots of genuine DEAH-box ATPases that help to unravel the molecular mechanism of translocation for this protein family. The intrinsic mobility of the RecA2 domain in the absence of adenosine di- or triphosphate (ADP/ATP) and RNA enables DEAH-box ATPases to adopt different open conformations of the helicase core. The presence of RNA suppresses this mobility and stabilizes one defined open conformation when no adenosine nucleotide is bound. A comparison of this novel conformation with the ATP-bound state of Prp43 reveals that these ATPases cycle between closed and open conformations of the helicase core, which accommodate either a four- or five-nucleotide stack in the RNA-binding tunnel, respectively. The continuous repetition of these states enables these proteins to translocate in 3′-5′ direction along an ssRNA with a step-size of one RNA nucleotide per hydrolyzed ATP. This ATP-driven motor function is maintained by a serine in the conserved motif V that senses the catalytic state and accordingly positions the RecA2 domain.
Collapse
Affiliation(s)
- Florian Hamann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Marieke Enders
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
52
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
53
|
Mendoza-Ochoa GI, Barrass JD, Maudlin IE, Beggs JD. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. RNA Biol 2019; 16:1775-1784. [PMID: 31671032 PMCID: PMC6844569 DOI: 10.1080/15476286.2019.1657788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pre-messenger RNA splicing involves multi-step assembly of the large spliceosome complexes that catalyse the two consecutive trans-esterification reactions, resulting in intron removal. There is evidence that proof-reading mechanisms monitor the fidelity of this complex process. Transcripts that fail these fidelity tests are thought to be directed to degradation pathways, permitting the splicing factors to be recycled. While studying the roles of splicing factors in vivo, in budding yeast, we performed targeted depletion of individual proteins, and analysed the effect on co-transcriptional spliceosome assembly and splicing efficiency. Unexpectedly, depleting factors such as Prp16 or Prp22, that are known to function at the second catalytic step or later in the splicing pathway, resulted in a defect in the first step of splicing, and accumulation of arrested spliceosomes. Through a kinetic analysis of newly synthesized RNA, we observed that a second step splicing defect (the primary defect) was rapidly followed by the first step of splicing defect. Our results show that knocking down a splicing factor can quickly lead to a recycling defect with splicing factors sequestered in stalled complexes, thereby limiting new rounds of splicing. We demonstrate that this ‘feed-back’ effect can be minimized by depleting the target protein more gradually or only partially, allowing a better separation between primary and secondary effects. Our findings indicate that splicing surveillance mechanisms may not always cope with spliceosome assembly defects, and suggest that work involving knock-down of splicing factors or components of other large complexes should be carefully monitored to avoid potentially misleading conclusions.
Collapse
Affiliation(s)
- Gonzalo I Mendoza-Ochoa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J David Barrass
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
54
|
Kastner B, Will CL, Stark H, Lührmann R. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:a032417. [PMID: 30765414 PMCID: PMC6824238 DOI: 10.1101/cshperspect.a032417] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spliceosome is a highly complex, dynamic ribonucleoprotein molecular machine that undergoes numerous structural and compositional rearrangements that lead to the formation of its active site. Recent advances in cyroelectron microscopy (cryo-EM) have provided a plethora of near-atomic structural information about the inner workings of the spliceosome. Aided by previous biochemical, structural, and functional studies, cryo-EM has confirmed or provided a structural basis for most of the prevailing models of spliceosome function, but at the same time allowed novel insights into splicing catalysis and the intriguing dynamics of the spliceosome. The mechanism of pre-mRNA splicing is highly conserved between humans and yeast, but the compositional dynamics and ribonucleoprotein (RNP) remodeling of the human spliceosome are more complex. Here, we summarize recent advances in our understanding of the molecular architecture of the human spliceosome, highlighting differences between the human and yeast splicing machineries.
Collapse
Affiliation(s)
- Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
55
|
Toroney R, Nielsen KH, Staley JP. Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Genes Dev 2019; 33:1555-1574. [PMID: 31558568 PMCID: PMC6824469 DOI: 10.1101/gad.328294.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
In this study, Toroney et al. set out to identify the mechanism of Prp43p action in splicing. The authors use biochemical approaches to demonstrate that the 3' end of U6 acts as the key substrate by which Prp43p promotes disassembly and intron release, thereby terminating splicing. The termination of pre-mRNA splicing functions to discard suboptimal substrates, thereby enhancing fidelity, and to release excised introns in a manner coupled to spliceosome disassembly, thereby allowing recycling. The mechanism of termination, including the RNA target of the DEAH-box ATPase Prp43p, remains ambiguous. We discovered a critical role for nucleotides at the 3′ end of the catalytic U6 small nuclear RNA in splicing termination. Although conserved sequence at the 3′ end is not required, 2′ hydroxyls are, paralleling requirements for Prp43p biochemical activities. Although the 3′ end of U6 is not required for recruiting Prp43p to the spliceosome, the 3′ end cross-links directly to Prp43p in an RNA-dependent manner. Our data indicate a mechanism of splicing termination in which Prp43p translocates along U6 from the 3′ end to disassemble the spliceosome and thereby release suboptimal substrates or excised introns. This mechanism reveals that the spliceosome becomes primed for termination at the same stage it becomes activated for catalysis, implying a requirement for stringent control of spliceosome activity within the cell.
Collapse
Affiliation(s)
- Rebecca Toroney
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | - Klaus H Nielsen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| |
Collapse
|
56
|
Felisberto-Rodrigues C, Thomas JC, McAndrew C, Le Bihan YV, Burke R, Workman P, van Montfort RLM. Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release. Biochem J 2019; 476:2521-2543. [PMID: 31409651 DOI: 10.1042/bcj20190383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Abstract
DHX8 is a crucial DEAH-box RNA helicase involved in splicing and required for the release of mature mRNA from the spliceosome. Here, we report the biochemical characterisation of full-length human DHX8 and the catalytically active helicase core DHX8Δ547, alongside crystal structures of DHX8Δ547 bound to ADP and a structure of DHX8Δ547 bound to poly(A)6 single-strand RNA. Our results reveal that DHX8 has an in vitro binding preference for adenine-rich RNA and that RNA binding triggers the release of ADP through significant conformational flexibility in the conserved DEAH-, P-loop and hook-turn motifs. We demonstrate the importance of R620 and both the hook-turn and hook-loop regions for DHX8 helicase activity and propose that the hook-turn acts as a gatekeeper to regulate the directional movement of the 3' end of RNA through the RNA-binding channel. This study provides an in-depth understanding of the activity of DHX8 and contributes insights into the RNA-unwinding mechanisms of the DEAH-box helicase family.
Collapse
Affiliation(s)
- Catarina Felisberto-Rodrigues
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Jemima C Thomas
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Craig McAndrew
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Yann-Vaï Le Bihan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| |
Collapse
|
57
|
Nishimura K, Cho Y, Tokunaga K, Nakao M, Tani T, Ideue T. DEAH box RNA helicase DHX38 associates with satellite I noncoding RNA involved in chromosome segregation. Genes Cells 2019; 24:585-590. [PMID: 31166646 DOI: 10.1111/gtc.12707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/29/2022]
Abstract
Noncoding (nc) RNA called satellite I is transcribed from the human centromere region. Depletion of this ncRNA results in abnormal nuclear morphology because of defects in chromosome segregation. Some protein factors interact with this ncRNA and function as a component of a nc ribonucleoprotein (RNP) complex in mitotic regulation. Here, we found that DHX38, a pre-mRNA splicing-related DEAH box RNA helicase, interacts with satellite I ncRNA. Depletion of DHX38 resulted in defective chromosome segregation similar to knockdown of satellite I ncRNA. Interaction between DHX38 and ncRNA was interphase-specific, but DHX38 depletion affected the function of Aurora B, which associated with satellite I ncRNA at mitotic phase. Based on these findings, we suggest that DHX38 has a role in mitotic regulation as a component of the satellite I ncRNP complex at interphase.
Collapse
Affiliation(s)
- Kanako Nishimura
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yukiko Cho
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Tokunaga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto, Japan
| | - Tokio Tani
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Ideue
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
58
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
59
|
Fica SM, Oubridge C, Wilkinson ME, Newman AJ, Nagai K. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science 2019; 363:710-714. [PMID: 30705154 DOI: 10.1126/science.aaw5569] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
During exon ligation, the Saccharomyces cerevisiae spliceosome recognizes the 3'-splice site (3'SS) of precursor messenger RNA (pre-mRNA) through non-Watson-Crick pairing with the 5'SS and the branch adenosine, in a conformation stabilized by Prp18 and Prp8. Here we present the 3.3-angstrom cryo-electron microscopy structure of a human postcatalytic spliceosome just after exon ligation. The 3'SS docks at the active site through conserved RNA interactions in the absence of Prp18. Unexpectedly, the metazoan-specific FAM32A directly bridges the 5'-exon and intron 3'SS of pre-mRNA and promotes exon ligation, as shown by functional assays. CACTIN, SDE2, and NKAP-factors implicated in alternative splicing-further stabilize the catalytic conformation of the spliceosome during exon ligation. Together these four proteins act as exon ligation factors. Our study reveals how the human spliceosome has co-opted additional proteins to modulate a conserved RNA-based mechanism for 3'SS selection and to potentially fine-tune alternative splicing at the exon ligation stage.
Collapse
Affiliation(s)
- Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Chris Oubridge
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Max E Wilkinson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
60
|
Xing Z, Ma WK, Tran EJ. The DDX5/Dbp2 subfamily of DEAD-box RNA helicases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1519. [PMID: 30506978 DOI: 10.1002/wrna.1519] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023]
Abstract
The mammalian DEAD-box RNA helicase DDX5, its paralog DDX17, and their orthologs in Saccharomyces cerevisiae and Drosophila melanogaster, namely Dbp2 and Rm62, define a subfamily of DEAD-box proteins. Members from this subfamily share highly conserved protein sequences and cellular functions. They are involved in multiple steps of RNA metabolism including mRNA processing, microRNA processing, ribosome biogenesis, RNA decay, and regulation of long noncoding RNA activities. The DDX5/Dbp2 subfamily is also implicated in transcription regulation, cellular signaling pathways, and energy metabolism. One emerging theme underlying the diverse cellular functions is that the DDX5/Dbp2 subfamily of DEAD-box helicases act as chaperones for complexes formed by RNA molecules and proteins (RNP) in vivo. This RNP chaperone activity governs the functions of various RNA species through their lifetime. Importantly, mammalian DDX5 and DDX17 are involved in cancer progression when overexpressed through alteration of transcription and signaling pathways, meaning that they are possible targets for cancer therapy. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Wai Kit Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
61
|
Schmitt A, Hamann F, Neumann P, Ficner R. Crystal structure of the spliceosomal DEAH-box ATPase Prp2. Acta Crystallogr D Struct Biol 2018; 74:643-654. [PMID: 29968674 PMCID: PMC6038383 DOI: 10.1107/s2059798318006356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
The DEAH-box ATPase Prp2 plays a key role in the activation of the spliceosome as it promotes the transition from the Bact to the catalytically active B* spliceosome. Here, four crystal structures of Prp2 are reported: one of the nucleotide-free state and three different structures of the ADP-bound state. The overall conformation of the helicase core, formed by two RecA-like domains, does not differ significantly between the ADP-bound and the nucleotide-free states. However, intrinsic flexibility of Prp2 is observed, varying the position of the C-terminal domains with respect to the RecA domains. Additionally, in one of the structures a unique ADP conformation is found which has not been observed in any other DEAH-box, DEAD-box or NS3/NPH-II helicase.
Collapse
Affiliation(s)
- Andreas Schmitt
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Florian Hamann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
62
|
Wilkinson ME, Lin PC, Plaschka C, Nagai K. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annu Rev Biophys 2018; 47:175-199. [PMID: 29494253 DOI: 10.1146/annurev-biophys-070317-033410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The removal of noncoding introns from pre-messenger RNA (pre-mRNA) is an essential step in eukaryotic gene expression and is catalyzed by a dynamic multi-megadalton ribonucleoprotein complex called the spliceosome. The spliceosome assembles on pre-mRNA substrates by the stepwise addition of small nuclear ribonucleoprotein particles and numerous protein factors. Extensive remodeling is required to form the RNA-based active site and to mediate the pre-mRNA branching and ligation reactions. In the past two years, cryo-electron microscopy (cryo-EM) structures of spliceosomes captured in different assembly and catalytic states have greatly advanced our understanding of its mechanism. This was made possible by long-standing efforts in the purification of spliceosome intermediates as well as recent developments in cryo-EM imaging and computational methodology. The resulting high-resolution densities allow for de novo model building in core regions of the complexes. In peripheral and less ordered regions, the combination of cross-linking, bioinformatics, biochemical, and genetic data is essential for accurate modeling. Here, we summarize these achievements and highlight the critical steps in obtaining near-atomic resolution structures of the spliceosome.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| |
Collapse
|
63
|
The RNA helicase DDX46 inhibits innate immunity by entrapping m 6A-demethylated antiviral transcripts in the nucleus. Nat Immunol 2017; 18:1094-1103. [PMID: 28846086 DOI: 10.1038/ni.3830] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
DEAD-box (DDX) helicases are vital for the recognition of RNA and metabolism and are critical for the initiation of antiviral innate immunity. Modification of RNA is involved in many biological processes; however, its role in antiviral innate immunity has remained unclear. Here we found that nuclear DDX member DDX46 inhibited the production of type I interferons after viral infection. DDX46 bound Mavs, Traf3 and Traf6 transcripts (which encode signaling molecules involved in antiviral responses) via their conserved CCGGUU element. After viral infection, DDX46 recruited ALKBH5, an 'eraser' of the RNA modification N6-methyladenosine (m6A), via DDX46's DEAD helicase domain to demethylate those m6A-modified antiviral transcripts. It consequently enforced their retention in the nucleus and therefore prevented their translation and inhibited interferon production. DDX46 also suppressed antiviral innate immunity in vivo. Thus, DDX46 inhibits antiviral innate responses by entrapping selected antiviral transcripts in the nucleus by erasing their m6A modification, a modification normally required for export from the nucleus and translation.
Collapse
|
64
|
Fourmann JB, Tauchert MJ, Ficner R, Fabrizio P, Lührmann R. Regulation of Prp43-mediated disassembly of spliceosomes by its cofactors Ntr1 and Ntr2. Nucleic Acids Res 2017; 45:4068-4080. [PMID: 27923990 PMCID: PMC5397206 DOI: 10.1093/nar/gkw1225] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
The DEAH-box NTPase Prp43 disassembles spliceosomes in co-operation with the cofactors Ntr1/Spp382 and Ntr2, forming the NTR complex. How Prp43 is regulated by its cofactors to discard selectively only intron-lariat spliceosomes (ILS) and defective spliceosomes and to prevent disassembly of earlier and properly assembled/wild-type spliceosomes remains unclear. First, we show that Ntr1΄s G-patch motif (Ntr1GP) can be replaced by the GP motif of Pfa1/Sqs1, a Prp43΄s cofactor in ribosome biogenesis, demonstrating that the specific function of Ntr1GP is to activate Prp43 for spliceosome disassembly and not to guide Prp43 to its binding site in the spliceosome. Furthermore, we show that Ntr1΄s C-terminal domain (CTD) plays a safeguarding role by preventing Prp43 from disrupting wild-type spliceosomes other than the ILS. Ntr1 and Ntr2 can also discriminate between wild-type and defective spliceosomes. In both type of spliceosomes, Ntr1-CTD impedes Prp43-mediated disassembly while the Ntr1GP promotes disassembly. Intriguingly, Ntr2 plays a specific role in defective spliceosomes, likely by stabilizing Ntr1 and allowing Prp43 to enter a productive interaction with the GP motif of Ntr1. Our data indicate that Ntr1 and Ntr2 act as ‘doorkeepers’ and suggest that both cofactors inspect the RNP structure of spliceosomal complexes thereby targeting suboptimal spliceosomes for Prp43-mediated disassembly.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg August University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg August University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
65
|
Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 2017; 18:637-650. [PMID: 28792005 DOI: 10.1038/nrm.2017.63] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Diana S M Ottoz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
66
|
Karaduman R, Chanarat S, Pfander B, Jentsch S. Error-Prone Splicing Controlled by the Ubiquitin Relative Hub1. Mol Cell 2017; 67:423-432.e4. [PMID: 28712727 DOI: 10.1016/j.molcel.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/27/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
Accurate pre-mRNA splicing is needed for correct gene expression and relies on faithful splice site recognition. Here, we show that the ubiquitin-like protein Hub1 binds to the DEAD-box helicase Prp5, a key regulator of early spliceosome assembly, and stimulates its ATPase activity thereby enhancing splicing and relaxing fidelity. High Hub1 levels enhance splicing efficiency but also cause missplicing by tolerating suboptimal splice sites and branchpoint sequences. Notably, Prp5 itself is regulated by a Hub1-dependent negative feedback loop. Since Hub1-mediated splicing activation induces cryptic splicing of Prp5, it also represses Prp5 protein levels and thus curbs excessive missplicing. Our findings indicate that Hub1 mediates enhanced, but error-prone splicing, a mechanism that is tightly controlled by a feedback loop of PRP5 cryptic splicing activation.
Collapse
Affiliation(s)
- Ramazan Karaduman
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany.
| | - Sittinan Chanarat
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany.
| | - Boris Pfander
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany.
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| |
Collapse
|
67
|
Studying structure and function of spliceosomal helicases. Methods 2017; 125:63-69. [PMID: 28668587 DOI: 10.1016/j.ymeth.2017.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/27/2022] Open
Abstract
The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.
Collapse
|
68
|
Mutazono M, Morita M, Tsukahara C, Chinen M, Nishioka S, Yumikake T, Dohke K, Sakamoto M, Ideue T, Nakayama JI, Ishii K, Tani T. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin. PLoS Genet 2017; 13:e1006606. [PMID: 28231281 PMCID: PMC5322907 DOI: 10.1371/journal.pgen.1006606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin. Formation of centromeric heterochromatin is required for correct segregation of sister chromatids during mitosis. In fission yeast, formation of heterochromatin at centromeres is performed through the RNA interference (RNAi) system, which involves processing of noncoding RNAs transcribed from the centromeres. We found that the intron in the centromeric dg ncRNAs facilitates formation of centromeric heterochromatin in fission yeast. We showed that the splicing factor spPrp16p associates with the RNAi factor and intron-containing dg ncRNA. Removal of or mutations in the dg intron significantly decreased H3K9 dimethylation, suggesting that the intron and associated splicing factors serve as a platform for recruitment of RNAi factors. Inefficient splicing is a hallmark of intron-containing centromeric ncRNAs. Such repression of splicing seems to be important for facilitation of heterochromatin formation. Introns in euchromatic regions are removed by splicing to generate functional RNAs, whereas centromeric introns are retained in ncRNAs by splicing repression and play roles in gene silencing. Our findings shed light on the novel roles of introns in epigenetic regulation of gene expression and heterochromatin formation.
Collapse
Affiliation(s)
- Masatoshi Mutazono
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Misato Morita
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Chihiro Tsukahara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Madoka Chinen
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Shiori Nishioka
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Tatsuhiro Yumikake
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Kohei Dohke
- Laboratory of Chromosome Function and Regulation, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Misuzu Sakamoto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Takashi Ideue
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan.,Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tokio Tani
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
69
|
Tauchert MJ, Fourmann JB, Lührmann R, Ficner R. Structural insights into the mechanism of the DEAH-box RNA helicase Prp43. eLife 2017; 6. [PMID: 28092261 PMCID: PMC5262380 DOI: 10.7554/elife.21510] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a β-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases. DOI:http://dx.doi.org/10.7554/eLife.21510.001
Collapse
Affiliation(s)
- Marcel J Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
70
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
71
|
Agafonov DE, van Santen M, Kastner B, Dube P, Will CL, Urlaub H, Lührmann R. ATPγS stalls splicing after B complex formation but prior to spliceosome activation. RNA (NEW YORK, N.Y.) 2016; 22:1329-1337. [PMID: 27411562 PMCID: PMC4986889 DOI: 10.1261/rna.057810.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The ATP analog ATPγS inhibits pre-mRNA splicing in vitro, but there have been conflicting reports as to which step of splicing is inhibited by this small molecule and its inhibitory mechanism remains unclear. Here we have dissected the effect of ATPγS on pre-mRNA splicing in vitro. Addition of ATPγS to splicing extracts depleted of ATP inhibited both catalytic steps of splicing. At ATPγS concentrations ≥0.5 mM, precatalytic B complexes accumulate, demonstrating a block prior to or during the spliceosome activation stage. Affinity purification of the ATPγS-stalled B complexes (B(ATPγS)) and subsequent characterization of their abundant protein components by 2D gel electrophoresis revealed that B(ATPγS) complexes are compositionally more homogeneous than B complexes previously isolated in the presence of ATP. In particular, they contain little or no Prp19/CDC5L complex proteins, indicating that these proteins are recruited after assembly of the precatalytic spliceosome. Under the electron microscope, B(ATPγS) complexes exhibit a morphology highly similar to B complexes, indicating that the ATPγS-induced block in the transformation of the B to B(act) complex is not due to a major structural defect. Likely mechanisms whereby ATPγS blocks spliceosome assembly at the activation stage, including inhibition of the RNA helicase Brr2, are discussed. Given their more homogeneous composition, B complexes stalled by ATPγS may prove highly useful for both functional and structural analyses of the precatalytic spliceosome and its conversion into an activated B(act) spliceosomal complex.
Collapse
Affiliation(s)
- Dmitry E Agafonov
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Marieke van Santen
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Prakash Dube
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
72
|
Sun C, Rigo N, Fabrizio P, Kastner B, Lührmann R. A protein map of the yeast activated spliceosome as obtained by electron microscopy. RNA (NEW YORK, N.Y.) 2016; 22:1427-40. [PMID: 27368340 PMCID: PMC4986897 DOI: 10.1261/rna.057778.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 05/09/2023]
Abstract
We have elucidated the spatial arrangement of proteins and snRNP subunits within the purified spliceosomal B(act) complex from Saccharomyces cerevisiae, using negative-stain immunoelectron microscopy. The B(act) spliceosome exhibits a mushroom-like shape with a main body connected to a foot and a steep and a shallow slope. The U5 core components, including proteins Snu114 and Prp8, are located in the main body and foot, while Brr2 is on the shallow slope. U2 snRNP components and the RNA helicase Prp2 were predominantly located in the upper regions of both slopes. While several proteins of the "nineteen complex" are located on the steep slope, Prp19, Cef1, and the U6 snRNA-binding protein Cwc2 are on the main body. Our results also indicate that the catalytic core RNP of the spliceosome resides in its main body. We thus assign distinct domains of the B(act) complex to its snRNP and protein components, and we provide first structural insights into the remodeling events at the spliceosome during its transformation from the B to the B(act) complex.
Collapse
Affiliation(s)
- Chengfu Sun
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
73
|
Cancer-associated SF3B1 mutants recognize otherwise inaccessible cryptic 3' splice sites within RNA secondary structures. Oncogene 2016; 36:1123-1133. [PMID: 27524419 PMCID: PMC5311031 DOI: 10.1038/onc.2016.279] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 02/08/2023]
Abstract
Recurrent mutations in core splicing factors have been reported in several clonal disorders, including cancers. Mutations in SF3B1, a component of the U2 splicing complex, are the most common. SF3B1 mutations are associated with aberrant pre-mRNA splicing using cryptic 3’ splice sites (3’SS) but the mechanism of their selection is not clear. To understand how cryptic 3’SS are selected, we performed comprehensive analysis of transcriptome-wide changes to splicing and gene expression associated with SF3B1 mutations in patient samples as well as an experimental model of inducible expression. Hundreds of cryptic 3’SS were detectable across the genome in cells expressing mutant SF3B1. These 3’SS are typically sequestered within RNA secondary structures and poorly accessible compared to their corresponding canonical 3’SS. We hypothesized that these cryptic 3’SS are inaccessible during normal splicing catalysis and that this constraint is overcome in spliceosomes containing mutant SF3B1. This model of secondary structure-dependent selection of cryptic 3’SS was found across multiple clonal processes associated with SF3B1 mutations (myelodysplastic syndrome and chronic lymphocytic leukemia). We validated our model predictions in mini-gene splicing assays. Additionally, we found deregulated expression of proteins with relevant functions in splicing factor-related diseases both in association with aberrant splicing and without corresponding splicing changes. Our results show that SF3B1 mutations are associated with a distinct splicing program shared across multiple clonal processes and define a biochemical mechanism for altered 3’SS choice.
Collapse
|
74
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 2016; 353:904-11. [PMID: 27445306 DOI: 10.1126/science.aag0291] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is carried out by the spliceosome, which undergoes an intricate assembly and activation process. Here, we report an atomic structure of an activated spliceosome (known as the B(act) complex) from Saccharomyces cerevisiae, determined by cryo-electron microscopy at an average resolution of 3.52 angstroms. The final refined model contains U2 and U5 small nuclear ribonucleoprotein particles (snRNPs), U6 small nuclear RNA (snRNA), nineteen complex (NTC), NTC-related (NTR) protein, and a 71-nucleotide pre-mRNA molecule, which amount to 13,505 amino acids from 38 proteins and a combined molecular mass of about 1.6 megadaltons. The 5' exon is anchored by loop I of U5 snRNA, whereas the 5' splice site (5'SS) and the branch-point sequence (BPS) of the intron are specifically recognized by U6 and U2 snRNA, respectively. Except for coordination of the catalytic metal ions, the RNA elements at the catalytic cavity of Prp8 are mostly primed for catalysis. The catalytic latency is maintained by the SF3b complex, which encircles the BPS, and the splicing factors Cwc24 and Prp11, which shield the 5' exon-5'SS junction. This structure, together with those determined earlier, outlines a molecular framework for the pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
75
|
Boesler C, Rigo N, Anokhina MM, Tauchert MJ, Agafonov DE, Kastner B, Urlaub H, Ficner R, Will CL, Lührmann R. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nat Commun 2016; 7:11997. [PMID: 27377154 PMCID: PMC4935976 DOI: 10.1038/ncomms11997] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/20/2016] [Indexed: 11/17/2022] Open
Abstract
The precise role of the spliceosomal DEAD-box protein Prp28 in higher eukaryotes remains unclear. We show that stable tri-snRNP association during pre-catalytic spliceosomal B complex formation is blocked by a dominant-negative hPrp28 mutant lacking ATPase activity. Complexes formed in the presence of ATPase-deficient hPrp28 represent a novel assembly intermediate, the pre-B complex, that contains U1, U2 and loosely associated tri-snRNP and is stalled before disruption of the U1/5′ss base pairing interaction, consistent with a role for hPrp28 in the latter. Pre-B and B complexes differ structurally, indicating that stable tri-snRNP integration is accompanied by substantial rearrangements in the spliceosome. Disruption of the U1/5′ss interaction alone is not sufficient to bypass the block by ATPase-deficient hPrp28, suggesting hPrp28 has an additional function at this stage of splicing. Our data provide new insights into the function of Prp28 in higher eukaryotes, and the requirements for stable tri-snRNP binding during B complex formation. The assembly of the splicesome involves several distinct stages that require the sequential action of DExD/H-box RNA helicases. Here, the authors uncover a new intermediate, the pre-B complex, that accumulates in the presence of an inactive form of the DEAD-box protein Prp28.
Collapse
Affiliation(s)
- Carsten Boesler
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Norbert Rigo
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Maria M Anokhina
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
76
|
The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016; 17:426-38. [PMID: 27251421 DOI: 10.1038/nrm.2016.50] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA helicases comprise the largest family of enzymes involved in the metabolism of mRNAs, the processing and fate of which rely on their packaging into messenger ribonucleoprotein particles (mRNPs). In this Review, we describe how the capacity of some RNA helicases to either remodel or lock the composition of mRNP complexes underlies their pleiotropic functions at different steps of the gene expression process. We illustrate the roles of RNA helicases in coordinating gene expression steps and programmes, and propose that RNA helicases function as molecular drivers and guides of the progression of their mRNA substrates from one RNA-processing factory to another, to a productive mRNA pool that leads to protein synthesis or to unproductive mRNA pools that are stored or degraded.
Collapse
|
77
|
Howles PA, Gebbie LK, Collings DA, Varsani A, Broad RC, Ohms S, Birch RJ, Cork AH, Arioli T, Williamson RE. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 91:1-13. [PMID: 27008640 DOI: 10.1007/s11103-016-0428-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.
Collapse
Affiliation(s)
- Paul A Howles
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia.
| | - Leigh K Gebbie
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072, Australia
| | - David A Collings
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Arvind Varsani
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Ronan C Broad
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Stephen Ohms
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Rosemary J Birch
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Ann H Cork
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Tony Arioli
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Richard E Williamson
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
78
|
Tauchert MJ, Ficner R. Structural analysis of the spliceosomal RNA helicase Prp28 from the thermophilic eukaryote Chaetomium thermophilum. Acta Crystallogr F Struct Biol Commun 2016; 72:409-16. [PMID: 27139834 PMCID: PMC4854570 DOI: 10.1107/s2053230x16006038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
Prp28 (pre-mRNA-splicing ATP-dependent RNA helicase 28) is a spliceosomal DEAD-box helicase which is involved in two steps of spliceosome assembly. It is required for the formation of commitment complex 2 in an ATP-independent manner as well as for the formation of the pre-catalytic spliceosome, which in contrast is ATP-dependent. During the latter step, Prp28 is crucial for the integration of the U4/U6·U5 tri-snRNP since it displaces the U1 snRNP and allows the U6 snRNP to base-pair with the 5'-splice site. Here, the crystal structure of Prp28 from the thermophilic fungus Chaetomium thermophilum is reported at 3.2 Å resolution and is compared with the available structures of homologues.
Collapse
Affiliation(s)
- Marcel J. Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
79
|
Fourmann JB, Dybkov O, Agafonov DE, Tauchert MJ, Urlaub H, Ficner R, Fabrizio P, Lührmann R. The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction. eLife 2016; 5. [PMID: 27115347 PMCID: PMC4866824 DOI: 10.7554/elife.15564] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
The DEAH-box NTPase Prp43 and its cofactors Ntr1 and Ntr2 form the NTR complex and are required for disassembling intron-lariat spliceosomes (ILS) and defective earlier spliceosomes. However, the Prp43 binding site in the spliceosome and its target(s) are unknown. We show that Prp43 fused to Ntr1's G-patch motif (Prp43_Ntr1GP) is as efficient as the NTR in ILS disassembly, yielding identical dissociation products and recognizing its natural ILS target even in the absence of Ntr1’s C-terminal-domain (CTD) and Ntr2. Unlike the NTR, Prp43_Ntr1GP disassembles earlier spliceosomal complexes (A, B, Bact), indicating that Ntr2/Ntr1-CTD prevents NTR from disrupting properly assembled spliceosomes other than the ILS. The U2 snRNP-intron interaction is disrupted in all complexes by Prp43_Ntr1GP, and in the spliceosome contacts U2 proteins and the pre-mRNA, indicating that the U2 snRNP-intron interaction is Prp43’s major target. DOI:http://dx.doi.org/10.7554/eLife.15564.001
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bionalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
80
|
Vichas A, Laurie MT, Zallen JA. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity. J Cell Biol 2016; 211:1011-24. [PMID: 26644515 PMCID: PMC4674277 DOI: 10.1083/jcb.201504083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conserved Ski2-family helicase Obelus regulates alternative splicing of the Crumbs polarity protein to control epithelial polarity and junctional organization in Drosophila. Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor–like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development.
Collapse
Affiliation(s)
- Athea Vichas
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Matthew T Laurie
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
81
|
De I, Schmitzová J, Pena V. The organization and contribution of helicases to RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:259-74. [PMID: 26874649 DOI: 10.1002/wrna.1331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Abstract
Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out.
Collapse
Affiliation(s)
- Inessa De
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jana Schmitzová
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
82
|
Prabu JR, Müller M, Thomae AW, Schüssler S, Bonneau F, Becker PB, Conti E. Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. Mol Cell 2016; 60:487-99. [PMID: 26545078 DOI: 10.1016/j.molcel.2015.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. We identified a stable MLE core comprising the DExH helicase module and two auxiliary domains: a dsRBD and an OB-like fold. MLEcore is an unusual DExH helicase that can unwind blunt-ended RNA duplexes and has specificity for uridine nucleotides. We determined the 2.1 Å resolution structure of MLEcore bound to a U10 RNA and ADP-AlF4. The OB-like and dsRBD folds bind the DExH module and contribute to form the entrance of the helicase channel. Four uridine nucleotides engage in base-specific interactions, rationalizing the conservation of uridine-rich sequences in critical roX substrates. roX2 binding is orchestrated by MLE's auxiliary domains, which is prerequisite for MLE localization to the male X chromosome. The structure visualizes a transition-state mimic of the reaction and suggests how eukaryotic DEAH/RHA helicases couple ATP hydrolysis to RNA translocation.
Collapse
Affiliation(s)
- J Rajan Prabu
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marisa Müller
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Andreas W Thomae
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Steffen Schüssler
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
83
|
de Almeida RA, O'Keefe RT. The NineTeen Complex (NTC) and NTC-associated proteins as targets for spliceosomal ATPase action during pre-mRNA splicing. RNA Biol 2015; 12:109-14. [PMID: 25654271 PMCID: PMC4615276 DOI: 10.1080/15476286.2015.1008926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression that removes intron sequences efficiently and accurately to produce a mature mRNA for translation. It is the large and dynamic RNA-protein complex called the spliceosome that catalyzes intron removal. To carry out splicing the spliceosome not only needs to assemble correctly with the pre-mRNA but the spliceosome requires extensive remodelling of its RNA and protein components to execute the 2 steps of intron removal. Spliceosome remodelling is achieved through the action of ATPases that target both RNA and proteins to produce spliceosome conformations competent for each step of spliceosome activation, catalysis and disassembly. An increasing amount of research has pointed to the spliceosome associated NineTeen Complex (NTC) of proteins as targets for the action of a number of the spliceosomal ATPases during spliceosome remodelling. In this point-of-view article we present the latest findings on the changes in the NTC that occur following ATPase action that are required for spliceosome activation, catalysis and disassembly. We proposed that the NTC is one of the main targets of ATPase action during spliceosome remodelling required for pre-mRNA splicing.
Collapse
|
84
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
85
|
Fiorini F, Bagchi D, Le Hir H, Croquette V. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nat Commun 2015; 6:7581. [PMID: 26138914 PMCID: PMC4506499 DOI: 10.1038/ncomms8581] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022] Open
Abstract
RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery. Upf1 is a multifunctional helicase involved in various DNA- and RNA-related processes, including nonsense-mediated mRNA decay (NMD). Here the authors demonstrate that Upf1 is a highly processive ribonucleoprotein complex remodeler—a capability likely important for Upf1's NMD function.
Collapse
Affiliation(s)
- Francesca Fiorini
- 1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France
| | - Debjani Bagchi
- 1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France [3] Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie Paris, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Hervé Le Hir
- 1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France
| | - Vincent Croquette
- 1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France [3] Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie Paris, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
86
|
Warkocki Z, Schneider C, Mozaffari-Jovin S, Schmitzová J, Höbartner C, Fabrizio P, Lührmann R. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. Genes Dev 2015; 29:94-107. [PMID: 25561498 PMCID: PMC4285774 DOI: 10.1101/gad.253070.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Structural rearrangement of the activated spliceosome (Bact) to yield a
catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in
cooperation with the G-patch protein Spp2. Warkocki et al. demonstrate that Spp2 is
not required to recruit Prp2 to its bona fide binding site in the Bact
spliceosome. However, transformation of the Bact to the B*
spliceosome occurs only when Spp2 is present and is accompanied by dissociation of
Prp2 and a reduction in its NTPase activity. Structural rearrangement of the activated spliceosome (Bact) to yield a
catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in
cooperation with the G-patch protein Spp2. However, how the energy of ATP hydrolysis
by Prp2 is coupled to mechanical work and what role Spp2 plays in this process are
unclear. Using a purified splicing system, we demonstrate that Spp2 is not required
to recruit Prp2 to its bona fide binding site in the Bact spliceosome. In
the absence of Spp2, the Bact spliceosome efficiently triggers
Prp2’s NTPase activity, but NTP hydrolysis is not coupled to ribonucleoprotein
(RNP) rearrangements leading to catalytic activation of the spliceosome.
Transformation of the Bact to the B* spliceosome occurs only when
Spp2 is present and is accompanied by dissociation of Prp2 and a reduction in its
NTPase activity. In the absence of spliceosomes, Spp2 enhances Prp2’s
RNA-dependent ATPase activity without affecting its RNA affinity. Our data suggest
that Spp2 plays a major role in coupling Prp2’s ATPase activity to remodeling
of the spliceosome into a catalytically active machine.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Höbartner
- Research Group of Nucleic Acid Chemistry, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
87
|
Regulation of DEAH/RHA helicases by G-patch proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:931857. [PMID: 25692149 PMCID: PMC4322301 DOI: 10.1155/2015/931857] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase's enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase.
Collapse
|
88
|
Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Int J Mol Sci 2015; 16:2269-93. [PMID: 25622248 PMCID: PMC4346836 DOI: 10.3390/ijms16022269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.
Collapse
|
89
|
Ward WL, Russell R. Key points to consider when studying RNA remodeling by proteins. Methods Mol Biol 2015; 1259:1-16. [PMID: 25579576 DOI: 10.1007/978-1-4939-2214-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cellular RNAs depend on proteins for efficient folding to specific functional structures and for transitions between functional structures. This dependence arises from intrinsic properties of RNA structure. Specifically, RNAs possess stable local structure, largely in the form of helices, and they have abundant opportunities to form alternative helices and tertiary contacts and therefore to populate alternative structures. Proteins with RNA chaperone activity, either ATP-dependent or ATP-independent, can promote structural transitions by interacting with single-stranded RNA (ssRNA) to compete away partner interactions and then release ssRNA so that it can form new interactions. In this chapter we review the basic properties of RNA and the proteins that function as chaperones and remodelers. We then use these properties as a foundation to explore key points for the design and interpretation of experiments that probe RNA rearrangements and their acceleration by proteins.
Collapse
Affiliation(s)
- W Luke Ward
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 105 E, 24th St. Stop A5300, Austin, TX, 78712, USA
| | | |
Collapse
|
90
|
Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. What we know but do not understand about nidovirus helicases. Virus Res 2014; 202:12-32. [PMID: 25497126 PMCID: PMC7114383 DOI: 10.1016/j.virusres.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The ubiquitous nidovirus helicase is a multi-functional enzyme of superfamily 1. Its unique N-terminal domain is most similar to the Upf1 multinuclear zinc-binding domain. It has been implicated in replication, transcription, virion biogenesis, translation and post-transcriptional viral RNA processing. Four different classes of antiviral compounds targeting the helicase have been identified.
Helicases are versatile NTP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame 1b (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORF1a. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multi-nuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also post-transcriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovirus replication cycle.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia.
| |
Collapse
|
91
|
Cordin O, Hahn D, Alexander R, Gautam A, Saveanu C, Barrass JD, Beggs JD. Brr2p carboxy-terminal Sec63 domain modulates Prp16 splicing RNA helicase. Nucleic Acids Res 2014; 42:13897-910. [PMID: 25428373 PMCID: PMC4267655 DOI: 10.1093/nar/gku1238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK IBPC, CNRS FRE 3630, 13, rue Pierre & Marie Curie, 75005 Paris, France
| | - Daniela Hahn
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Ross Alexander
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Amit Gautam
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Cosmin Saveanu
- Institut Pasteur, CNRS UMR3525, 25-28 rue du docteur Roux, 75015 Paris, France
| | - J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| |
Collapse
|
92
|
Möhlmann S, Mathew R, Neumann P, Schmitt A, Lührmann R, Ficner R. Structural and functional analysis of the human spliceosomal DEAD-box helicase Prp28. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1622-30. [PMID: 24914973 PMCID: PMC4051504 DOI: 10.1107/s1399004714006439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/23/2014] [Indexed: 11/10/2022]
Abstract
The DEAD-box protein Prp28 is essential for pre-mRNA splicing as it plays a key role in the formation of an active spliceosome. Prp28 participates in the release of the U1 snRNP from the 5'-splice site during association of the U5·U4/U6 tri-snRNP, which is a crucial step in the transition from a pre-catalytic spliceosome to an activated spliceosome. Here, it is demonstrated that the purified helicase domain of human Prp28 (hPrp28ΔN) binds ADP, whereas binding of ATP and ATPase activity could not be detected. ATP binding could not be observed for purified full-length hPrp28 either, but within an assembled spliceosomal complex hPrp28 gains ATP-binding activity. In order to understand the structural basis for the ATP-binding deficiency of isolated hPrp28, the crystal structure of hPrp28ΔN was determined at 2.0 Å resolution. In the crystal the helicase domain adopts a wide-open conformation, as the two RecA-like domains are extraordinarily displaced from the productive ATPase conformation. Binding of ATP is hindered by a closed conformation of the P-loop, which occupies the space required for the γ-phosphate of ATP.
Collapse
Affiliation(s)
- Sina Möhlmann
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Rebecca Mathew
- Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | - Piotr Neumann
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Andreas Schmitt
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | - Ralf Ficner
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
93
|
Abstract
Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are the promotion of rearrangements of structured RNAs and the remodeling of ribonucleoprotein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. Although all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA, and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712; ,
| | | |
Collapse
|
94
|
A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol Cell 2014; 53:779-90. [PMID: 24560925 PMCID: PMC3988880 DOI: 10.1016/j.molcel.2014.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/26/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
There is good evidence for functional interactions between splicing and transcription in eukaryotes, but how and why these processes are coupled remain unknown. Prp5 protein (Prp5p) is an RNA-stimulated adenosine triphosphatase (ATPase) required for prespliceosome formation in yeast. We demonstrate through in vivo RNA labeling that, in addition to a splicing defect, the prp5-1 mutation causes a defect in the transcription of intron-containing genes. We present chromatin immunoprecipitation evidence for a transcriptional elongation defect in which RNA polymerase that is phosphorylated at Ser5 of the largest subunit’s heptad repeat accumulates over introns and that this defect requires Cus2 protein. A similar accumulation of polymerase was observed when prespliceosome formation was blocked by a mutation in U2 snRNA. These results indicate the existence of a transcriptional elongation checkpoint that is associated with prespliceosome formation during cotranscriptional spliceosome assembly. We propose a role for Cus2p as a potential checkpoint factor in transcription. Transcriptional elongation is inhibited when prespliceosome formation is blocked The defect is characterized by RNA polymerase accumulation on introns This checkpoint can be triggered by mutations in either PRP5 or U2 snRNA The U2-associated Cus2 protein is a candidate checkpoint factor
Collapse
|
95
|
HrpA, an RNA helicase involved in RNA processing, is required for mouse infectivity and tick transmission of the Lyme disease spirochete. PLoS Pathog 2013; 9:e1003841. [PMID: 24367266 PMCID: PMC3868530 DOI: 10.1371/journal.ppat.1003841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi must differentially express genes and proteins in order to survive in and transit between its tick vector and vertebrate reservoir. The putative DEAH-box RNA helicase, HrpA, has been recently identified as an addition to the spirochete's global regulatory machinery; using proteomic methods, we demonstrated that HrpA modulates the expression of at least 180 proteins. Although most bacteria encode an HrpA helicase, RNA helicase activity has never been demonstrated for HrpAs and the literature contains little information on the contribution of this protein to bacterial physiology or pathogenicity. In this work, we report that B. burgdorferi HrpA has RNA-stimulated ATPase activity and RNA helicase activity and that this enzyme is essential for both mammalian infectivity by syringe inoculation and tick transmission. Reduced infectivity of strains carrying mutations in the ATPase and RNA binding motif mutants suggests that full virulence expression requires both ATPase and coupled helicase activity. Microarray profiling revealed changes in RNA levels of two-fold, or less in an hrpA mutant versus wild-type, suggesting that the enzyme functions largely or exclusively at the post-transcriptional level. In this regard, northern blot analysis of selected gene products highly regulated by HrpA (bb0603 [p66], bba74, bb0241 [glpK], bb0242 and bb0243 [glpA]) suggests a role for HrpA in the processing and translation of transcripts. In addition to being the first demonstration of RNA helicase activity for a bacterial HrpA, our data indicate that the post-transcriptional regulatory functions of this enzyme are essential for maintenance of the Lyme disease spirochete's enzootic cycle.
Collapse
|
96
|
Xing L, Niu M, Zhao X, Kleiman L. Roles of the linker region of RNA helicase A in HIV-1 RNA metabolism. PLoS One 2013; 8:e78596. [PMID: 24223160 PMCID: PMC3819368 DOI: 10.1371/journal.pone.0078596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022] Open
Abstract
RNA helicase A (RHA) promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNALys3 to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs) that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNALys3 annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNALys3 annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5′-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xia Zhao
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| |
Collapse
|
97
|
Gut Transcription in Helicoverpa zea is Dynamically Altered in Response to Baculovirus Infection. INSECTS 2013; 4:506-20. [PMID: 26462433 PMCID: PMC4553479 DOI: 10.3390/insects4030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/04/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022]
Abstract
The Helicoverpa zea transcriptome was analyzed 24 h after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (p < 0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detected in the gut epithelial tissue; where 63% of these genes were down-regulated and 37% of genes were up-regulated compared to the mock-infected control. Genes that play important roles in digestive physiology were noted as being generally down-regulated. Among these were aminopeptidases, trypsin-like serine proteases, lipases, esterases and serine proteases. Genes related to the immune response reacted in a complex nature having peptidoglycan binding and viral antigen recognition proteins and antiviral pathway systems down-regulated, whereas antimicrobial peptides and prophenoloxidase were up-regulated. In general, detoxification genes, specifically cytochrome P450 and glutathione S-transferase were down-regulated as a result of infection. This report offers the first comparative transcriptomic study of H. zea compared to HzSNPV infected H. zea and provides further groundwork that will lead to a larger understanding of transcriptional perturbations associated with viral infection and the host response to the viral insult in what is likely the most heavily infected tissue in the insect.
Collapse
|
98
|
Guo M, Wu Y. Fighting an old war with a new weapon-silencing transposons by Piwi-interacting RNA. IUBMB Life 2013; 65:739-47. [DOI: 10.1002/iub.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Manhong Guo
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Saskatchewan; Canada
| | - Yuliang Wu
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Saskatchewan; Canada
| |
Collapse
|
99
|
Abstract
Remodeling of RNA-protein complexes (mRNPs) plays a critical role in mRNA biogenesis and metabolism. However, relatively little is known about the underlying mechanism and regulation of the mRNP remodeling. In this issue of Genes & Development, Zhou and colleagues (pp. 1046-1058) report that a protein remodeling machine, the p97-UBXD8 complex, disassembles mRNPs containing the AU-rich elements (AREs) bound by HuR proteins in a nondegradative, ubiquitin signaling-dependent manner, revealing a novel mechanism to regulate mRNA turnover.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
100
|
Affiliation(s)
- Dagmar Klostermeier
- Institute for Physical Chemistry, University of Muenster, Muenster, Germany.
| |
Collapse
|