51
|
Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett 2017; 407:106-112. [PMID: 28400335 DOI: 10.1016/j.canlet.2017.03.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs have emerged as highly versatile players in the regulation of gene expression in development and human disease, particularly cancer. Hundreds of lncRNAs become dysregulated across tumor types, and multiple lncRNAs have demonstrated functions as tumor-suppressors or oncogenes. Furthermore, studies have demonstrated that dysregulation of lncRNAs results in alterations of the epigenome in cancer cells, potentially providing a novel mechanism for the massive epigenomic alterations observed in many tumors. Here, we highlight and provide some illustrious examples of lncRNAs in various epigenetic regulatory processes, including coordination of chromatin dynamics, regulation of DNA methylation, modulation of other non-coding RNAs and mRNA stability, and control of epigenetic substrate availability through altered tumor metabolism. In light of all these known and emerging functions in epigenetic regulation of tumorigenesis and cancer progression, lncRNAs represent attractive targets for future therapeutic strategies in cancer.
Collapse
|
52
|
Xu Y, Qiu M, Chen Y, Wang J, Xia W, Mao Q, Yang L, Li M, Jiang F, Xu L, Yin R. Long noncoding RNA, tissue differentiation-inducing nonprotein coding RNA is upregulated and promotes development of esophageal squamous cell carcinoma. Dis Esophagus 2016; 29:950-958. [PMID: 26833746 DOI: 10.1111/dote.12436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major causes of cancer death worldwide, especially in Eastern Asia. Due to the poor prognosis, it is necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recently, studies show that long noncoding RNAs (lncRNAs) have critical roles in diverse biological processes, including tumorigenesis. Increasing evidence indicates that some lncRNAs are widely involved in the development and progression of ESCC, such as HOTAIR, SPRY4-IT1 and POU3F3. An emerging lncRNA, tissue differentiation-inducing nonprotein coding RNA (TINCR), has been studied in human cutaneous squamous cell carcinoma and has critical biological function, but its role in ESCC remains unknown. Here, we evaluated the expression profile of TINCR and its biological function in ESCC. In a cohort of 56 patients, TINCR was significantly overexpressed in ESCC tissues compared with paired adjacent normal tissues. Further, in vitro silencing TINCR via small interfering RNA (siRNA) inhibited the proliferation, migration and invasion of ESCC cells. Meantime, siRNA treatment induced apoptosis and blocked the progression of cell cycle. Taken together, our study suggests that TINCR promotes proliferation, migration and invasion of ESCC cells, acting as a potential oncogene of ESCC.
Collapse
Affiliation(s)
- Y Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - M Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Y Chen
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - J Wang
- Department of Scientific Research, Nanjing Medical University, Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - W Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Q Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - L Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - M Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - F Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - L Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - R Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
53
|
Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res 2016; 366:509-521. [PMID: 27365087 DOI: 10.1007/s00441-016-2451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) were once regarded as nonfunctional by-products of transcription but their effects are now gradually being elucidated. Evidence suggests that lncRNAs play crucial roles in cell biology, especially in regulating gene expression. However, because of the diversity and complexity of their regulatory mechanisms, our knowledge of the function of lncRNAs represents only the tip of the iceberg. Recent studies have shown that lncRNAs are capable of regulating cell differentiation and pluripotency. Thus, we consider it to be an appropriate time to review the progress in understanding the role of lncRNAs in these two biological processes. In this review, the biological characteristics and regulatory mechanisms of lncRNAs at the chromatin remodeling level, transcriptional level and post-transcriptional level are described and recent advances in our comprehension of the role of lncRNAs in cell differentiation and pluripotency are discussed.
Collapse
|
54
|
Long Non-coding RNAs in the Cytoplasm. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:73-80. [PMID: 27163185 PMCID: PMC4880952 DOI: 10.1016/j.gpb.2016.03.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.
Collapse
|
55
|
Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, Stockfleth E, Hessam S. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics 2016; 8:501-18. [PMID: 27067026 DOI: 10.2217/epi-2015-0012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite there being over 35,000 different long noncoding RNA (lncRNA) sequences described little is known regarding their molecular-pathological role in cutaneous squamous cell carcinoma (cSCC). MATERIALS & METHODS In this pilot study, lncRNA and mRNA expression profiles were determined in cSCC and control (n = 6) by an Arraystar human lncRNA Microarray. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and gene ontology analysis of mRNAs was performed. RESULTS Analysis of differential expression revealed 1516 upregulated lncRNAs and 2586 downregulated lncRNAs in cSCC compared with controls. Data analysis identified known oncogenic lncRNAs, such as the HOX transcript antisense RNA HOTAIR, among the differentially expressed lncRNA sequences. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that focal adhesion, extracellular matrix and the oncogenic phosphatidylinositol 3'-kinase-Akt signaling pathway had the highest enrichment scores. CONCLUSION This study provides the first evidence for differential expression of lncRNA in cSCC and serves as a template for further, larger functional in-depth analyses regarding cSCC molecular lncRNAs.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany.,Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniel Sand
- University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Stephan A Hahn
- Department of Internal Medicine, Knappschaftskrankenhaus University of Bochum, Zentrum für Klinische Forschung, Labor für Molekulare Gastroenterologische Onkologie, 44780 Bochum, Germany
| | - Michael Bromba
- Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
56
|
Zhang Z, Zhou C, Chang Y, Zhang Z, Hu Y, Zhang F, Lu Y, Zheng L, Zhang W, Li X, Li X. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 2016; 376:62-73. [PMID: 27012187 DOI: 10.1016/j.canlet.2016.03.022] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
The abnormal expression of many long non-coding RNAs (lncRNAs) has been reported in the progression of various tumors, and these lncRNAs can be useful as diagnostic indicators and anti-tumor targets. Therefore, it is important to identify lncRNAs that can be used for the clinical prevention and treatment of colorectal cancer (CRC). Here, we report that cancer susceptibility candidate 11 (CASC11) was upregulated in CRC tissues; increased CASC11 expression in CRC was associated with tumor size, serosal invasion, lymph metastasis, and the tumor-node-metastasis (TNM) stage. Functional experiments showed that CASC11 can promote CRC cell proliferation and metastasis in vitro and in vivo. Furthermore, CASC11 can target heterogeneous ribonucleoprotein K (hnRNP-K) to activate WNT/β-catenin signaling in CRC cells. In addition, we found that c-Myc directly bound to the promoter regions of CASC11 and increased promoter histone acetylation to enhance CASC11 expression. Together, our findings indicate that the novel lncRNA CASC11 may serve as a candidate diagnostic biomarker and a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chang Zhou
- Department of Anatomy and Histology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yaya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zuoyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
57
|
Long-noncoding RNAs in basal cell carcinoma. Tumour Biol 2016; 37:10595-608. [PMID: 26861560 DOI: 10.1007/s13277-016-4927-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are fundamental regulators of pre- and post-transcriptional gene regulation. Over 35,000 different lncRNAs have been described with some of them being involved in cancer formation. The present study was initiated to describe differentially expressed lncRNAs in basal cell carcinoma (BCC). Patients with BCC (n = 6) were included in this study. Punch biopsies were harvested from the tumor center and nonlesional epidermal skin (NLES, control, n = 6). Microarray-based lncRNA and mRNA expression profiles were identified through screening for 30,586 lncRNAs and 26,109 protein-coding transcripts (mRNAs). The microarray data were validated by RT-PCR in a second set of BCC versus control samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of mRNAs were performed to assess biologically relevant pathways. A total of 1851 lncRNAs were identified as being significantly up-regulated, whereas 2165 lncRNAs were identified as being significantly down-regulated compared to nonlesional skin (p < 0.05). Oncogenic and/or epidermis-specific lncRNAs, such as CASC15 or ANRIL, were among the differentially expressed sequences. GO analysis showed that the highest enriched GO targeted by up-regulated transcripts was "extracellular matrix." KEGG pathway analysis showed the highest enrichment scores in "Focal adhesion." BCC showed a significantly altered lncRNA and mRNA expression profile. Dysregulation of previously described lncRNAs may play a role in the molecular pathogenesis of BCC and should be subject of further analysis.
Collapse
|
58
|
Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics 2015; 10:103-21. [PMID: 25587943 PMCID: PMC4622872 DOI: 10.1080/15592294.2014.1003746] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.
Collapse
Key Words
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- ACE, angiotensin converting enzyme
- ANCR, anti-differentiation non-coding RNA
- ANRIL, antisense noncoding RNA in INK4 locus
- ASK1, apoptosis signal-regulating kinase 1
- ATRA, all-trans retinoic acid
- BANCR, BRAF-activated non-coding RNA
- BCL-2, B-cell lymphoma 2
- BRAF, B-Raf proto-oncogene, serine/threonine kinase
- BRG1, ATP-dependent helicase SMARCA4
- CAF-1, chromatin assembly factor-1
- CBX7, chromobox homolog 7
- CCND1, cyclin D1
- CD28, cluster of differentiation 28
- CDK, cyclin-dependent kinase
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CHD8, chromodomain-helicase DNA-binding protein 8
- CREB, cAMP response element-binding protein
- CUDR, cancer upregulated drug resistant
- Cdc6, cell division cycle 6
- DNA methylation/demethylation
- DNMT, DNA methyltransferase
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EZH2, enhancer of zeste homolog 2
- GPCRs, G-protein coupled receptors
- GSK3a, glycogen synthase kinase 3 α
- GWAS, genome-wide association study
- HDAC, histone deacetylase
- HOTAIR, HOX antisense intergenic RNA
- IAP, inhibitor of apoptosis
- IDH2, isocitrate dehydrogenase
- IFN, interferon, interleukin 23
- JNK, Jun N-terminal kinase
- Jak/STAT, Janus kinase/signal transducer and activator of transcription
- MAFG, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MAPK, mitogen-activated protein kinase
- MC1R, melanocortin-1 receptor
- MGMT, O6-methylguanine-DNA methyltransferase
- MIF, macrophage migration inhibitory factor
- MITF, microphthalmia-associated transcription factor
- MRE, miRNA recognition element
- MeCP2, methyl CpG binding protein 2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD, nucleotide-binding and oligomerization domain
- PBX, pre-B-cell leukemia homeobox
- PEDF, pigment epithelium derived factor
- PI3K, phosphatidylinositol-4, 5-bisphosphate 3-kinase
- PIB5PA, phosphatidylinositol-4, 5-biphosphate 5-phosphatase A
- PKA, protein kinase A
- PRC, polycomb repressor complex
- PSF, PTB associated splicing factor
- PTB, polypyrimidine tract-binding
- PTEN, phosphatase and tensin homolog
- RARB, retinoic acid receptor-β2
- RASSF1A, Ras association domain family 1A
- SETDB1, SET Domain, bifurcated 1
- SPRY4, Sprouty 4
- STAU1, Staufen1
- SWI/SNF, SWItch/Sucrose Non-Fermentable
- TCR, T-cell receptor
- TET, ten eleven translocase
- TGF β, transforming growth factor β
- TINCR, tissue differentiation-inducing non-protein coding RNA
- TOR, target of rapamycin
- TP53, tumor protein 53
- TRAF6, TNF receptor-associated factor 6
- UCA1, urothelial carcinoma-associated 1
- ceRNA, competitive endogenous RNAs
- chromatin modification
- chromatin remodeling
- epigenetics
- gene regulation
- lncRNA, long ncRNA
- melanoma
- miRNA, micro RNA
- ncRNA, non-coding RNA
- ncRNAs
- p14ARF, p14 alternative reading frame
- p16INK4a, p16 inhibitor of CDK4
- pRB, retinoblastoma protein
- snoRNA, small nucleolar RNA
- α-MSHm, α-melanocyte stimulating hormone
Collapse
Affiliation(s)
- Debina Sarkar
- a Auckland Cancer Society Research Center ; University of Auckland ; Auckland , New Zealand
| | | | | | | | | |
Collapse
|
59
|
Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells. Mol Med Rep 2015; 12:7233-8. [PMID: 26460121 PMCID: PMC4626181 DOI: 10.3892/mmr.2015.4415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 07/21/2015] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to investigate the regulatory mechanism of long non-coding RNA hypoxia-inducible factor 1α-anti-sense 1 (lncRNA HIF1α-AS1) in osteoblast differentiation as well as its targeting by sirtuin 1 (SIRT1), which may be inhibited by transforming growth factor (TGF)-β in bone marrow stromal cells (BMSCs). Real-time polymerase chain reaction (PCR), western blot analysis, lncRNA PCR arrays and chromatin immunoprecipitation were performed in order to examine the interference of SIRT1 expression by TGF-β, the effects of SIRT1 overexpression on lncRNA HIF1α-AS1 and the regulation of the expression of homeobox (HOX)D10, which promotes BMSC differentiation, by lncRNA HIF1α-AS1. The results showed that TGF-β interfered with SIRT1 expression. Furthermore, lncRNA HIF1α-AS1 was significantly downregulated following overexpression of SIRT1. In addition, low expression of HIF1α-AS1 was sufficient to block the expression of HOXD10. The present study further demonstrated that downregulation of HOXD10 by HIF1α-AS1 interfered with acetylation, and subsequently resulted in the inhibition of osteoblast differentiation. These results suggested that HIF1α-AS1 is an essential mediator of osteoblast differentiation, and may thus represent a gene-therapeutic agent for the treatment of human bone diseases.
Collapse
|
60
|
Liang X, Ma L, Long X, Wang X. LncRNA expression profiles and validation in keloid and normal skin tissue. Int J Oncol 2015; 47:1829-38. [PMID: 26397149 DOI: 10.3892/ijo.2015.3177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Keloid is a type of pathological skin scar. Pathogenesis of keloid is complex and is not fully understood. lncRNA can regulate gene expression on different levels. It also participates in cell cycle regulation and cell proliferation. The present study investigated the potential biological function of lncRNA in keloid. We identified differential expression of lncRNAs and mRNAs between 3 pairs of keloid and normal skin tissue by microarray. Differentially expressed lncRNAs were validated by quantitative reverse transcriptase-PCR (qRT-PCR). Gene ontology (GO) and pathway analysis presented the characteristics of associated protein-coding genes. Additionally, a co-expression network of lncRNA and mRNA was constructed to find potential underlying regulation targets. There were 1,731 lncRNAs constantly upregulated and 782 downregulated, 1,079 mRNAs upregulated and 3,282 downregulated in keloid respectively (fold change ≥ 2.0, p<0.05). We chose, respectively, 3 upregulated and 1 downregulated lncRNA for qRT-PCR and results were consistent with microarray. Moreover, 11 pathways were related with upregulated transcripts and 44 with downregulated in keloid. The co-expression network revealed that one lncRNA was connected with numerous mRNAs, and vice versa. Furthermore, bioinformation analysis suggested that lncRNA CACNA1G-AS1 may be crucial to keloid formation. In conclusion, groups of lncRNAs were aberrantly expressed in keloid compared with normal skin tissue, which indicated that differentially expressed lncRNAs may play a key role in keloid formation. The present study provides new insights into keloid pathology and potential targets for treatment of keloid.
Collapse
Affiliation(s)
- Xuebing Liang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lin Ma
- Division of Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaojun Wang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
61
|
Fritah S, Niclou SP, Azuaje F. Databases for lncRNAs: a comparative evaluation of emerging tools. RNA (NEW YORK, N.Y.) 2014; 20:1655-65. [PMID: 25323317 PMCID: PMC4201818 DOI: 10.1261/rna.044040.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/28/2014] [Indexed: 05/26/2023]
Abstract
The vast majority of the human transcriptome does not code for proteins. Advances in transcriptome arrays and deep sequencing are giving rise to a fast accumulation of large data sets, particularly of long noncoding RNAs (lncRNAs). Although it is clear that individual lncRNAs may play important and diverse biological roles, there is a large gap between the number of existing lncRNAs and their known relation to molecular/cellular function. This and related information have recently been gathered in several databases dedicated to lncRNA research. Here, we review the content of general and more specialized databases on lncRNAs. We evaluate these resources in terms of the quality of annotations, the reporting of validated or predicted molecular associations, and their integration with other resources and computational analysis tools. We illustrate our findings using known and novel cancer-related lncRNAs. Finally, we discuss limitations and highlight potential future directions for these databases to help delineating functions associated with lncRNAs.
Collapse
Affiliation(s)
- Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg L-1526, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg L-1526, Luxembourg
| | - Francisco Azuaje
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg L-1526, Luxembourg
| |
Collapse
|
62
|
Boulay K, Ghram M, Viranaicken W, Trépanier V, Mollet S, Fréchina C, DesGroseillers L. Cell cycle-dependent regulation of the RNA-binding protein Staufen1. Nucleic Acids Res 2014; 42:7867-83. [PMID: 24906885 PMCID: PMC4081104 DOI: 10.1093/nar/gku506] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Staufen1 (Stau1) is a ribonucleic acid (RNA)-binding protein involved in the post-transcriptional regulation of gene expression. Recent studies indicate that Stau1-bound messenger RNAs (mRNAs) mainly code for proteins involved in transcription and cell cycle control. Consistently, we report here that Stau1 abundance fluctuates through the cell cycle in HCT116 and U2OS cells: it is high from the S phase to the onset of mitosis and rapidly decreases as cells transit through mitosis. Stau1 down-regulation is mediated by the ubiquitin-proteasome system and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Stau1 interacts with the APC/C co-activators Cdh1 and Cdc20 via its first 88 N-terminal amino acids. The importance of controlling Stau155 levels is underscored by the observation that its overexpression affects mitosis entry and impairs proliferation of transformed cells. Microarray analyses identified 275 Stau155-bound mRNAs in prometaphase cells, an early mitotic step that just precedes Stau1 degradation. Interestingly, several of these mRNAs are more abundant in Stau155-containing complexes in cells arrested in prometaphase than in asynchronous cells. Our results point out for the first time to the possibility that Stau1 participates in a mechanism of post-transcriptional regulation of gene expression that is linked to cell cycle progression in cancer cells.
Collapse
Affiliation(s)
- Karine Boulay
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Mehdi Ghram
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Wildriss Viranaicken
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Véronique Trépanier
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Stéphanie Mollet
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Céline Fréchina
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
63
|
Kornfeld JW, Brüning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet 2014; 5:57. [PMID: 24723937 PMCID: PMC3971185 DOI: 10.3389/fgene.2014.00057] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/18/2022] Open
Abstract
Our understanding of genomic regulation was revolutionized by the discovery that the genome is pervasively transcribed, giving rise to thousands of mostly uncharacterized non-coding ribonucleic acids (ncRNAs). Long, ncRNAs (lncRNAs) have thus emerged as a novel class of functional RNAs that impinge on gene regulation by a broad spectrum of mechanisms such as the recruitment of epigenetic modifier proteins, control of mRNA decay and DNA sequestration of transcription factors. We review those lncRNAs that are implicated in differentiation and homeostasis of metabolic tissues and present novel concepts on how lncRNAs might act on energy and glucose homeostasis. Finally, the control of circadian rhythm by lncRNAs is an emerging principles of lncRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Jan-Wilhelm Kornfeld
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases Köln, Germany ; Max-Planck-Institute for Neurological Research Köln, Germany
| | - Jens C Brüning
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases Köln, Germany ; Max-Planck-Institute for Neurological Research Köln, Germany ; Department of Mouse Genetics and Metabolism and Center for Molecular Medicine Cologne, Institute for Genetics at the University Hospital of Cologne, University of Cologne Cologne, Germany ; Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, University of Cologne, Cologne Germany
| |
Collapse
|