51
|
Loh TJ, Choi N, Moon H, Jang HN, Liu Y, Zhou J, Zheng X, Shen H. Suppression of 5' splice-sites through multiple exonic motifs by hnRNP L. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:363-373. [PMID: 28119102 DOI: 10.1016/j.bbagrm.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Selection of 5' splice-sites (5'SS) in alternative splicing plays an important role in gene regulation. Although regulatory mechanisms of heterogeneous nuclear ribonucleoprotein L (hnRNP L), a well-known splicing regulatory protein, have been studied in a substantial level, its role in 5'SS selection is not thoroughly defined. By using a KLF6 pre-mRNA alternative splicing model, we demonstrate in this report that hnRNP L inhibits proximal 5'SS but promotes two consecutive distal 5'SS splicing, antagonizing SRSF1 roles in KLF6 pre-mRNA splicing. In addition, three consecutive CA-rich sequences in a CA cassette immediately upstream of the proximal 5'SS are all required for hnRNP L functions. Importantly, the CA-cassette locations on the proximal exon do not affect hnRNP L roles. We further show that the proximal 5'SS but not the two distal 5'SSs are essential for hnRNP L activities. Notably, in a Bcl-x pre-mRNA model that contains two alternative 5'SS but includes CA-rich elements at distal exon, we demonstrate that hnRNP L also suppresses nearby 5'SS activation. Taken together, we conclude that hnRNP L suppresses 5'SS selection through multiple exonic motifs.
Collapse
Affiliation(s)
- Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Yongchao Liu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jianhua Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
52
|
The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun 2016; 7:12791. [PMID: 27666543 PMCID: PMC5052669 DOI: 10.1038/ncomms12791] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer. LncRNAs have been associated with cancer. Here, the authors carry out a systematic review of lncRNAs in breast cancer and show that DSCAM-AS1 is highly expressed in oestrogen receptor positive tumours and enhances cancer through an interaction with hnRNPL; and is also associated with tamoxifen resistance.
Collapse
|
53
|
CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci Rep 2016; 6:31313. [PMID: 27510448 PMCID: PMC4980667 DOI: 10.1038/srep31313] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component.
Collapse
|
54
|
Bruun GH, Doktor TK, Borch-Jensen J, Masuda A, Krainer AR, Ohno K, Andresen BS. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biol 2016; 14:54. [PMID: 27380775 PMCID: PMC4932749 DOI: 10.1186/s12915-016-0279-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 01/14/2023] Open
Abstract
Background Many pathogenic genetic variants have been shown to disrupt mRNA splicing. Besides splice mutations in the well-conserved splice sites, mutations in splicing regulatory elements (SREs) may deregulate splicing and cause disease. A promising therapeutic approach is to compensate for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. Results Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP-identified hnRNP A1 binding site immediately downstream of the 5’ splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site downstream of the 5′ splice site can be blocked by SSOs to activate the exon. Conclusions The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease-associated mutations and SNPs affect hnRNP A1 binding and eventually mRNA splicing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0279-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gitte H Bruun
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jonas Borch-Jensen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY, 11724, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
55
|
Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells. Sci Rep 2016; 6:27379. [PMID: 27271479 PMCID: PMC4895350 DOI: 10.1038/srep27379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of γH2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways.
Collapse
|
56
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 747] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
57
|
Chang X. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:295-302. [PMID: 26821996 DOI: 10.1002/wrna.1335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xing Chang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
58
|
Stražar M, Žitnik M, Zupan B, Ule J, Curk T. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics 2016; 32:1527-35. [PMID: 26787667 PMCID: PMC4894278 DOI: 10.1093/bioinformatics/btw003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of gene expression, including splicing, transport, polyadenylation and RNA stability. To model protein–RNA interactions by considering all available sources of information, it is necessary to integrate the rapidly growing RBP experimental data with the latest genome annotation, gene function, RNA sequence and structure. Such integration is possible by matrix factorization, where current approaches have an undesired tendency to identify only a small number of the strongest patterns with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors, methods that identify discriminative patterns of varying strengths are needed. Results: We have developed an integrative orthogonality-regularized nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. The orthogonality constraint halves the effective size of the factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19 RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of 3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and gene region type. We report on a number of protein-specific patterns, many of which are consistent with experimentally determined properties of RBPs. Availability and implementation: The iONMF implementation and example datasets are available at https://github.com/mstrazar/ionmf. Contact: tomaz.curk@fri.uni-lj.si Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin Stražar
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, SI 1000, Slovenia
| | - Marinka Žitnik
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, SI 1000, Slovenia
| | - Blaž Zupan
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, SI 1000, Slovenia Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tomaž Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, SI 1000, Slovenia
| |
Collapse
|
59
|
Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, Geschwind DH, Black DL, Martin KC. Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron 2015; 89:113-28. [PMID: 26687839 DOI: 10.1016/j.neuron.2015.11.025] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Human genetic studies have identified the neuronal RNA binding protein, Rbfox1, as a candidate gene for autism spectrum disorders. While Rbfox1 functions as a splicing regulator in the nucleus, it is also alternatively spliced to produce cytoplasmic isoforms. To investigate the function of cytoplasmic Rbfox1, we knocked down Rbfox proteins in mouse neurons and rescued with cytoplasmic or nuclear Rbfox1. Transcriptome profiling showed that nuclear Rbfox1 rescued splicing changes, whereas cytoplasmic Rbfox1 rescued changes in mRNA levels. iCLIP-seq of subcellular fractions revealed that Rbfox1 bound predominantly to introns in nascent RNA, while cytoplasmic Rbox1 bound to 3' UTRs. Cytoplasmic Rbfox1 binding increased target mRNA stability and translation, and Rbfox1 and miRNA binding sites overlapped significantly. Cytoplasmic Rbfox1 target mRNAs were enriched in genes involved in cortical development and autism. Our results uncover a new Rbfox1 regulatory network and highlight the importance of cytoplasmic RNA metabolism to cortical development and disease.
Collapse
Affiliation(s)
- Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mariana Fontes
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neelroop N Parikshak
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erik S Anderson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
60
|
Abstract
Among the multiple modes of regulation of gene expression, translational control is arguably the least investigated and understood, and its role in vascular biology and pathobiology is not an exception. Here, we review recent studies that have revealed exciting translational regulatory phenomena and mechanisms involving novel RNA binding proteins and microRNA machinery in vascular biology. From these studies, the importance of translational regulation in angiogenesis, atherosclerosis, and blood pressure maintenance is beginning to emerge. We believe that the recent development of powerful techniques such as ribosome profiling and translating ribosome affinity purification (TRAP) will motivate and facilitate additional research in these areas.
Collapse
|
61
|
Yang Y, Wen L, Zhu H. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci 2015; 5:59. [PMID: 26500759 PMCID: PMC4618879 DOI: 10.1186/s13578-015-0050-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in eukarya, but their functions are largely unknown. Fortunately, lncRNA-protein interactions may offer details of how lncRNAs play important roles in various biological processes, thus identifying proteins associated with lncRNA is critical. Here we review progress of molecular archetypes that lncRNAs execute as guides, scaffolds, or decoys for protein, focusing on advantages, shortcomings and applications of various conventional and emerging technologies to probe lncRNAs and protein interactions, including protein-centric biochemistry approaches such as nRIP and CLIP, and RNA-centric biochemistry approaches such as ChIRP, CHART and RAP. Overall, this review provides strategies for probing interactions between lncRNAs and protein.
Collapse
Affiliation(s)
- Yongfang Yang
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Liwei Wen
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongliang Zhu
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
62
|
Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems. Biomolecules 2015; 5:2073-100. [PMID: 26371053 PMCID: PMC4598789 DOI: 10.3390/biom5032073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.
Collapse
|
63
|
Improved binding site assignment by high-resolution mapping of RNA-protein interactions using iCLIP. Nat Commun 2015; 6:7921. [PMID: 26260686 DOI: 10.1038/ncomms8921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/25/2015] [Indexed: 11/08/2022] Open
Abstract
Individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) allows the determination of crosslinking sites of RNA-binding proteins (RBPs) on RNAs. iCLIP is based on ultraviolet light crosslinking of RBPs to RNA, reverse transcription and high-throughput sequencing of fragments terminating at the site of crosslinking. As a result, start sites of iCLIP fragments are expected to cluster with a narrow distribution, typically representing the site of direct interaction between the RBP and the RNA. Here we show that for several RBPs (eIF4A3, PTB, SRSF3, SRSF4 and hnRNP L), the start sites of iCLIP fragments show a fragment length-dependent broader distribution that can be shifted to positions upstream of the known RNA-binding site. We developed an analysis tool that identifies these shifts and can improve the positioning of RBP binding sites.
Collapse
|
64
|
CHAIYAWAT PARUNYA, CHOKCHAICHAMNANKIT DARANEE, LIRDPRAPAMONGKOL KRIENGSAK, SRISOMSAP CHANTRAGAN, SVASTI JISNUSON, CHAMPATTANACHAI VORARATT. Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Oncol Rep 2015; 34:1933-42. [DOI: 10.3892/or.2015.4178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
|
65
|
Wu SL, Fu X, Huang J, Jia TT, Zong FY, Mu SR, Zhu H, Yan Y, Qiu S, Wu Q, Yan W, Peng Y, Chen J, Hui J. Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme. Nucleic Acids Res 2015; 43:8516-28. [PMID: 26240386 PMCID: PMC4787835 DOI: 10.1093/nar/gkv779] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Altered miRNA expression is believed to play a crucial role in a variety of human cancers; however, the mechanisms leading to the dysregulation of miRNA expression remain elusive. In this study, we report that the human Y box-binding protein (YB-1), a major mRNA packaging protein, is a novel modulator of miRNA processing in glioblastoma multiforme (GBM). Using individual nucleotide-resolution crosslinking immunoprecipitation coupled to deep sequencing (iCLIP-seq), we performed the first genome-wide analysis of the in vivo YB-1-RNA interactions and found that YB-1 preferentially recognizes a UYAUC consensus motif and binds to the majority of coding gene transcripts including pre-mRNAs and mature mRNAs. Remarkably, our data show that YB-1 also binds extensively to the terminal loop region of pri-/pre-miR-29b-2 and regulates the biogenesis of miR-29b-2 by blocking the recruitment of microprocessor and Dicer to its precursors. Furthermore, we show that down-regulation of miR-29b by YB-1, which is up-regulated in GBM, is important for cell proliferation. Together, our findings reveal a novel function of YB-1 in regulating non-coding RNA expression, which has important implications in tumorigenesis.
Collapse
Affiliation(s)
- Shuai-Lai Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting-Ting Jia
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng-Yang Zong
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi-Rong Mu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shuwei Qiu
- Department of Neurology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei Yan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ying Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
66
|
Hennig J, Sattler M. Deciphering the protein-RNA recognition code: Combining large-scale quantitative methods with structural biology. Bioessays 2015; 37:899-908. [DOI: 10.1002/bies.201500033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| | - Michael Sattler
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| |
Collapse
|
67
|
Loh TJ, Cho S, Moon H, Jang HN, Williams DR, Jung DW, Kim IC, Ghigna C, Biamonti G, Zheng X, Shen H. hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:743-50. [DOI: 10.1016/j.bbagrm.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|
68
|
Farrokh S, Brillen AL, Haendeler J, Altschmied J, Schaal H. Critical regulators of endothelial cell functions: for a change being alternative. Antioxid Redox Signal 2015; 22:1212-29. [PMID: 25203279 DOI: 10.1089/ars.2014.6023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The endothelium regulates vessel dilation and constriction, balances hemostasis, and inhibits thrombosis. In addition, pro- and anti-angiogenic molecules orchestrate proliferation, survival, and migration of endothelial cells. Regulation of all these processes requires fine-tuning of signaling pathways, which can easily be tricked into running the opposite direction when exogenous or endogenous signals get out of hand. Surprisingly, some critical regulators of physiological endothelial functions can turn malicious by mere alternative splicing, leading to the expression of protein isoforms with opposite functions. RECENT ADVANCES While reviewing the evidence of alternative splicing on cellular physiology, it became evident that expression of splice factors and their activities are regulated by externally triggered signaling cascades. Furthermore, genome-wide identification of RNA-binding sites of splicing regulatory proteins now offer a glimpse into the splicing code responsible for alternative splicing of molecules regulating endothelial functions. CRITICAL ISSUES Due to the constantly growing number of transcript and protein isoforms, it will become more and more important to identify and characterize all transcripts and proteins regulating endothelial cell functions. One critical issue will be a non-ambiguous nomenclature to keep consistency throughout different laboratories. FUTURE DIRECTIONS RNA-deep sequencing focusing on exon-exon junction needs to more reliably identify alternative splicing events combined with functional analyses that will uncover more splice variants contributing to or inhibiting proper endothelial functions. In addition, understanding the signals mediating alternative splicing and its regulation might allow us to derive new strategies to preserve endothelial function by suppressing or upregulating specific protein isoforms. Antioxid. Redox Signal. 22, 1212-1229.
Collapse
Affiliation(s)
- Sabrina Farrokh
- 1 Heisenberg-Group-Environmentally-Induced Cardiovascular Degeneration, IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
69
|
Wang T, Xiao G, Chu Y, Zhang MQ, Corey DR, Xie Y. Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res 2015; 43:5263-74. [PMID: 25958398 PMCID: PMC4477666 DOI: 10.1093/nar/gkv439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/23/2015] [Indexed: 01/05/2023] Open
Abstract
The past decades have witnessed a surge of discoveries revealing RNA regulation as a central player in cellular processes. RNAs are regulated by RNA-binding proteins (RBPs) at all post-transcriptional stages, including splicing, transportation, stabilization and translation. Defects in the functions of these RBPs underlie a broad spectrum of human pathologies. Systematic identification of RBP functional targets is among the key biomedical research questions and provides a new direction for drug discovery. The advent of cross-linking immunoprecipitation coupled with high-throughput sequencing (genome-wide CLIP) technology has recently enabled the investigation of genome-wide RBP–RNA binding at single base-pair resolution. This technology has evolved through the development of three distinct versions: HITS-CLIP, PAR-CLIP and iCLIP. Meanwhile, numerous bioinformatics pipelines for handling the genome-wide CLIP data have also been developed. In this review, we discuss the genome-wide CLIP technology and focus on bioinformatics analysis. Specifically, we compare the strengths and weaknesses, as well as the scopes, of various bioinformatics tools. To assist readers in choosing optimal procedures for their analysis, we also review experimental design and procedures that affect bioinformatics analyses.
Collapse
Affiliation(s)
- Tao Wang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA Bioinformatics Division, Center for Synthetic and System Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
70
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
71
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
72
|
Lee Y, Rio DC. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu Rev Biochem 2015. [PMID: 25784052 DOI: 10.1146/annurev-biochem-060614-034316.mechanisms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
73
|
HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform. Sci Rep 2014; 4:6841. [PMID: 25354590 PMCID: PMC4213890 DOI: 10.1038/srep06841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1.
Collapse
|
74
|
Abstract
Sequence-specific RNA-binding proteins (RBPs) bind to pre-mRNA to control alternative splicing, but it is not yet possible to read the 'splicing code' that dictates splicing regulation on the basis of genome sequence. Each alternative splicing event is controlled by multiple RBPs, the combined action of which creates a distribution of alternatively spliced products in a given cell type. As each cell type expresses a distinct array of RBPs, the interpretation of regulatory information on a given RNA target is exceedingly dependent on the cell type. RBPs also control each other's functions at many levels, including by mutual modulation of their binding activities on specific regulatory RNA elements. In this Review, we describe some of the emerging rules that govern the highly context-dependent and combinatorial nature of alternative splicing regulation.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic, Medicine, University of California San Diego, La Jolla, California 92093–0651, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, and Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
75
|
Erkelenz S, Theiss S, Otte M, Widera M, Peter JO, Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res 2014; 42:10681-97. [PMID: 25147205 PMCID: PMC4176321 DOI: 10.1093/nar/gku736] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Effective splice site selection is critically controlled by flanking splicing regulatory elements (SREs) that can enhance or repress splice site use. Although several computational algorithms currently identify a multitude of potential SRE motifs, their predictive power with respect to mutation effects is limited. Following a RESCUE-type approach, we defined a hexamer-based ‘HEXplorer score’ as average Z-score of all six hexamers overlapping with a given nucleotide in an arbitrary genomic sequence. Plotted along genomic regions, HEXplorer score profiles varied slowly in the vicinity of splice sites. They reflected the respective splice enhancing and silencing properties of splice site neighborhoods beyond the identification of single dedicated SRE motifs. In particular, HEXplorer score differences between mutant and reference sequences faithfully represented exonic mutation effects on splice site usage. Using the HIV-1 pre-mRNA as a model system highly dependent on SREs, we found an excellent correlation in 29 mutations between splicing activity and HEXplorer score. We successfully predicted and confirmed five novel SREs and optimized mutations inactivating a known silencer. The HEXplorer score allowed landscaping of splicing regulatory regions, provided a quantitative measure of mutation effects on splice enhancing and silencing properties and permitted calculation of the mutationally most effective nucleotide.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Virology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Marek Widera
- Institute for Virology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Jan Otto Peter
- Institute for Virology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Heiner Schaal
- Institute for Virology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|