51
|
Miller RG, Orchard TJ. Understanding Metabolic Memory: A Tale of Two Studies. Diabetes 2020; 69:291-299. [PMID: 32079705 PMCID: PMC7034186 DOI: 10.2337/db19-0514] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
The results of the Diabetes Control and Complications Trial (DCCT) have given rise to much encouragement in the battle to stave off the complications of type 1 diabetes, showing dramatic declines in the development of severe retinopathy, nephropathy, and neuropathy in those treated intensively compared with conventional therapy. Particularly encouraging has been the continuing difference between the two groups despite both having similar HbA1c (∼8%) since the end of DCCT, when 96% of participants entered the observational Epidemiology of Diabetes Interventions and Complications (EDIC) study. This continuing relative benefit has been termed "metabolic memory," which implies altered metabolic regulation. Based on evidence from both the Epidemiology of Diabetes Complications (EDC) prospective cohort study of childhood-onset type 1 diabetes and DCCT/EDIC, we show that the metabolic memory effect can be largely explained by lower cumulative glycemic exposure in the intensive therapy group, and, on average, the development of complications increases with greater glycemic exposure, irrespective of whether this results from a high exposure for a short time or a lower exposure for a longer time. Thus, there is no need for a concept like "metabolic memory" to explain these observations. Potential mechanisms explaining the cumulative glycemic effect are also briefly discussed.
Collapse
Affiliation(s)
- Rachel G Miller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Trevor J Orchard
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
52
|
Thioredoxin-Interacting Protein (TXNIP) Regulates Parkin/PINK1-mediated Mitophagy in Dopaminergic Neurons Under High-glucose Conditions: Implications for Molecular Links Between Parkinson's Disease and Diabetes. Neurosci Bull 2020; 36:346-358. [PMID: 31939095 DOI: 10.1007/s12264-019-00459-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with diabetes mellitus have a higher risk of developing Parkinson's disease (PD). However, the molecular links between PD and diabetes remain unclear. In this study, we investigated the roles of thioredoxin-interacting protein (TXNIP) in Parkin/PINK1-mediated mitophagy in dopaminergic (DA) cells under high-glucose (HG) conditions. In streptozotocin-induced diabetic mice, TXNIP was upregulated and autophagy was inhibited in the midbrain, while the loss of DA neurons was accelerated by hyperglycemia. In cultured PC12 cells under HG, TXNIP expression was upregulated and the intracellular reactive oxygen species (ROS) levels increased, leading to cell death. Autophagic flux was further blocked and PINK1 expression was decreased under HG conditions. Parkin expression in the mitochondrial fraction and carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced co-localization of COX IV (marker for mitochondria) and LAMP1 (marker for lysosomes) were also significantly decreased by HG. Overexpression of TXNIP was sufficient to decrease the expression of both PINK1 and Parkin in PC12 cells, while knockdown of the expression of TXNIP by siRNA decreased intracellular ROS and attenuated cellular injury under HG. Moreover, inhibition of TXNIP improved the CCCP-induced co-localization of COX IV and LAMP1 in PC12 cells under HG. Together, these results suggest that TXNIP regulates Parkin/PINK1-mediated mitophagy under HG conditions, and targeting TXNIP may be a promising therapeutic strategy for reducing the risk of PD under hyperglycemic conditions.
Collapse
|
53
|
Nasoohi S, Parveen K, Ishrat T. Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. J Alzheimers Dis 2019; 66:857-885. [PMID: 30372683 DOI: 10.3233/jad-180735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Empirical evidence indicates a strong association between insulin resistance and pathological alterations related to Alzheimer's disease (AD) in different cerebral regions. While cerebral insulin resistance is not essentially parallel with systemic metabolic derangements, type 2 diabetes mellitus (T2DM) has been established as a risk factor for AD. The circulating "toxic metabolites" emerging in metabolic syndrome may engage several biochemical pathways to promote oxidative stress and neuroinflammation leading to impair insulin function in the brain or "type 3 diabetes". Thioredoxin-interacting protein (TXNIP) as an intracellular amplifier of oxidative stress and inflammasome activation may presumably mediate central insulin resistance. Emerging data including those from our recent studies has demonstrated a sharp TXNIP upregulation in stroke, aging and AD and well underlining the significance of this hypothesis. With the main interest to illustrate TXNIP place in type 3 diabetes, the present review primarily briefs the potential mechanisms contributing to cerebral insulin resistance in a metabolically deranged environment. Then with a particular focus on plausible TXNIP functions to drive and associate with AD pathology, we present the most recent evidence supporting TXNIP as a promising therapeutic target in AD as an age-associated dementia.
Collapse
|
54
|
Yumnamcha T, Devi TS, Singh LP. Auranofin Mediates Mitochondrial Dysregulation and Inflammatory Cell Death in Human Retinal Pigment Epithelial Cells: Implications of Retinal Neurodegenerative Diseases. Front Neurosci 2019; 13:1065. [PMID: 31649499 PMCID: PMC6795687 DOI: 10.3389/fnins.2019.01065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photoreceptor degeneration occurs in various retinal diseases including age-related macular degeneration (AMD), Retinitis pigmentosa (RP), and diabetic retinopathy (DR). However, molecular mechanisms are not fully understood yet. The retinal pigment epithelium (RPE) forms the outer blood retinal barrier (oBRB) and supplies glucose, oxygen and nutrients from the fenestrated choriocapillaris to photoreceptors for visual function. Therefore, RPE dysfunction leads to photoreceptor injury/death and progression of blinding eye diseases. This study aims to understand the role of the thioredoxin (Trx) and its reductase (TrxR) redox signaling in human RPE dysfunction and cell death mechanism(s) in an in vitro system. Methods A human RPE cell line (APRE-19) was cultured in DMEM/F12 medium and treated with auranofin (AF - 4 μM, an inhibitor of TrxR) for 4 and 24 h. Mitochondrial and lysosomal function, cellular oxidative stress and NLRP3 inflammasome activity were measured using cell assays, Western blotting, and confocal microscopy. Antioxidants and anti-inflammatory compounds were tested for blocking AF effects on RPE damage. Cell death mechanisms (LDH release to culture media) were determined using necroptosis, ferroptosis and pyroptosis inhibitors. P < 0.05 was considered significant in statistical analysis. Results Auranofin causes mitochondrial dysfunction (Δψm↓ and ATP↓), oxidative stress (H2O2↑) and mitophagic flux to lysosomes. Furthermore, the lysosomal enzyme (cathepsin L) activity is reduced while that of pro-inflammatory caspase-1 (NLRP3 inflammasome) is enhanced in ARPE-19. These effects of AF on ARPE-19 are inhibited by antioxidant N-acetylcysteine (5 mM, NAC) and significantly by a combination of SS31 (mitochondrial antioxidant) and anti-inflammatory drugs (amlexanox and tranilast). AF also causes cell death as measured by cytosolic LDH release/leakage, which is not inhibited by either ferrostatin-1 or necrostatin-1 (ferroptosis and necroptosis inhibitors, respectively). Conversely, AF-induced LDH release is significantly reduced by MCC950 and Ac-YVAD-cmk (NLRP3 and Caspase-1 inhibitors, respectively), suggesting a pro-inflammatory cell death by pyroptosis. Conclusion The Trx/TrxR redox system is critical for RPE function and viability. We previously showed that thioredoxin-interacting protein (TXNIP) is strongly induced in DR inhibiting the Trx/TrxR system and RPE dysfunction. Therefore, our results suggest that the TXNIP-Trx-TrxR redox pathway may participate in RPE dysfunction in DR and other retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Takhellembam Swornalata Devi
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
55
|
Devi TS, Yumnamcha T, Yao F, Somayajulu M, Kowluru RA, Singh LP. TXNIP mediates high glucose-induced mitophagic flux and lysosome enlargement in human retinal pigment epithelial cells. Biol Open 2019; 8:bio.038521. [PMID: 31023645 PMCID: PMC6503994 DOI: 10.1242/bio.038521] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) plays a critical role in oxidative stress, inflammation, apoptosis and the pathogenesis of diabetic retinopathy (DR). However, the role of TXNIP in high glucose-induced retinal pigment epithelium (RPE) dysfunction is still unknown. Here, we show that high glucose (HG; 25 mM,) significantly increases TXNIP expression at both the mRNA and protein levels when compared to low glucose (LG; 5.5 mM) in a human RPE cell line (ARPE-19) and primary human RPE (HRPE) cells. TXNIP upregulation is associated with mitochondrial membrane depolarization, fragmentation and mitophagic flux to lysosomes. We used confocal live-cell imaging of RPE cells expressing mt-Keima, a coral protein that emits green light in mitochondria (alkaline or neutral pH) and red light in the acidic lysosome, to measure mitophagic flux. We observed an elongated mitochondrial network of green mt-Keima under LG, which is fragmented in HG. Red mt-Keima accumulates in lysosomes as small punctate aggregations under LG in both ARPE-19 and HRPE cells, whereas they are significantly enlarged (two- to threefold) under HG. Lysosomal enlargement under HG is further illustrated by lysosomal membrane protein LAMP1-mCherry expression in both ARPE-19 and HRPE cells. Furthermore, HG causes lysosomal cathepsin L inactivation and pro-inflammatory caspase-1 activation in ARPE-19 cells. TXNIP knockdown by shRNA prevents mitochondrial fragmentation, mitophagic flux and lysosome enlargement under HG. In addition, antioxidant N-acetylcysteine (NAC) and Amlexanox (Amlx), an inhibitor of protein kinase TBK1 and of the mitophagic adaptors Optineurin (Optn) and Sequestosome 1 (p62/SQSTM1), prevent mitophagic flux and lysosome enlargement. These results suggest that TXNIP mediates several deleterious effects of high glucose on RPE, which may be implicated in the development of DR.
Collapse
Affiliation(s)
- Takhellambam S Devi
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fayi Yao
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lalit P Singh
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
56
|
Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8458472. [PMID: 30962865 PMCID: PMC6431380 DOI: 10.1155/2019/8458472] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/26/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is a vascular insult that accompanies the hyperglycemic state. Retinal vasculature holds a pivotal role in maintaining the integrity of the retina, and any alteration to retinal vasculature affects retinal functions. The blood retinal barrier, a prerequisite to vision acuity, is most susceptible to damage during the progression of DR. This is a consequence of impaired biochemical pathways such as the polyol, advanced end glycation products (AGE), hexosamine, protein kinase C (PKC), and tissue renin-angiotensin system (RAS) pathways. Moreover, the role of histone modification and altered miRNA expression is also emerging as a major contributor. Epigenetic changes create a link between altered protein function and redox status of retinal cells, creating a state of metabolic memory. Although various biochemical pathways underlie the etiology of DR, the major insult to the retina is due to oxidative stress, a unifying factor of altered biochemical pathways. This review primarily focuses on the critical biochemical pathways altered in DR leading to vascular dysfunctions and discusses antioxidants as plausible treatment strategies.
Collapse
|
57
|
Verapamil Attenuated Prediabetic Neuropathy in High-Fat Diet-Fed Mice through Inhibiting TXNIP-Mediated Apoptosis and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1896041. [PMID: 30733849 PMCID: PMC6348807 DOI: 10.1155/2019/1896041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023]
Abstract
Diabetic neuropathy (DN) is a common and severe complication of diabetes mellitus. There is still a lack of an effective treatment to DN because of its complex pathogenesis. Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of thioredoxin, has been shown to be associated with diabetic retinopathy and nephropathy. Herein, we aim to investigate the role of TXNIP in prediabetic neuropathy and therapeutic potential of verapamil which has been shown to inhibit TXNIP expression. The effects of mediating TXNIP on prediabetic neuropathy and its exact mechanism were performed using high-fat diet- (HFD-) induced diabetic mice and palmitate-treated neurons. Our results showed that TXNIP upregulation is associated with prediabetic neuropathy in HFD-fed mice. TXNIP knockdown improved DN in HFD-induced prediabetic mice. Mechanistically, increased TXNIP in dorsal root ganglion is transferred into the cytoplasm and shuttled to the mitochondria. In cytoplasm, TXNIP binding to TRX1 results in the increased oxidative stress and inflammation. In mitochondria, TXNIP binding to TRX2 induced mitochondria dysfunction and apoptosis. TXNIP isolated from TRX2 then shuttles to the cytoplasm and binds to NLRP3, resulting in further increased TXNIP-NLRP3 complex, which induced the release of IL-1β and the development of inflammation. Thus, apoptosis and inflammation of dorsal root ganglion neuron eventually cause neural dysfunction. In addition, we also showed that verapamil, a known inhibitor of calcium channels, improved prediabetic neuropathy in the HFD-fed mice by inhibiting the upregulation of TXNIP. Our finding suggests that TXNIP might be a potential target for the treatment of neuropathy in prediabetic patients with dyslipidemia.
Collapse
|
58
|
Li J, Wang P, Chen Z, Yu S, Xu H. Fenofibrate Ameliorates Oxidative Stress-Induced Retinal Microvascular Dysfunction in Diabetic Rats. Curr Eye Res 2018; 43:1395-1403. [PMID: 30024319 DOI: 10.1080/02713683.2018.1501072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Peipei Wang
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
- Department of Stomatology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Zhen Chen
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Songping Yu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Huiwen Xu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| |
Collapse
|
59
|
Differential Expression of TXNIP Isoforms in the Peripheral Leukocytes of Patients with Acute Myocardial Infarction. DISEASE MARKERS 2018; 2018:9051481. [PMID: 30034557 PMCID: PMC6032985 DOI: 10.1155/2018/9051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/06/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Background Acute myocardial infarction (AMI) is the most serious type of coronary atherosclerotic heart disease (CAD). The pathological changes are characterized by atherosclerosis. Oxidative stress plays an important role in atherosclerosis. Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor and regulator of thioredoxin, could bind thioredoxin to regulate its expression and antioxidant activity negatively. The NCBI data show that there are two isoforms in TXNIP gene, namely, TXNIP1 and TXNIP2. Our previous studies have shown that TXNIP expression levels in patients with unstable angina pectoris (UAP) were increased compared with controls (CTR). However, no upregulation of TXNIP was detected in AMI patients. Methods The leucocytes were isolated from peripheral venous blood, and total RNA of the leucocytes was extracted. Then, real-time quantitative PCR was performed. Results mRNA levels of TXNIP2 in AMI were significantly increased compared with CTR (P < 0.05). However, the expression of TXNIP1 was downregulated in AMI, but the difference was not statistically significant (P > 0.05). Logistic regression analysis showed that TXNIP2 mRNA levels were significantly associated with AMI (OR = 2.207, P < 0.05). Conclusions The expression of TXNIP2, not TXNIP1, is upregulated in leukocytes of AMI patients, indicating that only TXNIP2 in circulating leucocytes may be involved in the pathogenesis of AMI.
Collapse
|
60
|
Dai W, Miller WP, Toro AL, Black AJ, Dierschke SK, Feehan RP, Kimball SR, Dennis MD. Deletion of the stress-response protein REDD1 promotes ceramide-induced retinal cell death and JNK activation. FASEB J 2018; 32:fj201800413RR. [PMID: 29920218 PMCID: PMC6219834 DOI: 10.1096/fj.201800413rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of dyslipidemia in the development of retinal dysfunction remains poorly understood. Using an animal model of diet-induced obesity/pre-type 2 diabetes, we investigated molecular defects in the retina arising from consumption of a diet high in saturated fats and sugars ( i.e., a Western diet). We found that feeding mice a Western diet increased the abundance of retinal sphingolipids, attenuated protein kinase B (Akt) phosphorylation, enhanced JNK activation, and increased retinal cell death. When we used palmitate or C6-ceramide (Cer) to assess sphingolipid-mediated signaling in cultured murine and human cells, we observed similar effects on Akt, JNK, and cell death. Furthermore, both Western diet and C6-Cer exposure enhanced expression of the stress-response protein regulated in development and DNA damage response 1 (REDD1) and loss of REDD1 increased C6-Cer-induced JNK activation and cell death. Exogenous REDD1 expression repressed JNK-mediated phosphorylation in cultured cells. We found that thioredoxin-interacting protein (TXNIP) expression was elevated in REDD1-deficient cell lines and C6-Cer promoted TXNIP expression in both wild-type and REDD1-deficient cells. Likewise, TXNIP knockdown attenuated JNK activation and caspase 3 cleavage after either C6-Cer exposure or REDD1 deletion. The results support a model wherein Cer-induced REDD1 expression attenuates TXNIP-dependent JNK activation and retinal cell death.-Dai, W., Miller, W. P., Toro, A. L., Black, A. J., Dierschke, S. K., Feehan, R. P., Kimball, S. R., Dennis, M. D. Deletion of the stress-response protein REDD1 promotes ceramide-induced retinal cell death and JNK activation.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Adam J Black
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sadie K Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Robert P Feehan
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
61
|
Larkin BP, Glastras SJ, Chen H, Pollock CA, Saad S. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease. FASEB J 2018; 32:5215-5226. [PMID: 29688808 DOI: 10.1096/fj.201800205r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) is a global epidemic, and its major risk factors include obesity and type 2 diabetes. Obesity not only promotes metabolic dysregulation and the development of diabetic kidney disease but also may independently lead to CKD by a variety of mechanisms, including endocrine and metabolic dysfunction, inflammation, oxidative stress, altered renal hemodynamics, and lipotoxicity. Deleterious renal effects of obesity can also be transmitted from one generation to the next, and it is increasingly recognized that offspring of obese mothers are predisposed to CKD. Epigenetic modifications are changes that regulate gene expression without altering the DNA sequence. Of these, DNA methylation is the most studied. Epigenetic imprints, particularly DNA methylation, are laid down during critical periods of fetal development, and they may provide a mechanism by which maternal-fetal transmission of chronic disease occurs. Our current review explores the evidence for the role of DNA methylation in the development of CKD, diabetic kidney disease, diabetes, and obesity. DNA methylation has been implicated in renal fibrosis-the final pathophysiologic pathway in the development of end-stage kidney disease-which supports the notion that demethylating agents may play a potential therapeutic role in preventing development and progression of CKD.-Larkin, B. P., Glastras, S. J., Chen, H., Pollock, C. A., Saad, S. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease.
Collapse
Affiliation(s)
- Benjamin P Larkin
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Department of Diabetes, Endocrinology, and Metabolism, Royal North Shore Hospital, Sydney, New South Wales, Australia; and
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
62
|
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets 2018; 18:1095-1103. [PMID: 28137209 PMCID: PMC5543564 DOI: 10.2174/1389450118666170130145514] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.
Collapse
Affiliation(s)
- Naif Mohammad Alhawiti
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Mohammad Azhar Aziz
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
63
|
Singh LP, Yumnamcha T, Swornalata Devi T. Mitophagic Flux Deregulation, Lysosomal Destabilization and NLRP3 Inflammasome Activation in Diabetic Retinopathy: Potentials of Gene Therapy Targeting TXNIP and The Redox System. OPHTHALMOLOGY RESEARCH AND REPORTS 2018; 3:ORRT-126. [PMID: 31355373 PMCID: PMC6660147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The retina being a part of the central nervous system consumes large amounts of glucose and oxygen to generate ATP for its visual function. During ATP generation in the mitochondrial electron transport chain, mitochondrial Reactive Oxygen Species (mtROS) is generated as a byproduct. Although anti-oxidants are present in the mitochondrion to counter free radicals, excess mtROS causes damage to mitochondrial proteins, mtDNA, and membrane lipids. Furthermore, damaged mitochondria are inefficient in ATP production but continue to release ROS. Mitochondrial components, when released into the cytosol, are recognized as Danger-Associated Molecular Patterns (DAMPS) by pattern recognition NOD-like receptors including the NLRP3 inflammasome. NLRP3 inflammasomes process inactive pro-caspase-1 to an active caspase-1, which cleaves pro-inflammatory IL-1β to mature IL-1β causing inflammation and premature cell death. To counter the damaging action of mtROS and inflammasomes in fully differentiated retinal cells, the removal of dysfunctional mitochondria is needed by mitophagy, a specific form of lysosomal degradation via autophagy. Nonetheless, mitophagy deregulation, lysosome destabilization and NLRP3 inflammasome activations occur in Diabetic Retinopathy (DR) causing chronic inflammation and disease progression. Recently, the Thioredoxin-interacting protein, TXNIP, has been shown to be induced strongly by high glucose and diabetes inhibiting the anti-oxidant function of Thioredoxin. Subsequently, TXNIP causes mitochondrial dysfunction, oxidative stress, mitophagy deregulation, lysosome destabilization and inflammation in DR. Therefore, gene therapies targeting TXNIP, NLRP3 and/or the redox system have potentials to prevent/slow down retinal damages in DR.
Collapse
Affiliation(s)
- Lalit Pukhrambam Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
- Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Thangal Yumnamcha
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | | |
Collapse
|
64
|
Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 2018; 55:7900-7920. [PMID: 29488135 DOI: 10.1007/s12035-018-0917-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer's disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous "upstream" mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.
Collapse
|
65
|
Lalit PS, Thangal Y, Fayi Y, Takhellambam SD. Potentials of Gene Therapy for Diabetic Retinopathy: The Use of Nucleic Acid Constructs Containing a TXNIP Promoter. OPEN ACCESS JOURNAL OF OPHTHALMOLOGY 2018; 3. [PMID: 31106306 DOI: 10.23880/oajo-16000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is considered as a chronic eye disease leading to blindness. DR is associated with hyperglycemia-induced oxidative stress, chronic low-grade inflammation and premature cell death. DR affects retinal capillaries, neuroretina and the retinal pigment epithelium. Recently, the thioredoxin-interacting protein TXNIP has been shown as a pro-oxidative stress, pro-inflammatory and pro-apoptotic protein, highly induced by diabetes and high glucose in all cells examined including the retina. TXNIP's actions involve binding to and inhibition of anti-oxidant and thiol-reducing capacities of thioredoxins (Trx) causing cellular oxidative stress and apoptosis. Trx1 is found in the cytosol and nucleus while Trx2 is the mitochondrial isoform. Several studies provided evidence that knockdown of TXNIP by siRNA or chemical blockade ameliorates early abnormalities of DR including endothelial dysfunction, pericyte apoptosis, Müller cell gliosis and neurodegeneration. Therefore, TXNIP is considered a potential target for preventing or slowing down the progression of DR. We recently proposed that nucleic acid constructs containing a proximal TXNIP promoter linked to a redox gene or shRNA that reduces oxidative stress and inflammation may be used to treat DR. The TXNIP promoter is sensitive to hyperglycemia therefore can drive expression of the linked gene or shRNA under high glucose environment such as seen in diabetes while remaining unresponsive at physiological glucose levels. Such a TXNIP-promoter linked gene or shRNA construct can be delivered to the retina by using adeno-associated viral vectors including AAV2 and AAV2/8 or an appropriate carrier via the intravitreal or sub retinal delivery for long-term gene therapies in DR.
Collapse
Affiliation(s)
- P S Lalit
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA.,Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Y Thangal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - Y Fayi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - S D Takhellambam
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| |
Collapse
|
66
|
Singh LP. Gene and Tissue Engineering For the Treatment of Diabetes and Its Retinal Complications: The Use of Nucleic Acid Constructs Bearing A TXNIP Gene Promoter. CURRENT TRENDS IN BIOMEDICAL ENGINEERING & BIOSCIENCES 2018; 13. [PMID: 31355358 PMCID: PMC6660148 DOI: 10.19080/ctbeb.2018.13.555869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diabetes is a chronic disease in which insulin production is deficient (Type 1) or resistant (Type 2) leading to organ complications including the heart, kidney, retina, and peripheral nerves. About 10% of diabetics are Type 1 while ~90 percent are Type 2 associated with life style changes and obesity. Whether it is Type 1 or Type 2, chronic hyperglycemia prevails and associated oxidative stress and low grade inflammation are considered to play critical roles in diabetes and its complications including diabetic retinopathy (DR). Thioredoxin-Interacting Protein, TXNIP, is strongly induced by diabetes and high glucose in all tissues examined including the pancreatic beta cells and the retina. TXNIP binds to and inhibits the anti-oxidant and thiol reducing capacity of thioredoxins and causes cellular oxidative stress, inflammation and premature cell death. TXNIP is induced strongly by high glucose and its metabolites with minutes and remains elevated as long as hyperglycemia persists. Therefore, the TXNIP gene promoter linked with insulin or a gene of interest may be used to induce gene expression or suppression and in tissue engineering for adipose or tissue-derived autologous stem cells producing insulin for the treatment of diabetes and its complications such as DR as well as age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA.,Department of Ophthalmology, Wayne State University School of Medicine, USA
| |
Collapse
|
67
|
Zhang Y, Huang J, Yang X, Sun X, Xu Q, Wang B, Zhong P, Wei Z. Altered Expression of TXNIP in the peripheral leukocytes of patients with coronary atherosclerotic heart disease. Medicine (Baltimore) 2017; 96:e9108. [PMID: 29245343 PMCID: PMC5728958 DOI: 10.1097/md.0000000000009108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronary atherosclerotic heart disease (CAD) is mainly caused by atherosclerosis, an inflammatory disease characterized by plaque formation in arteries. Reactive oxygen species caused structural damage and dysfunction of arterial endothelial cells. Thioredoxin-interacting protein (TXNIP) is the endogenous inhibitor and regulator of thioredoxin, a major cellular antioxidant and antiapoptotic system. In order to explore the role of TXNIP in the occurrence and development of CAD, we detected the TXNIP expression and discussed its molecular mechanisms in CAD. METHODS The mRNA levels of TXNIP gene in peripheral leucocytes were detected in CAD and healthy controls (CTR) by quantitative real-time polymerase chain reaction. And TXNIP proteins were detected by western blotting. RESULTS TXNIP gene expression levels in patients with unstable angina pectoris (UAP, n = 96) were significantly increased compared with those of CTR (n = 192, P < .05). However, the situation is different in acute myocardial infarction (n = 96, P > .05). Logistic regression analysis showed that TXNIP levels were significantly positive correlated with UAP (OR = 1.728, P < .05). CONCLUSIONS TXNIP gene expression in the peripheral leucocytes was increased in patients with UAP, indicating that TXNIP in circulating leucocytes may be involved in the pathogenesis of UAP.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Cardiology, Jining No. 1 People's Hospital
| | - Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University
| | - Xinglin Yang
- Department of Traditional Chinese Medicine, Jining No. 1 People's Hospital, Shandong, China
| | - Xiaofei Sun
- Department of Cardiology, Jining No. 1 People's Hospital
| | - Qincheng Xu
- Department of Cardiology, Jining No. 1 People's Hospital
| | - Baokui Wang
- Department of Cardiology, Jining No. 1 People's Hospital
| | - Peng Zhong
- Department of Cardiology, Jining No. 1 People's Hospital
| | - Zixiu Wei
- Department of Cardiology, Jining No. 1 People's Hospital
| |
Collapse
|
68
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
69
|
|
70
|
Singh LP, Devi TS, Yumnamcha T. The Role of Txnip in Mitophagy Dysregulation and Inflammasome Activation in Diabetic Retinopathy: A New Perspective. ACTA ACUST UNITED AC 2017; 4. [PMID: 29376145 PMCID: PMC5786434 DOI: 10.19080/jojo.2017.04.555643] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are responsible for bioenergetics, metabolism and apoptosis signals in health and disease. The retina being a part of the central nervous system consumes large amounts of glucose and oxygen to generate ATP via the mitochondrial oxidative phosphorylation for its phototransduction and visual function. During ATP generation, electrons leak from the mitochondrial electron transport chain, which is captured by molecular oxygen to produce reactive oxygen species (ROS). These mtROS damage mitochondrial proteins, mtDNA, and membrane lipids and release them in the cytosol. Mitochondrial components are recognized as danger-associated molecular patterns (DAMPS) by cytosolic pattern recognition receptors such as NOD-like receptors, NLRP3 inflammasomes. They process pro-caspase-1 to active caspase-1, which cleaves pro-inflammatory IL-1β o mature IL-1β causing inflammation and cell death by pyroptosis. To counter the damaging action of mtROS and inflammasomes in fully differentiated cells in the retina, the removal of the damaged and dysfunctional mitochondria by a double-membrane autophagic process via lysosomal degradation called mitophagy is critical for mitochondrial homeostasis and cell survival. Nonetheless, under chronic diseases including diabetic retinopathy (DR), mitophagy dysregulation and NLRP3 inflammasome activation exist, which cause premature cell death and disease progression. Recently, the thioredoxin-interacting protein TXNIP, which is strongly induced by diabetes and inhibits anti-oxidant function of thioredoxin, has been implicated in mitochondrial dysfunction, mitophagic dysregulation and NLRP3 inflammasome activation in DR. Therefore, TXNIP silencing or pharmacological inhibition may normalize mitophagic flux and NLRP3 inflammasome activation, which will prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA.,Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Takhellambam S Devi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - Thangal Yumnamcha
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| |
Collapse
|
71
|
Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis 2017; 8:e2941. [PMID: 28726778 PMCID: PMC5550855 DOI: 10.1038/cddis.2017.308] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 01/18/2023]
Abstract
Diabetic retinopathy (DR) is a well-known microvascular complication related to inflammation. Mcc950 is a potent and specific inhibitor of the NLRP3 inflammasome but its influence on DR has not been studied. Thus, we evaluated the anti-inflammatory effects of Mcc950 on high-glucose-induced human retinal endothelial cells (HRECs) and the potential underlying mechanism. In surgical excised proliferative membranes from DR patients, high expression of NLRP3, caspase 1 and IL-1β was observed and co-localization of NLRP3 and IL-1β occurred in CD31+ labeled HRECs. Moreover, in high-glucose-stimulated HRECs, increased production of the NLRP3 inflammasome activation and severe apoptosis were rescued with Mcc950 treatment. Additionally, the inhibitory effect of Mcc950 was mimicked through downregulation of NEK7 by siRNA in high-glucose-induced HRECs and Mcc950 treatment remarkably inhibited Nek7 and NLRP3 interactions by co-immunoprecipitation, suggesting that Mcc950 may be a potentially protective agent against inflammation, likely via downregulation of the Nek7-NLRP3 pathway. In conclusion, Mcc950 inhibited HREC dysfunction under high-glucose conditions and this research may offer insight for future pharmaceutical approaches for treating DR.
Collapse
|
72
|
He Z, Yu Y, Nong Y, Du L, Liu C, Cao Y, Bai L, Tang H. Hepatitis B virus X protein promotes hepatocellular carcinoma invasion and metastasis via upregulating thioredoxin interacting protein. Oncol Lett 2017; 14:1323-1332. [PMID: 28789347 DOI: 10.3892/ol.2017.6296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus X protein (HBx), a multifunctional protein encoded by the X gene of the hepatitis B virus (HBV) is involved in the metastasis of HBV-associated hepatocellular carcinoma (HCC) through various pathways, including upregulating intracellular reactive oxygen species (ROS). Thioredoxin interacting protein (TXNIP) is a key mediator of intracellular ROS, but its function in HBx-mediated metastasis of HBV-associated HCC is elusive. In the present study, HBV-associated HCC tissues with or without metastasis and HepG2 cells were used to study the function of TXNIP in HBx-mediated metastasis of HBV-associated HCC. Initially, the expression levels of TXNIP and HBx in HBV-associated HCC tissues were detected by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. The results revealed that high expression of TXNIP may be an independent risk factor for metastasis of HBV-associated HCC, and the mRNA levels of TXNIP and HBx were positively associated. Secondly, the association between HBx and TXNIP was investigated using a HBx expression stable cell line, in which HBx expression was induced and controlled by doxycycline. The results demonstrated that HBx may upregulate TXNIP expression in HepG2 cells. Thirdly, the effects of TXNIP and HBx on HepG2 cell migration and invasion were studied by scratch and Matrigel invasion assays, respectively. The results demonstrated that TXNIP overexpression enhanced HepG2 cell migration and invasion. In addition, ectopic expression of HBx promoted HepG2 cell migration and invasion, and this effect may be attenuated by knockdown of TXNIP expression, which indicated that TXNIP may be involved in the process. In summary, the present results demonstrated that TXNIP may be involved in HBx-mediated metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhiliang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Youjia Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yunhong Nong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Cong Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yong Cao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
73
|
Devi TS, Somayajulu M, Kowluru RA, Singh LP. TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: implications for diabetic retinopathy. Cell Death Dis 2017; 8:e2777. [PMID: 28492550 PMCID: PMC5520711 DOI: 10.1038/cddis.2017.190] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/14/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is involved in oxidative stress and apoptosis in diabetic retinopathy. However, the role of TXNIP in the removal of damaged mitochondria (MT) via mitophagy, a process of macroautophagy, remains unexplored. Here we investigate the associated cellular and molecular mechanisms underlying mitophagy in retinal cells under diabetic conditions. For this, we maintained a rat Müller cell line (rMC1) under high-glucose (25 mM, HG) or low-glucose (5.5 mM, LG) condition for 5 days. Our data reveal that HG upregulates TXNIP in the cytosol as well as in the MT. Moreover, mitochondrial oxidative stress and membrane depolarization occur under prolonged hyperglycemia leading to fragmentation. These damaged MT are targeted to lysosome for mitophagic degradation, as is evident by co-localization of mitochondrial protein COXIV, a subunit of cytochrome c oxidase, with autophagosome marker LC3BII and the lysosomal membrane protein LAMP2A. In addition, under HG conditions, there is an accumulation of dynamin-related fission protein Drp1 and E3 ubiquitin ligase Parkin in damaged MT, suggesting their roles in mitochondrial fragmentation and ubiquitination, respectively, which is absent in LG conditions. Subsequently, ubiquitin receptors, optineurin and p62/sequestrome 1, bind to the damaged MT and target them to LC3BII autophagosomes. Conversely, TXNIP knockout via CRISPR/Cas9 and TXNIP gRNA prevents the HG-induced mitochondrial damage and mitophagy in rMC1. Last, TXNIP level is also significantly upregulated in the diabetic rat retina in vivo and induces radial glial fibrillary acidic protein expression, a marker for Müller glia activation, and the formation of LC3BII puncta, which are prevented by intravitreal injection of TXNIP siRNA. Therefore, TXNIP represents a potential target for preventing ocular complications of diabetes.
Collapse
Affiliation(s)
| | - Mallika Somayajulu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Renu Anjan Kowluru
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lalit Pukhrambam Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
74
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
75
|
Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol 2016; 9:198-209. [PMID: 27567473 PMCID: PMC5007435 DOI: 10.1016/j.redox.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+), heterozygous (Cx43+/-) and knockout (Cx43-/-) littermates showed that Cx43-positive cells (Cx43+/+) exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-). Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH). Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status. The mechanisms about the coordinated regulation of cell junctions are obscure. Ca2+ depletion activates hemichannels and disrupts cell junctions. Hemichannel opening exaggerates oxidative stress via efflux of GSH. Blocking hemichannels attenuates oxidative stress and cell junction disassembly. Hemichannels regulate cell junctions via modulation of intracellular redox status.
Collapse
|
76
|
Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A 2016; 113:E3002-11. [PMID: 27162351 DOI: 10.1073/pnas.1603712113] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We examined whether persistence of epigenetic DNA methylation (DNA-me) alterations at specific loci over two different time points in people with diabetes are associated with metabolic memory, the prolonged beneficial effects of intensive vs. conventional therapy during the Diabetes Control and Complications Trial (DCCT) on the progression of microvascular outcomes in the long-term follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) Study. We compared DNA-me profiles in genomic DNA of whole blood (WB) isolated at EDIC Study baseline from 32 cases (DCCT conventional therapy group subjects showing retinopathy or albuminuria progression by EDIC Study year 10) vs. 31 controls (DCCT intensive therapy group subjects without complication progression by EDIC year 10). DNA-me was also profiled in blood monocytes (Monos) of the same patients obtained during EDIC Study years 16-17. In WB, 153 loci depicted hypomethylation, and 225 depicted hypermethylation, whereas in Monos, 155 hypomethylated loci and 247 hypermethylated loci were found (fold change ≥1.3; P < 0.005; cases vs. controls). Twelve annotated differentially methylated loci were common in both WB and Monos, including thioredoxin-interacting protein (TXNIP), known to be associated with hyperglycemia and related complications. A set of differentially methylated loci depicted similar trends of associations with prior HbA1c in both WB and Monos. In vitro, high glucose induced similar persistent hypomethylation at TXNIP in cultured THP1 Monos. These results show that DNA-me differences during the DCCT persist at certain loci associated with glycemia for several years during the EDIC Study and support an epigenetic explanation for metabolic memory.
Collapse
|
77
|
Emery SM, Dobrowsky RT. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:181-210. [PMID: 27133150 DOI: 10.1016/bs.irn.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The etiology of diabetic peripheral neuropathy (DPN) involves an interrelated series of metabolic and vascular insults that ultimately contribute to sensory neuron degeneration. In the quest to pharmacologically manage DPN, small-molecule inhibitors have targeted proteins and pathways regarded as "diabetes specific" as well as others whose activity are altered in numerous disease states. These efforts have not yielded any significant therapies, due in part to the complicating issue that the biochemical contribution of these targets/pathways to the progression of DPN does not occur with temporal and/or biochemical uniformity between individuals. In a complex, chronic neurodegenerative disease such as DPN, it is increasingly appreciated that effective disease management may not necessarily require targeting a pathway or protein considered to contribute to disease progression. Alternatively, it may prove sufficiently beneficial to pharmacologically enhance the activity of endogenous cytoprotective pathways to aid neuronal tolerance to and recovery from glucotoxic stress. In pursuing this paradigm shift, we have shown that modulating the activity and expression of molecular chaperones such as heat shock protein 70 (Hsp70) may provide translational potential for the effective medical management of insensate DPN. Considerable evidence supports that modulating Hsp70 has beneficial effects in improving inflammation, oxidative stress, and glucose sensitivity. Given the emerging potential of modulating Hsp70 to manage DPN, the current review discusses efforts to characterize the cytoprotective effects of this protein and the benefits and limitations that may arise in drug development efforts that exploit its cytoprotective activity.
Collapse
Affiliation(s)
- S M Emery
- The University of Kansas, Lawrence, KS, United States
| | - R T Dobrowsky
- The University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
78
|
Myers RB, Fomovsky GM, Lee S, Tan M, Wang BF, Patwari P, Yoshioka J. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart. Am J Physiol Heart Circ Physiol 2016; 310:H1748-59. [PMID: 27037370 DOI: 10.1152/ajpheart.00051.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
Although the precise pathogenesis of diabetic cardiac damage remains unclear, potential mechanisms include increased oxidative stress, autonomic nervous dysfunction, and altered cardiac metabolism. Thioredoxin-interacting protein (Txnip) was initially identified as an inhibitor of the antioxidant thioredoxin but is now recognized as a member of the arrestin superfamily of adaptor proteins that classically regulate G protein-coupled receptor signaling. Here we show that Txnip plays a key role in diabetic cardiomyopathy. High glucose levels induced Txnip expression in rat cardiomyocytes in vitro and in the myocardium of streptozotocin-induced diabetic mice in vivo. While hyperglycemia did not induce cardiac dysfunction at baseline, β-adrenergic challenge revealed a blunted myocardial inotropic response in diabetic animals (24-wk-old male and female C57BL/6;129Sv mice). Interestingly, diabetic mice with cardiomyocyte-specific deletion of Txnip retained a greater cardiac response to β-adrenergic stimulation than wild-type mice. This benefit in Txnip-knockout hearts was not related to the level of thioredoxin activity or oxidative stress. Unlike the β-arrestins, Txnip did not interact with β-adrenergic receptors to desensitize downstream signaling. However, our proteomic and functional analyses demonstrated that Txnip inhibits glucose transport through direct binding to glucose transporter 1 (GLUT1). An ex vivo analysis of perfused hearts further demonstrated that the enhanced functional reserve afforded by deletion of Txnip was associated with myocardial glucose utilization during β-adrenergic stimulation. These data provide novel evidence that hyperglycemia-induced Txnip is responsible for impaired cardiac inotropic reserve by direct regulation of insulin-independent glucose uptake through GLUT1 and plays a role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ronald B Myers
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gregory M Fomovsky
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Max Tan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bing F Wang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
79
|
Ramus SM, Cilensek I, Petrovic MG, Soucek M, Kruzliak P, Petrovic D. Single nucleotide polymorphisms in the Trx2/TXNIP and TrxR2 genes of the mitochondrial thioredoxin antioxidant system and the risk of diabetic retinopathy in patients with Type 2 diabetes mellitus. J Diabetes Complications 2016; 30:192-8. [PMID: 26763822 DOI: 10.1016/j.jdiacomp.2015.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in the pathogenesis of diabetes and its complications. The aim of this study was to examine the possible association between seven single nucleotide polymorphisms (SNPs) of the Trx2/TXNIP and TrxR2 genes encoding proteins involved in the thioredoxin antioxidant defence system and the risk of diabetic retinopthy (DR). DESIGN Cross-sectional case-control study. PARTICIPANTS A total of 802 Slovenian patients with Type 2 diabetes mellitus; 277 patients with DR and 525 with no DR were enrolled. METHODS Patients genotypes of the SNPs; including rs8140110, rs7211, rs7212, rs4755, rs1548357, rs4485648 and rs5748469 were determined by the competitive allele specific PCR method. MAIN OUTCOME MEASURES Each genotype of examined SNPs was regressed in a logistic model, assuming the co-dominant, dominant and the recessive models of inheritance with covariates of duration of diabetes, HbA1c, insulin therapy, total cholesterol and LDL cholesterol levels. RESULTS In the present study, for the first time we identified an association between the rs4485648 polymorphism of the TrxR2 gene and DR in Caucasians with Type 2 DM. The estimated ORs of adjusted logistic regression models were found to be as follows: 4.4 for CT heterozygotes, 4.3 for TT homozygotes (co-dominant genetic model) and 4.4 for CT+TT genotypes (dominant genetic model). CONCLUSIONS In our case-control study we were not able to demonstrate any association between rs8140110, rs7211, rs7212, rs4755, rs1548357, and rs5748469 and DR, however, our findings provide evidence that the rs4485648 polymorphism of the TrxR2 gene might exert an independent effect on the development of DR.
Collapse
Affiliation(s)
- Sara Mankoc Ramus
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Cilensek
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miroslav Soucek
- 2(nd) Department of Internal Medicine, St. Anne´s University Hospital and Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| | - Daniel Petrovic
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
80
|
Pennington KL, DeAngelis MM. Epigenetic Mechanisms of the Aging Human Retina. J Exp Neurosci 2016; 9:51-79. [PMID: 26966390 PMCID: PMC4777243 DOI: 10.4137/jen.s25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- Katie L Pennington
- Postdoctoral Fellow, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Margaret M DeAngelis
- Associate Professor, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
81
|
Cai X, McGinnis JF. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives. J Diabetes Res 2016; 2016:3789217. [PMID: 26881246 PMCID: PMC4736804 DOI: 10.1155/2016/3789217] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/06/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed.
Collapse
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- *Xue Cai: and
| | - James F. McGinnis
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- *James F. McGinnis:
| |
Collapse
|
82
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
83
|
Chen J, Liu F, Li H, Archacki S, Gao M, Liu Y, Liao S, Huang M, Wang J, Yu S, Li C, Tang Z, Liu M. pVHL interacts with Ceramide kinase like (CERKL) protein and ubiquitinates it for oxygen dependent proteasomal degradation. Cell Signal 2015; 27:2314-23. [DOI: 10.1016/j.cellsig.2015.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/01/2015] [Accepted: 08/15/2015] [Indexed: 12/30/2022]
|
84
|
Wan TT, Li XF, Sun YM, Li YB, Su Y. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 2015; 74:145-7. [DOI: 10.1016/j.biopha.2015.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/02/2015] [Indexed: 01/07/2023] Open
|
85
|
Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal 2015; 22:1188-206. [PMID: 25275222 PMCID: PMC4403234 DOI: 10.1089/ars.2014.6126] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Inflammation is the standard double-edged defense mechanism that aims at protecting the human physiological homeostasis from devastating threats. Both acute and chronic inflammation have been implicated in the occurrence and progression of vascular diseases. Interference with components of the immune system to improve patient outcome after ischemic injury has been uniformly unsuccessful. There is a need for a deeper understanding of the innate immune response to injury in order to modulate, rather than to block inflammation and improve the outcome for vascular diseases. RECENT ADVANCES Nucleotide-binding oligomerization domain-like receptors or NOD-like receptor proteins (NLRPs) can be activated by sterile and microbial inflammation. NLR family plays a major role in activating the inflammasome. CRITICAL ISSUES The aim of this work is to review recent findings that provided insights into key inflammatory mechanisms and define the place of the inflammasome, a multi-protein complex involved in instigating inflammation in neurovascular diseases, including retinopathy, neurodegenerative diseases, and stroke. FUTURE DIRECTIONS The significant contribution of NLRP-inflammasome activation to vascular disease of the neurovascular unit in the brain and retina suggests that therapeutic strategies focused on specific targeting of inflammasome components could significantly improve the outcomes of these diseases.
Collapse
Affiliation(s)
- Islam N Mohamed
- 1 Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Augusta, Georgia
| | | | | | | |
Collapse
|
86
|
Deletion of thioredoxin interacting protein (TXNIP) augments hyperoxia-induced vaso-obliteration in a mouse model of oxygen induced-retinopathy. PLoS One 2014; 9:e110388. [PMID: 25329456 PMCID: PMC4199686 DOI: 10.1371/journal.pone.0110388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023] Open
Abstract
We have recently shown that thioredoxin interacting protein (TXNIP) is required for VEGF-mediated VEGFR2 receptor activation and angiogenic signal. Retinas from TXNIP knockout mice (TKO) exhibited higher cellular antioxidant defense compared to wild type (WT). This study aimed to examine the impact of TXNIP deletion on hyperoxia-induced vaso-obliteration in ischemic retinopathy. TKO and WT pups were subjected to oxygen-induced retinopathy model. Retinal central capillary dropout was measured at p12. Retinal redox and nitrative state were assessed by reduced-glutathione (GSH), thioredoxin reductase activity and nitrotyrosine formation. Western blot and QT-PCR were used to assess VEGF, VEGFR-2, Akt, iNOS and eNOS, thioredoxin expression, ASK-1 activation and downstream cleaved caspase-3 and PARP in retinal lysates. Retinas from TKO mice exposed to hyperoxia showed significant increases (1.5-fold) in vaso-obliteration as indicated by central capillary drop out area compared to WT. Retinas from TKO showed minimal nitrotyrosine levels (10% of WT) with no change in eNOS or iNOS mRNA expression. There was no change in levels of VEGF or activation of VEGFR2 and its downstream Akt in retinas from TKO and WT. In comparison to WT, retinas from TKO showed significantly higher level of GSH and thioredoxin reductase activity in normoxia but comparable levels under hyperoxia. Exposure of TKO to hyperoxia significantly decreased the anti-apoptotic thioredoxin protein (∼50%) level compared with WT. This effect was associated with a significant increase in activation of the apoptotic ASK-1, PARP and caspase-3 pathway. Our results showed that despite comparable VEGF level and signal in TKO, exposure to hyperoxia significantly decreased Trx expression compared to WT. This effect resulted in liberation and activation of the apoptotic ASK-1 signal. These findings suggest that TXNIP is required for endothelial cell survival and homeostasis especially under stress conditions including hyperoxia.
Collapse
|
87
|
Papáčková Z, Cahová M. Important role of autophagy in regulation of metabolic processes in health, disease and aging. Physiol Res 2014; 63:409-20. [PMID: 24702497 DOI: 10.33549/physiolres.932684] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autophagy is the basic catabolic mechanism that involves degradation of dysfunctional cellular components through the action of lysosome as well as supplying energy and compounds for the synthesis of essential biomacromolecules. This process enables cells to survive stress from the external environment like nutrient deprivation. Autophagy is important in the breakdown of proteins, carbohydrates and lipids as well. Furthermore, recent studies have shown that autophagy is critical in wide range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including lysosomal storage disease, myopathies, neurodegeneration and various metabolic disorders. This review summarizes the most up-to-date findings on what role autophagy plays in metabolism.
Collapse
Affiliation(s)
- Z Papáčková
- Institute for Clinical and Experimental Medicine, Department of Metabolism and Diabetes, Prague, Czech Republic.
| | | |
Collapse
|