51
|
Zichittella C, Loria M, Celesia A, Di Liberto D, Corrado C, Alessandro R, Emanuele S, Conigliaro A. Long non-coding RNA H19 enhances the pro-apoptotic activity of ITF2357 (a histone deacetylase inhibitor) in colorectal cancer cells. Front Pharmacol 2023; 14:1275833. [PMID: 37841928 PMCID: PMC10572549 DOI: 10.3389/fphar.2023.1275833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in colorectal cancer (CRC) and plays critical roles in tumor development, proliferation, metastasis, and drug resistance. Indeed, the expression of lncH19 usually affects the outcomes of chemo-, endocrine, and targeted therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that revealed a significant anti-tumor action by inducing apoptosis in different tumor models, including leukemia, melanoma, and glioblastoma. However, no data are present in the literature regarding the use of this compound for CRC treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in CRC cells. Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow cytometric analyses were performed to assess the anti-proliferative and pro-apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19. RT-PCR and Western blot were used to study the effects of ITF2357 on autophagy and apoptosis markers. Finally, bioinformatics analyses were used to identify miRNAs targeting pro-apoptotic factors that can be sponged by lncH19. Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell viability, inducing apoptosis, as demonstrated by the increase in annexin-V positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1) degradation. Interestingly, the apoptotic effect of ITF2357 was much less evident in lncH19-silenced cells. We showed that lncH19 plays a functional role in the pro-apoptotic activity of the drug by stabilizing TP53 and its transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in CRC cells, which was interpreted as a pro-survival response not correlated with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-fluorouracil-resistant HCT-116 cells that express high levels of lncH19. Conclusion: This study shows that lncH19 expression contributes to ITF2357-induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil chemoresistance.
Collapse
Affiliation(s)
- Chiara Zichittella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
52
|
Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J, Farnia P. Non-coding RNAs/DNMT3B axis in human cancers: from pathogenesis to clinical significance. J Transl Med 2023; 21:621. [PMID: 37705098 PMCID: PMC10500757 DOI: 10.1186/s12967-023-04510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer is a complex disease with many contributing factors, and researchers have gained extensive knowledge that has helped them understand the diverse and varied nature of cancer. The altered patterns of DNA methylation found in numerous types of cancer imply that they may play a part in the disease's progression. The human cancer condition involves dysregulation of the DNA methyltransferase 3 beta (DNMT3B) gene, a prominent de novo DNA methyltransferase, and its abnormal behavior serves as an indicator for tumor prognosis and staging. The expression of non-coding RNAs (ncRNAs), which include microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), is critical in controlling targeted gene expression and protein translation and their dysregulation correlates with the onset of tumors. NcRNAs dysregulation of is a critical factor that influences the modulation of several cellular characteristics in cancerous cells. These characteristics include but are not limited to, drug responsiveness, angiogenesis, metastasis, apoptosis, proliferation, and properties of tumor stem cell. The reciprocal regulation of ncRNAs and DNMT3B can act in synergy to influence the destiny of tumor cells. Thus, a critical avenue for advancing cancer prevention and treatment is an inquiry into the interplay between DNMT3B and ncRNAs. In this review, we present a comprehensive overview of the ncRNAs/DNMT3B axis in cancer pathogenesis. This brings about valuable insights into the intricate mechanisms of tumorigenesis and provides a foundation for developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Paniz Azizi
- Department of Psychological and Brain Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Li X, Huang H, Liu M, Luo H. Tumor Suppressor LncRNA on Chromosome 8p12 (TSLNC8): A Concise Review in Human Malignancies. J Cancer 2023; 14:2867-2877. [PMID: 37781073 PMCID: PMC10539563 DOI: 10.7150/jca.87801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Tumor Suppressor Long Non-Coding RNA on Chromosome 8p12 (TSLNC8) is an RNA gene that generates a long non-coding RNA transcribed intergenically from both strands. Its significant role in human malignancies attracted significant attention in recent years. Expression analysis of TSLNC8 has been conducted in tissue specimens and cell lines using various techniques, including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in situ hybridization (ISH), and microarray analysis. Furthermore, functional studies involving the loss and/or gain of TSLNC8 function in cellular and animal models have been carried out. These investigations have highlighted the impact of TSLNC8 on key tumor-related processes, including migration, invasion, and metastasis. Moreover, TSLNC8 has emerged as a regulator capable of modulating critical signaling pathways, such as the Hippo, STAT3, WNT/β-catenin, and MAPK pathways. In this review, we comprehensively synthesize the findings derived from in vitro and in vivo studies, along with analyses conducted on clinical samples, to provide a comprehensive understanding of the multifaceted role of TSLNC8 as a promising tumor biomarker and a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Xia Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332005, Jiangxi, China
| | - He Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Meichen Liu
- Second School of Clinical Medicine, Nanchang University, Nanchang 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| |
Collapse
|
54
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Biogenesis and function of exosome lncRNAs and their role in female pathological pregnancy. Front Endocrinol (Lausanne) 2023; 14:1191721. [PMID: 37745705 PMCID: PMC10515720 DOI: 10.3389/fendo.2023.1191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion are common maternal pregnancy complications that seriously endanger women's lives and health, and their occurrence is increasing year after year with a rejuvenation trend. In contrast to biomarkers found freely in tissues or body fluids, exosomes exist in a relatively independent environment and provide a higher level of stability. As backbone molecules, guidance molecules, and signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA stability, acting as competitive endogenous RNAs to bind miRNAs, and so on. Exosomal lncRNAs can exist indefinitely and are important in intercellular communication and signal transduction. Changes in maternal serum exosome lncRNA expression can accurately and timely reflect the progression and regression of pregnancy-related diseases. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment methods of pregnancy-related diseases by reviewing the role of exosome lncRNAs in female pathological pregnancy and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
55
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Sadykhov NK, Midiber KY, Konyukova AK, Kontorschikov AS, Maslenkina KS, Orekhov AN. Long Non-Coding RNAs in Colorectal Cancer: Navigating the Intersections of Immunity, Intercellular Communication, and Therapeutic Potential. Biomedicines 2023; 11:2411. [PMID: 37760852 PMCID: PMC10525929 DOI: 10.3390/biomedicines11092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This comprehensive review elucidates the intricate roles of long non-coding RNAs (lncRNAs) within the colorectal cancer (CRC) microenvironment, intersecting the domains of immunity, intercellular communication, and therapeutic potential. lncRNAs, which are significantly involved in the pathogenesis of CRC, immune evasion, and the treatment response to CRC, have crucial implications in inflammation and serve as promising candidates for novel therapeutic strategies and biomarkers. This review scrutinizes the interaction of lncRNAs with the Consensus Molecular Subtypes (CMSs) of CRC, their complex interplay with the tumor stroma affecting immunity and inflammation, and their conveyance via extracellular vesicles, particularly exosomes. Furthermore, we delve into the intricate relationship between lncRNAs and other non-coding RNAs, including microRNAs and circular RNAs, in mediating cell-to-cell communication within the CRC microenvironment. Lastly, we propose potential strategies to manipulate lncRNAs to enhance anti-tumor immunity, thereby underlining the significance of lncRNAs in devising innovative therapeutic interventions in CRC.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Arcady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexandra K. Konyukova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Andrey S. Kontorschikov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Ksenia S. Maslenkina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexander N. Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
56
|
Zhang X, Zhang X, Yang G, Wan L, Yin F, Li H, Yin D. LncRNA SOCS2-AS1 promotes the progression of papillary thyroid cancer by destabilizing p53 protein. Biochem Biophys Res Commun 2023; 669:95-102. [PMID: 37267865 DOI: 10.1016/j.bbrc.2023.05.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to contribute to tumorigenesis and cancer progression. However, neither the dysregulation nor the functions of anti-sense lncRNAs in papillary thyroid carcinoma (PTC) have been exhaustively studied. In this study, we accessed The Cancer Genome Atlas (TCGA) database and discovered that the natural antisense lncRNA SOCS2-AS1 is highly expressed in PTC and that patients with a higher level of SOCS2-AS1 had a poor prognosis. Furthermore, loss- and gain-function assays demonstrated that SOCS2-AS1 promotes PTC cell proliferation and growth both in vitro and in vivo. In addition, we demonstrated that SOCS2-AS1 regulates the rate of fatty acid oxidation (FAO) in PTC cells. Analysis of the mechanism revealed that SOCS2-AS1 binds to p53 and controls its stability in PTC cell lines. Overall, our findings showed that the natural antisense lncRNA SOCS2-AS1 stimulates the degradation of p53 and enhances PTC cell proliferation and the FAO rate.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China; Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Xiaozhou Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China; Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Guang Yang
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Long Wan
- Department of Clinical Oncology, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Fengyan Yin
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
57
|
Dey A. Structural Modifications and Novel Protein-Binding Sites in Pre-miR-675-Explaining Its Regulatory Mechanism in Carcinogenesis. Noncoding RNA 2023; 9:45. [PMID: 37624037 PMCID: PMC10457854 DOI: 10.3390/ncrna9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Pre-miR-675 is a microRNA expressed from the exon 1 of H19 long noncoding RNA, and the atypical expression of pre-miR-675 has been linked with several diseases and disorders including cancer. To execute its function inside the cell, pre-miR-675 is folded into a particular conformation, which aids in its interaction with several other biological molecules. However, the exact folding dynamics of pre-miR-675 and its protein-binding motifs are currently unknown. Moreover, how H19 lncRNA and pre-miR-675 crosstalk and modulate each other's activities is also unclear. The detailed structural analysis of pre-miR-675 in this study determines its earlier unknown conformation and identifies novel protein-binding sites on pre-miR-675, thus making it an excellent therapeutic target against cancer. Co-folding analysis between H19 lncRNA and pre-miR-675 determine structural transformations in pre-miR-675, thus describing the earlier unknown mechanism of interaction between these two molecules. Comprehensively, this study details the conformation of pre-miR-675 and its protein-binding sites and explains its relationship with H19 lncRNA, which can be interpreted to understand the role of pre-miR-675 in the development and progression of tumorigenesis and designing new therapeutics against cancers.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow 226002, India
| |
Collapse
|
58
|
Shahabi Raberi V, Javanshir E, Abbasnezhad M, Mashayekhi S, Abbasnezhad A, Ahmadzadeh M, Shariati A. Emerging Biomarkers of Acute Myocardial Infarction, An Overview of the Newest MicroRNAs. Galen Med J 2023; 12:e2909. [PMID: 38774858 PMCID: PMC11108668 DOI: 10.31661/gmj.v12i.2909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 04/01/2025] Open
Abstract
Globally, acute myocardial infarction (AMI) is the leading cause of death. Early and precise diagnosis is essential for medical care to enhance prognoses and reduce mortality. The diagnosis of AMI relies primarily on conventional circulating biomarkers. However, these markers have many drawbacks. Non-coding RNAs (ncRNAs) form a significant fraction of the transcriptome and have been shown to be essential for many biological processes, including the pathogenesis of the disease. ncRNAs can be utilized as biomarkers due to their important role in the disease's development. The current manuscript describes recent progress on the role of ncRNAs as new AMI biomarkers.
Collapse
Affiliation(s)
- Venus Shahabi Raberi
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| | - Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Mashayekhi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masumeh Ahmadzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akram Shariati
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences,
Urmia, Iran
| |
Collapse
|
59
|
Shahabi Raberi V, Javanshir E, Abbasnezhad M, Mashayekhi S, Abbasnezhad A, Ahmadzadeh M, Shariati A. Emerging Biomarkers of Acute Myocardial Infarction, An Overview of the Newest MicroRNAs. Galen Med J 2023; 12:e2909. [PMID: 38774858 PMCID: PMC11108668 DOI: 10.31661/gmj.v12i0.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2024] Open
Abstract
Globally, acute myocardial infarction (AMI) is the leading cause of death. Early and precise diagnosis is essential for medical care to enhance prognoses and reduce mortality. The diagnosis of AMI relies primarily on conventional circulating biomarkers. However, these markers have many drawbacks. Non-coding RNAs (ncRNAs) form a significant fraction of the transcriptome and have been shown to be essential for many biological processes, including the pathogenesis of the disease. ncRNAs can be utilized as biomarkers due to their important role in the disease's development. The current manuscript describes recent progress on the role of ncRNAs as new AMI biomarkers.
Collapse
Affiliation(s)
- Venus Shahabi Raberi
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| | - Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Mashayekhi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masumeh Ahmadzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akram Shariati
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences,
Urmia, Iran
| |
Collapse
|
60
|
Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136:jcs260631. [PMID: 37199330 PMCID: PMC10214848 DOI: 10.1242/jcs.260631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
61
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
62
|
Kim T. Nucleic Acids in Cancer Diagnosis and Therapy. Cancers (Basel) 2023; 15:cancers15071938. [PMID: 37046599 PMCID: PMC10093127 DOI: 10.3390/cancers15071938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Nucleic acids include two main classes: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) [...].
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology and Developmental Biology, International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
63
|
Li B, Qian L, Pi L, Meng X. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine 2023; 165:156175. [PMID: 36948039 DOI: 10.1016/j.cyto.2023.156175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/31/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Emerging evidence has figured out that adipose mesenchymal stem cells (ADSCs) promote wound healing. Exosomes, which act as main paracrine factors and contains various protein, lncRNA, and miRNAs, play a critical role in wound healing. Nevertheless, the mechanism remains to be elucidated. This study aims to identify the underlying mechanism of ADSCs-derived exosome (ADSCs-exos)-mediated wound healing. METHODS ADSCs-exos were characterized using the transmission electron microscope, dynamic light scattering, and western blot. ELISA, RT-qPCR, flow cytometry, western blot, CCK-8 assay, transwell assay and tube formation were employed to validate the actions of ADSCs-exos harboring H19 in cell polarization, proliferation, migration and angiogenesis. The regulatory axis among H19, miR-130b-3p and PPARγ or STAT3 was confirmed by RNA pull-down, RIP assay and dual-luciferase reporter assays. RESULTS ADSCs-exos harboring H19 promoted macrophage M2 polarization, thereby enhancing fibroblast proliferation, migration and endothelial cell angiogenesis. However, their promotive effects were disrupted within H19 depletion in ADSCs-exos. Additionally, miR-130b-3p, directly targeting PPARγ or STAT3, was identified to be a downstream effector to participate in H19-mediated biological effects. Moreover, ADSCs-exos carrying H19 modulated cutaneous wound healing via H19/miR-130b-3p -mediated macrophage M2 polarization in vivo. CONCLUSION Collectively, ADSCs-derived exosomal H19 accelerates cutaneous wound healing via the miR-130b-3p/PPARγ/STAT3 axis, indicating potential therapeutic strategies for the treatment of wound healing.
Collapse
Affiliation(s)
- Bo Li
- Department of Plastic & Laser Cosmetic, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, PR China
| | - Li Qian
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| | - Li Pi
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
64
|
Qin J, Ke B, Liu T, Kong C, Li A, Fu H, Jin C. Aberrantly expressed long noncoding RNAs as potential prognostic biomarkers in newly diagnosed multiple myeloma: A systemic review and meta-analysis. Cancer Med 2023; 12:2199-2218. [PMID: 36057947 PMCID: PMC9939128 DOI: 10.1002/cam4.5135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have manifested long noncoding RNAs (lncRNAs) as biomarkers to determine the prognosis of multiple myeloma (MM) patients. Nevertheless, the prognostic role of lncRNAs in MM is still ambiguous. Herein, we performed a meta-analysis to evaluate the predictive value of aberrantly expressed lncRNAs in MM. METHODS A systemic literature search was performed in PubMed, EMBASE, Cochrane, and Web of Science databases until October 9, 2021, and the protocol was registered in the PROSPERO database (CRD42021284364). Our study extracted the hazard ratios (HRs) and 95% confidence intervals (CIs) of overall survival (OS), progression-free survival (PFS), or event-free survival (EFS). Begg's and Egger's tests were employed to correct publication bias. RESULT Twenty-six individual studies containing 3501 MM patients were enrolled in this study. The results showed that aberrant expression of lncRNAs was associated with poor OS and PFS of MM patients. The pooled HRs for univariate OS and PFS were 1.48 (95% CI = 1.17-1.88, p < 0.001) and 1.30 (95% CI = 1.18-1.43, p < 0.001), respectively, whereas the pooled HRs for multivariate OS and PFS were 1.50 (95% CI = 1.16-1.95, p < 0.001) and 1.59 (95% CI = 1.22-2.07, p < 0.001), respectively. Subgroup analysis suggested that MALAT1, TCF7, NEAT1, and PVT1 upregulation were associated with poor OS (p < 0.05), PVT1, and TCF7 upregulation were implicated with worse PFS (p < 0.05), while only TCF7 overexpression was correlated with reduced EFS (p < 0.05). Moreover, the contour-enhanced funnel plot demonstrated the reliability of our current conclusion, which was not affected by publication bias. CONCLUSION Aberrantly expressed particular lncRNAs are critical prognostic indicators in long-term survival as well as promising biomarkers in progression-free status. However, different cutoff values and dissimilar methods to assess lncRNA expression among studies may lead to heterogeneity.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Bo Ke
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| | - Tingting Liu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chunfang Kong
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Anna Li
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Huan Fu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chenghao Jin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| |
Collapse
|
65
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
66
|
Wang Z, Ma J, Wu R, Kong Y, Sun C. Recent advances of long non-coding RNAs in control of hepatic gluconeogenesis. Front Endocrinol (Lausanne) 2023; 14:1167592. [PMID: 37065737 PMCID: PMC10102572 DOI: 10.3389/fendo.2023.1167592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Gluconeogenesis is the main process for endogenous glucose production during prolonged fasting, or certain pathological conditions, which occurs primarily in the liver. Hepatic gluconeogenesis is a biochemical process that is finely controlled by hormones such as insulin and glucagon, and it is of great importance for maintaining normal physiological blood glucose levels. Dysregulated gluconeogenesis induced by obesity is often associated with hyperglycemia, hyperinsulinemia, and type 2 diabetes (T2D). Long noncoding RNAs (lncRNAs) are involved in various cellular events, from gene transcription to protein translation, stability, and function. In recent years, a growing number of evidences has shown that lncRNAs play a key role in hepatic gluconeogenesis and thereby, affect the pathogenesis of T2D. Here we summarized the recent progress in lncRNAs and hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Runze Wu
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
| | - Yinghong Kong
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| |
Collapse
|
67
|
Khosravi T, Oladnabi M. The role of miRNAs and lncRNAs in neurofibromatosis type 1. J Cell Biochem 2023; 124:17-30. [PMID: 36345594 DOI: 10.1002/jcb.30349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a frequent cancer predisposition syndrome. The common hallmark of patients with this multisystemic genetic disorder is the formation of peripheral nerve sheath tumors, which can be seen as either dermal, plexiform, and malignant forms. MicroRNA (miRNA) is an essential gene regulation factor and consists of 22-25 nucleotides. MiRNAs are identified to act as both tumor suppressors and oncogenes (oncomirs) in a wide variety of human cancers. They play multiple roles in molecular pathways responsible for tumor homing, progression, and invasion. Long noncoding RNA (lncRNA) also has a key role in cancer transcriptomics. Altered lncRNA expression levels have been found in various malignancies. This review aims to summarize the role of two noncoding RNA groups, miRNAs and lncRNAs, in NF1 establishment, development, and progression. We also highlight their potential for future clinical interventions and devising new diagnostic tools.
Collapse
Affiliation(s)
- Teymoor Khosravi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
68
|
Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol 2023; 27:101579. [PMID: 36332600 PMCID: PMC9637816 DOI: 10.1016/j.tranon.2022.101579] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Natalia Frías-Reid
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Ana Gabriela Ramos-Delgado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Hania Ruth Zlotnik-Chávez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines; Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, Oslo, Norway.
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico.
| |
Collapse
|
69
|
Abdelsattar S, Sweed D, Kamel HFM, Kasemy ZA, Gameel AM, Elzohry H, Ameen O, Elgizawy EI, Sallam A, Mosbeh A, Abdallah MS, Khalil FO, Al-Amodi HS, El-Hefnway SM. The Potential Utility of Circulating Oncofetal H19 Derived miR-675 Expression versus Tissue lncRNA-H19 Expression in Diagnosis and Prognosis of HCC in Egyptian Patients. Biomolecules 2022; 13:biom13010003. [PMID: 36671388 PMCID: PMC9856163 DOI: 10.3390/biom13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Interestingly, lncRNA-H19 acts independently in HCC and influences miR-675 expressions. We aimed to assess the potential utility of tissue lncRNA-H19 versus miR-675 expressions as a non-invasive biomarker for HCC diagnosis and prognosis in Egyptian patients. Ninety-one HCC patients and 91 controls included in this study were investigated for expression of lncRNA-H19 and miR675 using RT-qPCR. Our results showed that the expression of lncRNA-H19 and microRNA-675 were higher in patients than in controls (p < 0.001 for both). Additionally, lncRNA-H19 expression was higher in tumorous than in non-tumorous tissue (p < 0.001). Linear regression revealed that miR-675 expression was a significantly higher positive predictor than lncRNA-H19 for tumor size, pathologic grade, and AFP level; similarly, for cyclin D1 and VEGF protein expression. By using the ROC curve, the sensitivity of miR-675 was higher than lncRNA-H19 for discriminating HCC from controls (95-89%, respectively) and the sensitivity of lncRNA-H19 was higher in tumorous than in non-tumorous tissues (76%). The high expressions of both were associated with low OS (p < 0.001, 0.001, respectively). Oncofetal H19-derived miR-675 expression could be considered a potential noninvasive diagnostic and prognostic biomarker, outstanding the performance of the expression of tissue lncRNA-H19 for HCC.
Collapse
Affiliation(s)
- Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
- Correspondence:
| | - Dina Sweed
- Pathology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Hala F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al Qura University, Makka 21955, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Zeinab A. Kasemy
- Public Health and Community Medicine Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Abdallah M. Gameel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Hassan Elzohry
- Hepatology and Gastroenterology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Omnia Ameen
- Physiology Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Eman Ibrahim Elgizawy
- Physiology Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Ahmed Sallam
- Department of Hepatobiliary and Pancreatic Surgery, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Asmaa Mosbeh
- Pathology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt
| | - Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Hiba S. Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al Qura University, Makka 21955, Saudi Arabia
| | - Sally M. El-Hefnway
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
70
|
Long Non-coding RNA H19 Recruits NFYB to Activate MBTD1 and Regulate Doxorubicin Resistance in Lymphoma Cells. Mol Biotechnol 2022; 65:997-1009. [DOI: 10.1007/s12033-022-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
|
71
|
Construction of lncRNA TYMSOS/hsa-miR-101-3p/CEP55 and TYMSOS/hsa-miR-195-5p/CHEK1 Axis in Non-small Cell Lung Cancer. Biochem Genet 2022; 61:995-1014. [DOI: 10.1007/s10528-022-10299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022]
|
72
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
73
|
Tzur YB. lncRNAs in fertility: redefining the gene expression paradigm? Trends Genet 2022; 38:1170-1179. [PMID: 35728988 DOI: 10.1016/j.tig.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023]
Abstract
Comparative transcriptome approaches assume that highly or dynamically expressed genes are important. This has led to the identification of many genes critical for cellular activity and organism development. However, while testes express the highest levels of long noncoding RNAs (lncRNAs), there is scarcely any evidence for lncRNAs with significant roles in fertility. This was explained by changes in chromatin structure during spermatogenesis that lead to 'promiscuous transcription' with no functional roles for the transcripts. Recent discoveries offer novel and surprising alternatives. Here, I review the current knowledge regarding the involvement of lncRNAs in fertility, why I find gametogenesis different from other developmental processes, offer models to explain why the experimental evidence did not meet theoretical predictions, and suggest possible approaches to test the models.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
74
|
Li B, Ge N, Pan Z, Hou C, Xie K, Wang D, Liu J, Wan J, Deng F, Li M, Luo S. KCNJ14 knockdown significantly inhibited the proliferation and migration of colorectal cells. BMC Med Genomics 2022; 15:194. [PMID: 36100894 PMCID: PMC9472386 DOI: 10.1186/s12920-022-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
This study attempted to verify the potential of KCNJ14 as a biomarker in colorectal cancer (CRC).
Methods
Data on transcriptomics and DNA methylation and the clinical information of CRC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Biological information analysis methods were conducted to determine the role of KCNJ14 in the prognosis, diagnosis, immune cell infiltration, and regulation mechanism of CRC patients. The effect of KCNJ14 on the proliferation and migration of HCT116 and SW480 CRC cell lines was verified by in vitro experiments (MTT, colony-forming, wound healing, and transwell assays). Western blotting was performed to detect the effect of KCNJ14 on the levels of mTOR signalling pathway-related proteins.
Results
KCNJ14 expression was remarkably increased in CRC tissues and cell lines, which reduced the overall survival time of patients. KCNJ14 mRNA was negatively regulated by its methylation site cg17660703, which can also endanger the prognosis of patients with CRC. Functional enrichment analysis suggested that KCNJ14 is involved in the mTOR, NOD-like receptor, and VEGF signalling pathways. KCNJ14 expression was positively correlated with the number of CD4 + T cells and negatively correlated with that of CD8 + T cells in the immune microenvironment. KCNJ14 knockdown significantly reduced not only the proliferation and migration of CRC cell lines but also the levels of mTOR signalling pathway-related proteins.
Conclusions
This study not only increases the molecular understanding of KCNJ14 but also provides a potentially valuable biological target for the treatment of colorectal cancer.
Collapse
|
75
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
76
|
Caponnetto A, Battaglia R, Ferrara C, Vento ME, Borzì P, Paradiso M, Scollo P, Purrello M, Longobardi S, D’Hooghe T, Valerio D, Di Pietro C. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J Assist Reprod Genet 2022; 39:919-931. [PMID: 35247118 PMCID: PMC9050988 DOI: 10.1007/s10815-022-02446-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) control gene expression at multiple levels. By interacting with microRNAs (miRNAs), they regulate their mRNA targets creating dynamic regulatory networks involved in different cellular processes. Their role in follicle development and oocyte maturation has recently emerged. lncRNA deregulation has been found associated with different pathological conditions. In this study, we identified differentially expressed lncRNAs in cumulus cells (CCs) isolated from MII oocytes of advanced maternal age women and proposed ceRNA-networks involved in signaling pathways crucial in ovarian folliculogenesis and female germ cell maturation. METHODS We performed a high-throughput analysis of the expression profile of 68 lncRNAs from CCs of aged and young women by using NanoString technology. By miRNet, TarPmiR, miRTarBase, OKdb, and KEGG we predicted some ceRNA-networks involving the differentially expressed (DE) lncRNAs, miRNA interactors, and their mRNA target genes. RESULTS We identified 28 lncRNAs down-regulated in CC samples from aged women. The analysis revealed that the miRNAs binding 11 of the DE lncRNAs and their mRNA targets are included in ceRNA-networks involved in the regulation of the PI3K-Akt, FOXO, and p53 signaling pathways. CONCLUSION We proposed that the lncRNA down-regulation in CCs from aged women could influence the expression of genes encoding proteins deregulated in reproductive aging. A better understanding of the interplay of lncRNA-miRNA-mRNA networks in human CCs could increase our knowledge about the mechanisms of regulation of gene expression involved in aging, lead to the development of novel therapeutics, and improve reproductive outcomes in aged women.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
| | | | | | | | | | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
| | | | - Thomas D’Hooghe
- Global Medical Affairs Fertility, R&D Healthcare, the Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
| | - Italian Society of Embryology, Reproduction, Research (SIERR)
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel, University of Catania, 95123 Catania, Italy
- IVF Unit, Cannizzaro Hospital, Catania, Italy
- Global Clinical Development, Merck Serono SpA, Rome, Italy
- Global Medical Affairs Fertility, R&D Healthcare, the Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
- Institute of Genetic Research (IRG), 80143 Naples, Italy
| |
Collapse
|
77
|
Role of NRF2 in Ovarian Cancer. Antioxidants (Basel) 2022; 11:antiox11040663. [PMID: 35453348 PMCID: PMC9027335 DOI: 10.3390/antiox11040663] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’ death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Collapse
|
78
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
79
|
Zhang X, Liu D, Gao Y, Lin C, An Q, Feng Y, Liu Y, Liu D, Luo H, Wang D. The Biology and Function of Extracellular Vesicles in Cancer Development. Front Cell Dev Biol 2021; 9:777441. [PMID: 34805181 PMCID: PMC8602830 DOI: 10.3389/fcell.2021.777441] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) exert their biological functions by delivering proteins, metabolites, and nucleic acids to recipient cells. EVs play important roles in cancer development. The anti-tumor effect of EVs is by their cargos carrying proteins, metabolites, and nucleic acids to affect cell-to-cell communication. The characteristics of cell-to-cell communication can potentially be applied for the therapy of cancers, such as gastric cancer. In addition, EVs can be used as an effective cargos to deliver ncRNAs, peptides, and drugs, to target tumor tissues. In addition, EVs have the ability to regulate cell apoptosis, autophagy, proliferation, and migration of cancer cells. The ncRNA and peptides that were engaged with EVs were associated with cell signaling pathways in cancer development. This review focuses on the composition, cargo, function, mechanism, and application of EVs in cancers.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qingwu An
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ye Feng
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|