51
|
Volpe A, Gaudiuso C, Ancona A. Sorting of Particles Using Inertial Focusing and Laminar Vortex Technology: A Review. MICROMACHINES 2019; 10:E594. [PMID: 31510006 PMCID: PMC6780945 DOI: 10.3390/mi10090594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022]
Abstract
The capability of isolating and sorting specific types of cells is crucial in life science, particularly for the early diagnosis of lethal diseases and monitoring of medical treatments. Among all the micro-fluidics techniques for cell sorting, inertial focusing combined with the laminar vortex technology is a powerful method to isolate cells from flowing samples in an efficient manner. This label-free method does not require any external force to be applied, and allows high throughput and continuous sample separation, thus offering a high filtration efficiency over a wide range of particle sizes. Although rather recent, this technology and its applications are rapidly growing, thanks to the development of new chip designs, the employment of new materials and microfabrication technologies. In this review, a comprehensive overview is provided on the most relevant works which employ inertial focusing and laminar vortex technology to sort particles. After briefly summarizing the other cells sorting techniques, highlighting their limitations, the physical mechanisms involved in particle trapping and sorting are described. Then, the materials and microfabrication methods used to implement this technology on miniaturized devices are illustrated. The most relevant evolution steps in the chips design are discussed, and their performances critically analyzed to suggest future developments of this technology.
Collapse
Affiliation(s)
- Annalisa Volpe
- Physics Department, Università degli Studi di Bari 'Aldo Moro', Via G. Amendola 173, 70126 Bari, Italy.
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70126 Bari, Italy.
| | - Caterina Gaudiuso
- Physics Department, Università degli Studi di Bari 'Aldo Moro', Via G. Amendola 173, 70126 Bari, Italy
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70126 Bari, Italy
| | - Antonio Ancona
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70126 Bari, Italy
| |
Collapse
|
52
|
Park JY, Han S, Ka HI, Joo HJ, Soh SJ, Yoo KH, Yang Y. Silent mating-type information regulation 2 homolog 1 overexpression is an important strategy for the survival of adapted suspension tumor cells. Cancer Sci 2019; 110:2773-2782. [PMID: 31348594 PMCID: PMC6726698 DOI: 10.1111/cas.14147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Characterization of circulating tumor cells (CTC) is important to prevent death caused by the metastatic spread of cancer cells because CTC are associated with distal metastasis and poor prognosis of breast cancer. We have previously developed suspension cells (SC) using breast cancer cell lines and demonstrated their high metastatic potential. As survival of CTC is highly variable from a few hours to decades, herein we cultured SC for an extended time and named them adapted suspension cells (ASC). Silent mating‐type information regulation 2 homolog 1 (SIRT1) expression increased in ASC, which protected the cells from apoptosis. High SIRT1 expression was responsible for the suppression of nuclear factor kappa B (NF‐κB) activity and downregulation of reactive oxygen species (ROS) in ASC. As the inhibition of NF‐κB and ROS production in SIRT1‐depleted ASC contributed to the development of resistance to apoptotic cell death, maintenance of a low ROS level and NF‐κB activity in ASC is a crucial function of SIRT1. Thus, SIRT1 overexpression may play an important role in growth adaptation of SC because SIRT1 expression is increased in long‐term rather than in short‐term cultures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Sora Han
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Hye In Ka
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Hyun Jeong Joo
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Su Jung Soh
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Young Yang
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
53
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
54
|
Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med 2019; 19:271-279. [PMID: 31190187 DOI: 10.1007/s10238-019-00563-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Overview the progress of liquid biopsy using circulating tumor cells (CTCs) and circulating cell-free tumor DNA (cfDNA) to detect and monitor breast cancer. Based on numerous research efforts, the potential value of CTCs and cfDNA in the clinical aspects of cancer has become clear. With the development of next-generation sequencing analysis and newly developed technologies, many technical issues have been resolved, making liquid biopsy widely used in clinical practice. They can be powerful tools for dynamic monitoring of tumor progression and therapeutic efficacy. In the field of breast cancer, liquid biopsy is a research hot spot in recent years, playing a key role in monitoring breast cancer metastasis, predicting disease recurrence and assessing clinical drug resistance. Liquid biopsy has the advantages of noninvasive, high sensitivity, high specificity and real-time dynamic monitoring. Still application is far from reality, but the research and application prospects of CTCs and cfDNA in breast cancer are still worth exploring and discovering. This article reviews the main techniques and applications of CTCs and cfDNA in breast cancer.
Collapse
|