51
|
Vacante M, Ciuni R, Basile F, Biondi A. The Liquid Biopsy in the Management of Colorectal Cancer: An Overview. Biomedicines 2020; 8:E308. [PMID: 32858879 PMCID: PMC7555636 DOI: 10.3390/biomedicines8090308] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high specificity and sensitivity in patients with colorectal cancer. A "liquid biopsy" is characterized by the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA, microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable technique that could play a significant role in screening and diagnosis, and predict relapse and metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal cancer patients. However, there are still some practical issues that need to be addressed before liquid biopsy can be widely used in clinical practice. Potential challenges may include low amounts of circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
52
|
Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Treviño EN. Colorectal Cancer Stem Cells in the Progression to Liver Metastasis. Front Oncol 2020; 10:1511. [PMID: 32974184 PMCID: PMC7468493 DOI: 10.3389/fonc.2020.01511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial–mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.
Collapse
Affiliation(s)
| | - Adriana G Quiroz-Reyes
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Jose F Islas
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Elsa N Garza-Treviño
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| |
Collapse
|
53
|
Kelley SO, Pantel K. A New Era in Liquid Biopsy: From Genotype to Phenotype. Clin Chem 2020; 66:89-96. [PMID: 31811003 DOI: 10.1373/clinchem.2019.303339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liquid biopsy, in which tumor cells and tumor-derived biomolecules are collected from the circulation, is an attractive strategy for the management of cancer that allows the serial monitoring of patients during treatment. The analysis of circulating DNA produced by tumors provides a means to collect genotypic information about the molecular profile of a patient's cancer. Phenotypic information, which may be highly relevant for therapeutic selection, is ideally derived from intact cells, necessitating the analysis of circulating tumor cells (CTCs). CONTENT Recent advances in profiling CTCs at the single-cell level are providing new ways to collect critical phenotypic information. Analysis of secreted proteins, surface proteins, and intracellular RNAs for CTCs at the single-cell level is now possible and provides a means to quantify molecular markers that are involved with the mechanism of action of the newest therapeutics. We review the latest technological advances in this area along with related breakthroughs in high-purity CTC capture and in vivo profiling approaches, and we also present a perspective on how genotypic and phenotypic information collected via liquid biopsies is being used in the clinic. SUMMARY Over the past 5 years, the use of liquid biopsy has been adopted in clinical medicine, representing a major paradigm shift in how molecular testing is used in cancer management. The first tests to be used are genotypic measurements of tumor mutations that affect therapeutic effectiveness. Phenotypic information is also clinically relevant and essential for monitoring proteins and RNA sequences that are involved in therapeutic response.
Collapse
Affiliation(s)
- Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
54
|
Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:712-724. [PMID: 32771923 PMCID: PMC7412722 DOI: 10.1016/j.omtn.2020.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Long-chain non-coding RNAs (lncRNAs) are RNA molecules with a length greater than 200 nt and no function of encoding proteins. lncRNAs play a precise regulatory function at different levels of transcription and post-transcription, and they interact with various regulatory factors to regulate gene expression, and then participate in cell growth, differentiation, apoptosis, and other life processes. In recent years, studies have shown that the abnormal expression of lncRNAs is closely related to the occurrence and development of tumors, which is expected to become an effective biomarker in tumor diagnosis. The sequencing analysis of mutations in the whole tumor genome suggests that mutations in non-coding regions may play an important role in the occurrence and development of tumors. Therefore, in-depth study of lncRNAs is helpful to clarify the molecular mechanism of tumor occurrence and development and to provide new targets for tumor diagnosis and treatment. This review introduces the molecular mechanism and clinical application prospect of lncRNAs affecting tumor development from the perspective of gene expression and regulation.
Collapse
Affiliation(s)
- Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Shui Ma
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
55
|
Parkins KM, Dubois VP, Kelly JJ, Chen Y, Knier NN, Foster PJ, Ronald JA. Engineering Circulating Tumor Cells as Novel Cancer Theranostics. Am J Cancer Res 2020; 10:7925-7937. [PMID: 32685030 PMCID: PMC7359075 DOI: 10.7150/thno.44259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
New ways to target and treat metastatic disease are urgently needed. Tumor “self-homing” describes the recruitment of circulating tumor cells (CTCs) back to a previously excised primary tumor location, contributing to tumor recurrence, as well as their migration to established metastatic lesions. Recently, self-homing CTCs have been exploited as delivery vehicles for anti-cancer therapeutics in preclinical primary tumor models. However, the ability of CTCs to self-home and treat metastatic disease is largely unknown. Methods: Here, we used bioluminescence imaging (BLI) to explore whether systemically administered CTCs home to metastatic lesions and if CTCs armed with both a reporter gene and a cytotoxic prodrug gene therapy can be used to visualize and treat metastatic disease. Results: BLI performed over time revealed a remarkable ability of CTCs to home to and treat tumors throughout the body. Excitingly, metastatic tumor burden in mice that received therapeutic CTCs was lower compared to mice receiving control CTCs. Conclusion: This study demonstrates the noteworthy ability of experimental CTCs to home to disseminated breast cancer lesions. Moreover, by incorporating a prodrug gene therapy system into our self-homing CTCs, we show exciting progress towards effective and targeted delivery of gene-based therapeutics to treat both primary and metastatic lesions.
Collapse
|
56
|
Papadaki MA, Sotiriou AI, Vasilopoulou C, Filika M, Aggouraki D, Tsoulfas PG, Apostolopoulou CA, Rounis K, Mavroudis D, Agelaki S. Optimization of the Enrichment of Circulating Tumor Cells for Downstream Phenotypic Analysis in Patients with Non-Small Cell Lung Cancer Treated with Anti-PD-1 Immunotherapy. Cancers (Basel) 2020; 12:cancers12061556. [PMID: 32545559 PMCID: PMC7352396 DOI: 10.3390/cancers12061556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The current study aimed at the optimization of circulating tumor cell (CTC) enrichment for downstream protein expression analyses in non-small cell lung cancer (NSCLC) to serve as a tool for the investigation of immune checkpoints in real time. Different enrichment approaches—ficoll density, erythrolysis, their combination with magnetic separation, ISET, and Parsortix—were compared in spiking experiments using the A549, H1975, and SKMES-1 NSCLC cell lines. The most efficient methods were tested in patients (n = 15) receiving immunotherapy targeting programmed cell death-1 (PD-1). Samples were immunofluorescently stained for a) cytokeratins (CK)/epithelial cell adhesion molecule (EpCAM)/leukocyte common antigen (CD45), and b) CK/programmed cell death ligand-1 (PD-L1)/ indoleamine-2,3-dioxygenase (IDO). Ficoll, ISET, and Parsortix presented the highest yields and compatibility with phenotypic analysis; however, at the patient level, they provided discordant CTC positivity (13%, 33%, and 60% of patients, respectively) and enriched for distinct CTC populations. IDO and PD-L1 were expressed in 44% and 33% and co-expressed in 19% of CTCs. CTC detection was associated with progressive disease (PD) (p = 0.006), reduced progression-free survival PFS (p = 0.007), and increased risk of relapse (hazard ratio; HR: 10.733; p = 0.026). IDO-positive CTCs were associated with shorter PFS (p = 0.039) and overall survival OS (p = 0.021) and increased risk of death (HR: 5.462; p = 0.039). The current study indicates that CTC analysis according to distinct immune checkpoints is feasible and may provide valuable biomarkers to monitor NSCLC patients treated with anti-PD-1 agents.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Afroditi I Sotiriou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Christina Vasilopoulou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Maria Filika
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Panormitis G Tsoulfas
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Christina A Apostolopoulou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71110 Heraklion, Vassilika Vouton, Crete, Greece; (M.A.P.); (A.I.S.); (C.V.); (M.F.); (D.A.); (P.G.T.); (C.A.A.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Vassilika Vouton, Crete, Greece;
- Correspondence: ; Tel.: +30-2810394712
| |
Collapse
|
57
|
Heterogeneity of Circulating Tumor Cells in Breast Cancer: Identifying Metastatic Seeds. Int J Mol Sci 2020; 21:ijms21051696. [PMID: 32121639 PMCID: PMC7084665 DOI: 10.3390/ijms21051696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis being the main cause of breast cancer (BC) mortality represents the complex and multistage process. The entrance of tumor cells into the blood vessels and the appearance of circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and presented by clusters and individual cells which consist of phenotypically and genetically distinct subpopulations. However, among this diversity, only a small number of CTCs is able to survive in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this review, we summarize the available literature addressing morphological, phenotypic and genetic heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
Collapse
|
58
|
Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020; 178:1955-1972. [PMID: 31975481 DOI: 10.1111/bph.14999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bone sarcomas are primary bone tumours found mainly in children and adolescents, as osteosarcoma and Ewing's sarcoma, and in adults in their 40s as chondrosarcoma. The last four decades the development of therapeutic approaches was based on drug combinations have shown no real improvement in overall survival. Recently oncoimmunology has allowed a better understand of the crucial role played by the immune system in the oncologic process. This led to clinical trials with the aim of reprogramming the immune system to facilitate cancer cell recognition. Immune infiltrates of bone sarcomas have been characterized and their molecular profiling identified as immune therapeutic targets. Unfortunately, the clinical responses in trials remain anecdotal but highlight the necessity to improve the characterization of tumour micro-environment to unlock the immunotherapeutic response, especially in their paediatric forms. Bone sarcomas have entered the immunotherapy era and here we overview the recent developments in immunotherapies in these sarcomas. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Marie-Françoise Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Kristina Schiavone
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
59
|
Li XY, Dong M, Zang XY, Li MY, Zhou JY, Ma JJ, Wang GY. The emerging role of circulating tumor cells in cancer management. Am J Transl Res 2020; 12:332-342. [PMID: 32194887 PMCID: PMC7061830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Circulating tumor cells (CTCs) are cells that are shed from the primary tumor and circulate in the blood, and their metastasis and formation of a secondary tumor are closely associated with cancer-related death. Therefore, regulating tumor metastasis through CTCs can be a novel strategy to fight cancer. It has been demonstrated that CTCs can reflect the profile of the primary tumor and provide valuable information about intratumoral heterogeneity and their evolution over time. Moreover, the revelation of the relationship between metastasis and CTCs suggests that CTC regulation represents a promising novel anticancer strategy. Above all, at the molecular level, genetic analysis might be vital in the new era of gene-targeted cancer therapies and contribute to personalized anti-metastasis tumor treatments. In this review, we will focus on the biological significance of CTCs in the peripheral blood and discuss their potential clinical implications in cancer management.
Collapse
Affiliation(s)
- Xue-Yao Li
- Human Anatomy Laboratory, School of Basic Medicine, Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Man Dong
- The Third Affiliated Hospital of Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Xiang-Yang Zang
- Human Anatomy Laboratory, School of Basic Medicine, Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Miao-Ya Li
- Human Anatomy Laboratory, School of Basic Medicine, Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Jing-Yi Zhou
- Human Anatomy Laboratory, School of Basic Medicine, Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Jian-Jun Ma
- Human Anatomy Laboratory, School of Basic Medicine, Xinxiang Medical University Xinxiang 453003, Henan, China
| | - Gang-Yang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| |
Collapse
|
60
|
Zhang J, Du Q, Song X, Gao S, Pang X, Li Y, Zhang R, Abliz Z, He J. Evaluation of the tumor-targeting efficiency and intratumor heterogeneity of anticancer drugs using quantitative mass spectrometry imaging. Theranostics 2020; 10:2621-2630. [PMID: 32194824 PMCID: PMC7052894 DOI: 10.7150/thno.41763] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
The development of improved or targeted drugs that discriminate between normal and tumor tissues is the key therapeutic issue in cancer research. However, the development of an analytical method with a high accuracy and sensitivity to achieve quantitative assessment of the tumor targeting of anticancer drugs and even intratumor heterogeneous distribution of these drugs at the early stages of drug research and development is a major challenge. Mass spectrometry imaging is a label-free molecular imaging technique that provides spatial-temporal information on the distribution of drugs and metabolites in organisms, and its application in the field of pharmaceutical development is rapidly increasing. Methods: The study presented here accurately quantified the distribution of paclitaxel (PTX) and its prodrug (PTX-R) in whole-body animal sections based on the virtual calibration quantitative mass spectrometry imaging (VC-QMSI) method, which is label-free and does not require internal standards, and then applied this technique to evaluate the tumor targeting efficiency in three treatment groups-the PTX-injection treatment group, PTX-liposome treatment group and PTX-R treatment group-in nude mice bearing subcutaneous A549 xenograft tumors. Results: These results indicated that PTX was widely distributed in multiple organs throughout the dosed body in the PTX-injection group and the PTX-liposome group. Notably, in the PTX-R group, both the prodrug and metabolized PTX were mainly distributed in the tumor tissue, and this group showed a significant difference compared with the PTX-liposome group, the relative targeting efficiency of PTX-R group was increased approximately 50-fold, leading to substantially decreased systemic toxicities. In addition, PTX-R showed a significant and specific accumulation in the poorly differentiated intratumor area and necrotic area. Conclusion: This method was demonstrated to be a reliable, feasible and easy-to-implement strategy to quantitatively map the absorption, distribution, metabolism and excretion (ADME) of a drug in the whole-body and tissue microregions and could therefore evaluate the tumor-targeting efficiency of anticancer drugs to predict drug efficacy and safety and provide key insights into drug disposition and mechanisms of action and resistance. Thus, this strategy could significantly facilitate the design and optimization of drugs at the early stage of drug research and development.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qianqian Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaowei Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shanshan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Center for Imaging and Systems Biology, Minzu University of China, Beijing, 100081, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
61
|
Tirtei E, Cereda M, De Luna E, Quarello P, Asaftei SD, Fagioli F. Omic approaches to pediatric bone sarcomas. Pediatr Blood Cancer 2020; 67:e28072. [PMID: 31736201 DOI: 10.1002/pbc.28072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, next-generation sequencing technologies have improved our ability to assess biological aspects, at genomic and transcriptomic levels, on a large scale- and have been increasingly used for the management of adult cancers. However, their efficacy and feasibility within pediatrics is still under investigation. "Omic" approaches represent an opportunity to understand the oncogenic mechanisms driving the onset and progression of bone sarcoma and improve the clinical management of young patients with bone sarcomas. This review focuses on the current genomic and transcriptomic characteristics of managing pediatric patients, affected by Ewing sarcoma and osteosarcoma.
Collapse
Affiliation(s)
- Elisa Tirtei
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, Italian Institute for Genomic Medicine, Torino, Italy.,Candiolo Cancer Institute, FPO, IRCCS, Turin, Italy
| | - Elvira De Luna
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Quarello
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Sebastian Dorin Asaftei
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| |
Collapse
|
62
|
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Am J Cancer Res 2020; 10:1884-1909. [PMID: 32042343 PMCID: PMC6993242 DOI: 10.7150/thno.38625] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes “therapy heterogeneity”: a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
Collapse
|
63
|
Xu M, Zhao H, Chen J, Liu W, Li E, Wang Q, Zhang L. An Integrated Microfluidic Chip and Its Clinical Application for Circulating Tumor Cell Isolation and Single-Cell Analysis. Cytometry A 2019; 97:46-53. [PMID: 31595638 DOI: 10.1002/cyto.a.23902] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Circulating tumor cells (CTCs) represent invasive tumor cell populations and provide a noninvasive solution to the clinical management and research of tumors. Characterization of CTCs at single-cell resolution enables the comprehensive understanding of tumor heterogeneity and may benefit the diagnosis and treatment of cancer patients. However, most efforts have been made on enumeration and detection of CTCs, while little focus has been directed to single-cell study. Herein, an integrated microfluidic platform for single-cell isolation and analysis was established. After validating this platform on lung cancer cell lines, we detected and isolated single CTCs from the peripheral blood samples of 20 cancer patients before and after one treatment cycle. Furthermore, we performed single-cell whole-exome DNA sequencing on a single CTC from the peripheral blood sample of a representative early stage lung cancer patient. Among the blood samples of 20 patients, 15 of them were positive for CTC detection (75.0% detectable rate). Single-cell analysis revealed detailed genetic variations of the CTC, while six new gene mutations were detected in both single CTC and surgical specimen. This study provides a useful tool for the isolation and analysis of single CTCs from peripheral blood samples, which not only facilitates the early diagnosis of cancers but also helps to unravel the genetic information of tumor at a single-cell level. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Hui Zhao
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Jun Chen
- Department of Oncology, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Lichuan Zhang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
64
|
Li Q, Cui S, Xu Y, Wang Y, Jin F, Si H, Li L, Tang B. Consecutive Sorting and Phenotypic Counting of CTCs by an Optofluidic Flow Cytometer. Anal Chem 2019; 91:14133-14140. [DOI: 10.1021/acs.analchem.9b04035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shuang Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuehan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yiguo Wang
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, P.R. China
| | - Feng Jin
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital Affiliated with Shandong University, Jinan, 250013, P.R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
65
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|