51
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
52
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
53
|
Han MH, Min KW, Noh YK, Kim JM, Cheong JH, Ryu JI, Won YD, Koh SH, Park YM. Identification of genes from ten oncogenic pathways associated with mortality and disease progression in glioblastoma. Front Oncol 2022; 12:965638. [PMID: 36033456 PMCID: PMC9399757 DOI: 10.3389/fonc.2022.965638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with an extremely poor prognosis. The Cancer Genome Atlas (TCGA) database has been used to confirm the roles played by 10 canonical oncogenic signaling pathways in various cancers. The purpose of this study was to evaluate the expression of genes in these 10 canonical oncogenic signaling pathways, which are significantly related to mortality and disease progression in GBM patients. Clinicopathological information and mRNA expression data of 525 patients with GBM were obtained from TCGA database. Gene sets related to the 10 oncogenic signaling pathways were investigated via Gene Set Enrichment Analysis. Multivariate Cox regression analysis was performed for all the genes significantly associated with mortality and disease progression for each oncogenic signaling pathway in GBM patients. We found 12 independent genes from the 10 oncogenic signaling pathways that were significantly related to mortality and disease progression in GBM patients. Considering the roles of these 12 significant genes in cancer, we suggest possible mechanisms affecting the prognosis of GBM. We also observed that the expression of 6 of the genes significantly associated with a poor prognosis of GBM, showed negative correlations with CD8+ T-cells in GBM tissue. Using a large-scale open database, we identified 12 genes belonging to 10 well-known oncogenic canonical pathways, which were significantly associated with mortality and disease progression in patients with GBM. We believe that our findings will contribute to a better understanding of the mechanisms underlying the pathophysiology of GBM in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Young Mi Park
- Department of Pediatrics, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung-si, South Korea
| |
Collapse
|
54
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|
55
|
Blankenstein LJ, Cordes N, Kunz-Schughart LA, Vehlow A. Targeting of p21-Activated Kinase 4 Radiosensitizes Glioblastoma Cells via Impaired DNA Repair. Cells 2022; 11:cells11142133. [PMID: 35883575 PMCID: PMC9316146 DOI: 10.3390/cells11142133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is a devastating malignant disease with poor patient overall survival. Strong invasiveness and resistance to radiochemotherapy have challenged the identification of molecular targets that can finally improve treatment outcomes. This study evaluates the influence of all six known p21-activated kinase (PAK) protein family members on the invasion capacity and radio-response of glioblastoma cells by employing a siRNA-based screen. In a panel of human glioblastoma cell models, we identified PAK4 as the main PAK isoform regulating invasion and clonogenic survival upon irradiation and demonstrated the radiosensitizing potential of PAK4 inhibition. Mechanistically, we show that PAK4 depletion and pharmacological inhibition enhanced the number of irradiation-induced DNA double-strand breaks and reduced the expression levels of various DNA repair proteins. In conclusion, our data suggest PAK4 as a putative target for radiosensitization and impairing DNA repair in glioblastoma, deserving further scrutiny in extended combinatorial treatment testing.
Collapse
Affiliation(s)
- Leon J. Blankenstein
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
56
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
57
|
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Biomedicines 2022; 10:biomedicines10061357. [PMID: 35740379 PMCID: PMC9219850 DOI: 10.3390/biomedicines10061357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches.
Collapse
|
58
|
Best M, Gale ME, Wells CM. PAK-dependent regulation of actin dynamics in breast cancer cells. Int J Biochem Cell Biol 2022; 146:106207. [PMID: 35385780 PMCID: PMC9941713 DOI: 10.1016/j.biocel.2022.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Metastatic Breast Cancer has a poor 25% survival rate and currently there are no clinical therapeutics which target metastasis. 'Migrastatics' are a new drug class which target migration pathway effector proteins in order to inhibit cancer cell invasion and metastasis. The p21-activated kinases (PAKs) are essential drivers of breast cancer cell migration and invasion through their regulation of actin cytoskeletal dynamics. Therefore, the PAKs present as attractive migrastatic candidates. Here we review how PAKs regulate distinct aspects of breast cancer actin dynamics focussing on cytoskeletal reorganisation, cell:matrix adhesion, actomyosin contractility and degradative invasion. Lastly, we discuss the introduction of PAK migrastatics into the well-honed breast cancer clinical pipeline.
Collapse
Affiliation(s)
- Marianne Best
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK.
| | - Madeline E. Gale
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,North West Thames Regional Genetics Service, Northwick Park Hospital, London UK
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,Corresponding author.
| |
Collapse
|
59
|
Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022; 179:106220. [PMID: 35405309 DOI: 10.1016/j.phrs.2022.106220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Despite novel targeted and immunotherapies, the prognosis remains bleak for patients with hepatocellular carcinoma (HCC), especially for advanced and/or metastatic forms. The rapid emergence of drug resistance is a major obstacle in the success of chemo-, targeted-, immuno-therapies of HCC. Novel targets are needed. The prominent roles of the small GTPase Rac1 in the development and progression of HCC are discussed here, together with its multiple protein partners, and the targeting of Rac1 with RNA-based regulators and small molecules. We discuss the oncogenic functions of Rac1 in HCC, including the contribution of Rac1 mutants and isoform Rac1b. Rac1 is a ubiquitous target, but the protein is frequently overexpressed and hyperactivated in HCC. It contributes to the aggressivity of the disease, with key roles in cancer cell proliferation, tumor metastasis and resistance to treatment. Small molecule targeting Rac1, indirectly or directly, have shown anticancer effects in HCC experimental models. Rac1-binding agents such as EHT 1864 and analogues offer novel opportunities to combat HCC. We discuss the different modalities to repress Rac1 overactivation in HCC with small molecules and the combination with reference drugs to promote cancer cell death and to repress cell invasion. We highlight the necessity to combine Rac1-targeted approach with appropriate biomarkers to select Rac1 activated tumors. Our analysis underlines the prominent oncogenic functions of Rac1 in HCC and discuss the modalities to target this small GTPase. Rac1 shall be considered as a valid target to limit the acquired and intrinsic resistance of HCC tumors and their metastatic potential.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes Cedex, France
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal 59290, France.
| |
Collapse
|
60
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
61
|
Okumura K, Saito M, Isogai E, Tokunaga Y, Hasegawa Y, Araki K, Wakabayashi Y. Functional polymorphism in Pak1-3'UTR alters skin tumor susceptibility by alternative polyadenylation. J Invest Dermatol 2022; 142:2323-2333.e12. [PMID: 35240107 DOI: 10.1016/j.jid.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
We identified a functional single nucleotide polymorphism (SNP) in the 3' untranslated region (UTR) of p21-activated kinase 1 (Pak1) that is responsible for the Skin tumor modifier of MSM 1a locus. Candidate SNPs in the 3'UTR of Pak1 from resistance strain MSM/Ms were introduced into susceptible strain FVB/N using CRISPR/Cas9. DMBA/TPA skin carcinogenesis experiments revealed an SNP (Pak1-3'UTR-6C>T: rs31627325) that strongly suppressed skin tumors. Furthermore, Muscleblind-Like Splicing Regulator 1 bound more strongly to FVB-allele (6C/C) and regulated the transcript length in the 3'UTR of Pak1 and tumorigenesis via polyadenylation. Therefore, the alternative polyadenylation of Pak1 is cis-regulated by rs31627325.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Megumi Saito
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Eriko Isogai
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Yurika Tokunaga
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7, Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuouku, Kumamoto, 860-0811, Japan
| | - Yuichi Wakabayashi
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan.
| |
Collapse
|
62
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
63
|
Butein and Frondoside-A Combination Exhibits Additive Anti-Cancer Effects on Tumor Cell Viability, Colony Growth, and Invasion and Synergism on Endothelial Cell Migration. Int J Mol Sci 2021; 23:ijms23010431. [PMID: 35008855 PMCID: PMC8745659 DOI: 10.3390/ijms23010431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the significant advances in targeted- and immuno-therapies, lung and breast cancer are at the top list of cancer incidence and mortality worldwide as of 2020. Combination therapy consisting of a mixture of different drugs taken at once is currently the main approach in cancer management. Natural compounds are extensively investigated for their promising anti-cancer potential. This study explored the anti-cancer potential of butein, a biologically active flavonoid, on two major solid tumors, namely, A549 lung and MDA-MB-231 breast cancer cells alone and in combination with another natural anti-cancer compound, frondoside-A. We demonstrated that butein decreases A549 and MDA-MB-231 cancer cell viability and colony growth in vitro in addition to tumor growth on chick embryo chorioallantoic membrane (CAM) in vivo without inducing any noticeable toxicity. Additionally, non-toxic concentrations of butein significantly reduced the migration and invasion of both cell lines, suggesting its potential anti-metastatic effect. We showed that butein anti-cancer effects are due, at least in part, to a potent inhibition of STAT3 phosphorylation, leading to PARP cleavage and consequently cell death. Moreover, we demonstrated that combining butein with frondoside-A leads to additive effects on inhibiting A549 and MDA-MB-231 cellular viability, induction of caspase 3/7 activity, inhibition of colony growth, and inhibition of cellular migration and invasion. This combination reached a synergistic effect on the inhibition of HUVECs migration in vitro. Collectively, this study provides sufficient rationale to further carry out animal studies to confirm the relevance of these compounds’ combination in cancer therapy.
Collapse
|
64
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
65
|
Yan J, Wan D. Dysregulation of circulating CDC42 and its correlation with demographic characteristics, comorbidities, tumor features, chemotherapeutic regimen and survival profile in non-small-cell lung cancer patients. J Clin Lab Anal 2021; 36:e24140. [PMID: 34952984 DOI: 10.1002/jcla.24140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Cell division control protein 42 (CDC42) induces the immune escape, represses the CD8+ T-cell activation, and further leads to the tumor metastasis in various neoplasms, whereas the correlation of circulating CDC42 with clinical features and prognosis of non-small-cell lung cancer (NSCLC) remains elusive. Hence, the current study aimed to investigate this topic. METHODS Peripheral blood mononuclear cells from 263 NSCLC patients before treatment and 50 health controls (HC) were used for CDC42 determination by reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS CDC42 expression was higher in NSCLC patients than HCs (p < 0.001). Besides, elevated CDC42 expression was correlated with the occurrence of lymph node (LYN) metastasis (p = 0.003) and advanced TNM stage (p = 0.007), but not related to other tumor features, demographic characteristics, comorbidities, nor neoadjuvant/adjuvant chemotherapy (all p > 0.05). Additionally, elevated CDC42 expression was correlated with unfavorable accumulating disease-free survival (DFS) (p < 0.001) and overall survival (OS) (p = 0.025). More importantly, multivariate Cox's proportional hazard regression analysis revealed that elevated CDC42 expression (hazard ratio (HR): 1.284, p < 0.001) and higher TNM stage (HR: 1.428, p = 0.003) were independently associated with shorter DFS, meanwhile elevated CDC42 expression (HR: 1.193, p = 0.035), higher pathological grade (HR: 1.558, p = 0.003), higher TNM stage (HR: 1.703, p = 0.001) and higher Eastern Cooperative Oncology Group performance status (ECOG PS) score (HR: 1.538, p = 0.038) were independently correlated with unsatisfying OS. CONCLUSION Circulating CDC42 is highly expressed with its overexpression linked with LYN metastasis, poor DFS, and OS in NSCLC patients.
Collapse
Affiliation(s)
- Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Daihong Wan
- Department of Surgical Anesthesiology, Huangshi Central Hospital, (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| |
Collapse
|
66
|
Rajendran S, Swaroop SS, Roy J, Inemai E, Murugan S, Rayala SK, Venkatraman G. p21 activated kinase-1 and tamoxifen - A deadly nexus impacting breast cancer outcomes. Biochim Biophys Acta Rev Cancer 2021; 1877:188668. [PMID: 34896436 DOI: 10.1016/j.bbcan.2021.188668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Tamoxifen is a commonly used drug in the treatment of ER + ve breast cancers since 1970. However, development of resistance towards tamoxifen limits its remarkable clinical success. In this review, we have attempted to provide a brief overview of multiple mechanism that may lead to tamoxifen resistance, with a special emphasis on the roles played by the oncogenic kinase- PAK1. Analysing the genomic data sets available in the cBioPortal, we found that PAK1 gene amplification significantly affects the Relapse Free Survival of the ER + ve breast cancer patients. While PAK1 is known to promote tamoxifen resistance by phosphorylating ERα at Ser305, existing literature suggests that PAK1 can fuel up tamoxifen resistance obliquely by phosphorylating other substrates. We have summarised some of the approaches in the mass spectrometry based proteomics, which would enable us to study the tamoxifen resistance specific phosphoproteomic landscape of PAK1. We also propose that elucidating the multiple mechanisms by which PAK1 promotes tamoxifen resistance might help us discover druggable targets and biomarkers.
Collapse
Affiliation(s)
- Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Srikanth Swamy Swaroop
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Joydeep Roy
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Ezhil Inemai
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
67
|
Magne N, Rousseau V, Duarte K, Poëa-Guyon S, Gleize V, Mutel A, Schmitt C, Castel H, Idbaih A, Huillard E, Sanson M, Barnier JV. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell Oncol (Dordr) 2021; 44:1257-1271. [PMID: 34550532 DOI: 10.1007/s13402-021-00635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Gliomas are the most lethal adult primary brain cancers. Recent advances in their molecular characterization have contributed to a better understanding of their pathophysiology, but there is still a need to identify key genes controling glioma cell proliferation and differentiation. The p21-activated kinases PAK1 and PAK2 play essential roles in cell division and brain development and are well-known oncogenes. In contrast, the role of PAK3 in cancer is poorly understood. It is known, however, that this gene is involved in brain ontogenesis and has been identified as a gene of the proneural subtype signature in glioblastomas. METHODS To better understand the role of PAK kinases in the pathophysiology of gliomas, we conducted expression analyses by querying multiple gene expression databases and analyzing primary human glioma samples. We next studied PAK3 expression upon differentiation in patient-derived cell lines (PDCLs) and the effects of PAK3 inhibition by lentiviral-mediated shRNA on glioma cell proliferation, differentiation and tumor growth. RESULTS We show that contrary to PAK1 and PAK2, high PAK3 expression positively correlates with a longer survival of glioma patients. We also found that PAK3 displays differential expression patterns between glioma sub-groups with a higher expression in 1p/19q-codeleted oligodendrogliomas, and is highly expressed in tumors and PDCLs of the proneural subtype. In PDCLs, high PAK3 expression negatively correlated with proliferation and positively correlated with neuronal differentiation. Inhibition of PAK3 expression increased PDCL proliferation and glioma tumor growth in nude mice. CONCLUSIONS Our results indicate that PAK3 plays a unique role among PAKs in glioma development and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Nathalie Magne
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Véronique Rousseau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Kévin Duarte
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sandrine Poëa-Guyon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Vincent Gleize
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Alexandre Mutel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire Différenciation Et Communication Neuronale Et Neuroendocrine, Institut de Recherche Et D'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Charlotte Schmitt
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Hélène Castel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire Différenciation Et Communication Neuronale Et Neuroendocrine, Institut de Recherche Et D'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Jean-Vianney Barnier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
68
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
69
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
70
|
Li B, Jia R, Li W, Zhou Y, Guo D, Teng Q, Du S, Li M, Li W, Sun T, Ma D, Ji M, Ji C. PAK1 Mediates Bone Marrow Stromal Cell-Induced Drug Resistance in Acute Myeloid Leukemia via ERK1/2 Signaling Pathway. Front Cell Dev Biol 2021; 9:686695. [PMID: 34307365 PMCID: PMC8297649 DOI: 10.3389/fcell.2021.686695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance. Methods The GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance. Results p21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1. Conclusion p21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Banban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongmei Guo
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Qingliang Teng
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Shenghong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wěi Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
71
|
Zhang D, Jiang Q, Ge X, Shi Y, Ye T, Mi Y, Xie T, Li Q, Ye Q. RHOV promotes lung adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int J Biol Sci 2021; 17:2622-2632. [PMID: 34326698 PMCID: PMC8315012 DOI: 10.7150/ijbs.59939] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common type of lung cancer with high frequent metastasis and a high death rate. However, genes responsible for LUAD metastasis are still largely unknown. Here, we identify an important role of ras homolog family member V (RHOV) in LUAD metastasis using a combination of bioinformatic analysis and functional experiments. Bioinformatic analysis shows five hub LUAD metastasis driver genes (RHOV, ZIC5, CYP4B1, GPR18 and TCP10L2), among which RHOV is the most significant gene associated with LUAD metastasis. High RHOV expression predicted shorter overall survival in LUAD patients. RHOV overexpression promotes proliferation, migration, and invasion of LUAD cells, whereas RHOV knockdown inhibits these biological behaviors. Moreover, knockdown of RHOV suppresses LUAD tumor growth and metastasis in nude mice. Mechanistically, RHOV activates Jun N-terminal Kinase (JNK)/c-Jun signalling pathway, an important pathway in lung cancer development and progression, and regulates the expression of markers of epithelial-to-mesenchymal transition, a process involved in cancer cell migration, invasion and metastasis. RHOV-induced malignant biological behaviors are inhibited by pyrazolanthrone, a JNK inhibitor. Our findings indicate a critical role of RHOV in LUAD metastasis and may provide a biomarker for prognostic prediction and a target for LUAD therapy.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Xiangwei Ge
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yanzhu Shi
- Medical College, Guizhou University, Guiyang 550025, P.R. China
| | - Tianxing Ye
- College of Medicine, Yanbian University, Yanji 133000, P.R. China
| | - Yue Mi
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Tian Xie
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, P.R. China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, P.R. China
| |
Collapse
|
72
|
Zhong H, Xu Y, Wang J, Cao Q, Hu L, Sun D. Overexpression of microRNA-19a-3p promotes lymph node metastasis of esophageal squamous cell carcinoma via the RAC1/CDC42-PAK1 pathway. Transl Cancer Res 2021; 10:2694-2706. [PMID: 35116581 PMCID: PMC8797415 DOI: 10.21037/tcr-21-254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND A tendency towards extensive regional lymph node metastasis (LNM) is a typical clinical characteristic of esophageal squamous cell carcinoma (ESCC). Up-regulated microRNA (miR)-19a-3p was verified as a predictor of LNM in ESCC in previous microarray analyses, but the underlying mechanisms remain unclear. Here, in vitro experiments were performed to confirm the effect of miR-19a-3p on promoting LNM and to explore the underlying mechanisms. METHODS KYSE-150 and TE-1 cell lines were transfected with lentiviral vectors to inhibit miR-19a-3p (LV-miR-19a-3p-inhibition), and cell proliferation, invasion, and migration were assessed. Target genes of miR-19a-3p were identified by sequencing analysis and quantitative reverse transcription PCR (qRT-PCR); Western blotting was performed to confirm targets and explore the potential mechanisms underlying the effect of miR-19a-3p on LNM. RESULTS miR-19a-3p had no effect on ESCC cell proliferation, whereas miR-19a-3p overexpression promoted the invasion and migration of ESCC cells. qRT-PCR verification and western blot analysis showed that LV-miR-19a-3p-inhibition downregulated cell division cycle 42 (CDC42), Rac family small GTPase 1 (RAC1), and p21 activated kinase 1 (PAK1). CONCLUSIONS Overexpression of miR-19a-3p increased the invasion and migration of ESCC cells via the RAC1/CDC42-PAK1 pathway, suggesting that this pathway mediates the effect of miR-19a-3p on promoting LNM in ESCC.
Collapse
Affiliation(s)
- Hai Zhong
- Department of Radiology, the Second Hospital of Shandong University, Jinan, China
| | - Ying Xu
- Cancer Center, the Second Hospital of Shandong University, Jinan, China
| | - Jihua Wang
- Cancer Center, the Second Hospital of Shandong University, Jinan, China
| | - Qianqian Cao
- Cancer Center, the Second Hospital of Shandong University, Jinan, China
| | - Likuan Hu
- Cancer Center, Qilu Hospital, Shandong University, Jinan, China
| | - Dianshui Sun
- Cancer Center, the Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
73
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
74
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
75
|
PAK1 Regulates MEC-17 Acetyltransferase Activity and Microtubule Acetylation during Proplatelet Extension. Int J Mol Sci 2020; 21:ijms21207531. [PMID: 33066011 PMCID: PMC7589885 DOI: 10.3390/ijms21207531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mature megakaryocytes extend long processes called proplatelets from which platelets are released in the blood stream. The Rho GTPases Cdc42 and Rac as well as their downstream target, p21-activated kinase 2 (PAK2), have been demonstrated to be important for platelet formation. Here we address the role, during platelet formation, of PAK1, another target of the Rho GTPases. PAK1 decorates the bundled microtubules (MTs) of megakaryocyte proplatelets. Using a validated cell model which recapitulates proplatelet formation, elongation and platelet release, we show that lack of PAK1 activity increases the number of proplatelets but restrains their elongation. Moreover, in the absence of PAK1 activity, cells have hyperacetylated MTs and lose their MT network integrity. Using inhibitors of the tubulin deacetylase HDAC6, we demonstrate that abnormally high levels of MT acetylation are not sufficient to increase the number of proplatelets but cause loss of MT integrity. Taken together with our previous demonstration that MT acetylation is required for proplatelet formation, our data reveal that MT acetylation levels need to be tightly regulated during proplatelet formation. We identify PAK1 as a direct regulator of the MT acetylation levels during this process as we found that PAK1 phosphorylates the MT acetyltransferase MEC-17 and inhibits its activity.
Collapse
|