51
|
Chen P, Ning X, Li W, Pan Y, Wang L, Li H, Fan X, Zhang J, Luo T, Wu Y, Ou C, Chen M. Fabrication of Tβ4-Exosome-releasing artificial stem cells for myocardial infarction therapy by improving coronary collateralization. Bioact Mater 2022; 14:416-429. [PMID: 35386821 PMCID: PMC8964820 DOI: 10.1016/j.bioactmat.2022.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, stem cell transplantations in cardiac repair are limited owing to disadvantages, such as immunological rejection and poor cell viability. Although direct injection of exosomes can have a curative effect similar to that of stem cell transplantation, high clearance hinders its application in clinical practice. Previous reports suggested that induction of coronary collateralization can be a desired method of adjunctive therapy for someone who had missed the optimal operation time to attenuate myocardial ischemia. In this study, to mimic the paracrine and biological activity of stem cells, we developed artificial stem cells that can continuously release Tβ4-exosomes (Tβ4-ASCs) by encapsulating specific exosomes within microspheres using microfluidics technology. The results show that Tβ4-ASCs can greatly promote coronary collateralization in the periphery of the myocardial infarcted area, and its therapeutic effect is superior to that of directly injecting the exosomes. In addition, to better understand how it works, we demonstrated that the Tβ4-ASC-derived exosomes can enhance the angiogenic capacity of coronary endothelial cells (CAECs) via the miR-17-5p/PHD3/Hif-1α pathway. In brief, as artificial stem cells, Tβ4-ASCs can constantly release functional exosomes and stimulate the formation of collateral circulation after myocardial infarction, providing a feasible and alternative method for clinical revascularization. Inspired by the paracrine of stem cells, we fabricated artificial stem cells (Tβ4-ASCs) by loading engineered Tβ4-exosomes with microspheres using microfluidics technology. Tβ4-ASCs stimulate the formation of coronary collateralization in myocardial infarcted area through a slowly sustained release of engineered Tβ4-exosomes. Tβ4-ASCs improve coronary collateralization via the miR-17-5p/PHD3/Hif-1α signaling pathway.
Collapse
Affiliation(s)
- Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaodong Ning
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weirun Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxuan Pan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xianglin Fan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiexin Zhang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tiantian Luo
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Corresponding author.
| | - Caiwen Ou
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| | - Minsheng Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| |
Collapse
|
52
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles as Idiopathic Pulmonary Fibrosis Microenvironment Targeted Delivery. Cells 2022; 11:cells11152322. [PMID: 35954166 PMCID: PMC9367455 DOI: 10.3390/cells11152322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) affects an increasing number of people globally, yet treatment options remain limited. At present, conventional treatments depending on drug therapy do not show an ideal effect in reversing the lung damage or extending the lives of IPF patients. In recent years, more and more attention has focused on extracellular vesicles (EVs) which show extraordinary therapeutic effects in inflammation, fibrosis disease, and tissue damage repair in many kinds of disease therapy. More importantly, EVs can be modified or used as a drug or cytokine delivery tool, targeting injury sites to enhance treatment efficiency. In light of this, the treatment strategy of mesenchymal stem cell-extracellular vesicles (MSC-EVs) targeting the pulmonary microenvironment for IPF provides a new idea for the treatment of IPF. In this review, we summarized the inflammation, immune dysregulation, and extracellular matrix microenvironment (ECM) disorders in the IPF microenvironment in order to reveal the treatment strategy of MSC-EVs targeting the pulmonary microenvironment for IPF.
Collapse
|
53
|
Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022; 12:4879-4903. [PMID: 35836815 PMCID: PMC9274746 DOI: 10.7150/thno.72812] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/05/2022] [Indexed: 01/12/2023] Open
Abstract
In recent decades, extracellular vesicles (EVs), as bioactive cell-secreted nanoparticles which are involved in various physiological and pathological processes including cell proliferation, immune regulation, angiogenesis and tissue repair, have emerged as one of the most attractive nanotherapeutics for regenerative medicine. Herein we provide a systematic review of the latest progress of EVs for regenerative applications. Firstly, we will briefly introduce the biogenesis, function and isolation technology of EVs. Then, the underlying therapeutic mechanisms of the native unmodified EVs and engineering strategies of the modified EVs as regenerative entities will be discussed. Subsequently, the main focus will be placed on the tissue repair and regeneration applications of EVs on various organs including brain, heart, bone and cartilage, liver and kidney, as well as skin. More importantly, current clinical trials of EVs for regenerative medicine will also be briefly highlighted. Finally, the future challenges and insightful perspectives of the currently developed EV-based nanotherapeutics in biomedicine will be discussed. In short, the bioactive EV-based nanotherapeutics have opened new horizons for biologists, chemists, nanoscientists, pharmacists, as well as clinicians, making possible powerful tools and therapies for regenerative medicine.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, 510630, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
54
|
Zhang X, Wu Y, Cheng Q, Bai L, Huang S, Gao J. Extracellular Vesicles in Cardiovascular Diseases: Diagnosis and Therapy. Front Cell Dev Biol 2022; 10:875376. [PMID: 35721498 PMCID: PMC9198246 DOI: 10.3389/fcell.2022.875376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality. Therapy of CVDs is still a great challenge since many advanced therapies have been developed. Multiple cell types produce nano-sized extracellular vesicles (EVs), including cardiovascular system-related cells and stem cells. Compelling evidence reveals that EVs are associated with the pathophysiological processes of CVDs. Recently researches focus on the clinical transformation in EVs-based diagnosis, prognosis, therapies, and drug delivery systems. In this review, we firstly discuss the current knowledge about the biophysical properties and biological components of EVs. Secondly, we will focus on the functions of EVs on CVDs, and outline the latest advances of EVs as prognostic and diagnostic biomarkers, and therapeutic agents. Finally, we will introduce the specific application of EVs as a novel drug delivery system and its application in CVDs therapy. Specific attention will be paid to summarize the perspectives, challenges, and applications on EVs’ clinical and industrial transformation.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- *Correspondence: Xiaojing Zhang, ; Jun Gao,
| | - Yuping Wu
- Department of Scientific Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Qifa Cheng
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Liyang Bai
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shuqiang Huang
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jun Gao
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- *Correspondence: Xiaojing Zhang, ; Jun Gao,
| |
Collapse
|
55
|
Lazana I, Anagnostopoulos C. A Novel, Cell-Free Therapy to Enter Our Hearts: The Potential Role of Small EVs in Prevention and Treatment of CVD. Int J Mol Sci 2022; 23:ijms23073662. [PMID: 35409022 PMCID: PMC8998514 DOI: 10.3390/ijms23073662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Heart disease constitutes one of the leading causes of morbidity and mortality worldwide. Current therapeutic techniques, such as interventional revascularization, although lifesaving, come along with myocardial injury related to the reperfusion itself, called ischemia-reperfusion injury, which is an added factor for increased morbidity. For that reason, there is an imperative need for novel therapies to be developed that would either prevent or treat myocardial injury. Extracellular vesicles (EVs), specifically small EVs (sEVs), have proven to be important mediators of intercellular communication. The fact that they carry information reflecting that of the parental cell makes them an ideal candidate for diagnostic purposes. sEVs derived from immunoregulatory cells, such as mesenchymal stem cells or cardiac progenitor cells, could also be used therapeutically to exert the primary immunomodulatory function but without carrying the side effects related to cell therapy. Furthermore, as a natural product, they have the added advantage of low immunogenicity, offering the potential for safe drug delivery. In the field of cardiology, there has been great interest in the therapeutic and diagnostic potential of sEVs with significant translational potential. Here, we review the potential use of sEVs in the context of myocardial ischemia and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ioanna Lazana
- King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Correspondence:
| | | |
Collapse
|
56
|
Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 2022. [DOI: 10.1002/viw.20200153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mei Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- The Laboratory Center for Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Hao Wu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Ning Gu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
57
|
Dehkordi NR, Dehkordi NR, Farjoo MH. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur J Pharmacol 2022; 920:174839. [DOI: 10.1016/j.ejphar.2022.174839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
58
|
Fathi I, Miki T. Human Amniotic Epithelial Cells Secretome: Components, Bioactivity, and Challenges. Front Med (Lausanne) 2022; 8:763141. [PMID: 35083233 PMCID: PMC8784524 DOI: 10.3389/fmed.2021.763141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissue have received significant attention as a promising tool in regenerative medicine. Several studies demonstrated their anti-inflammatory, anti-fibrotic, and tissue repair potentials. These effects were further shown to be retained in the conditioned medium of hAECs, suggesting their paracrine nature. The concept of utilizing the hAEC-secretome has thus evolved as a therapeutic cell-free option. In this article, we review the different components and constituents of hAEC-secretome and their influence as demonstrated through experimental studies in the current literature. Studies examining the effects of conditioned medium, exosomes, and micro-RNA (miRNA) derived from hAECs are included in this review. The challenges facing the application of this cell-free approach will also be discussed based on the current evidence.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
59
|
Nazimek K, Bryniarski K. Increasing the Therapeutic Efficacy of Extracellular Vesicles From the Antigen-Specific Antibody and Light Chain Perspective. Front Cell Dev Biol 2021; 9:790722. [PMID: 34901032 PMCID: PMC8652241 DOI: 10.3389/fcell.2021.790722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their exceptional properties, extracellular vesicles (EVs) receive special attention as next generation biotherapeutics and vehicles for drug delivery. However, despite having many advantages over cell-based therapies, EVs usually exert lower therapeutic efficacy. This results from a number of hurdles that are faced by the EV-based approaches. Administered EVs could be rapidly cleared by the mononuclear phagocytes as well as can randomly distribute within various tissues, making tissue penetration and cell targeting insufficient. However, recent research findings imply that these limitations could be overcome with the use of antigen-specific antibodies and light chains. Major histocompatibility complex (MHC) class II-expressing EVs have been shown to form aggregates after co-incubation with antigen-specific antibodies, which greatly enhanced their biological efficacy. On the other hand, EVs could be coated with antibody light chains of chosen specificity to direct them towards desired target cell population. Both findings open up a promising perspective to achieve the highest efficacy of the EV-based approaches. Herein we discuss the opportunities for enhancing extracellular vesicle’s biological activity by using specific antibodies and light chains in the context of the challenges faced by such therapeutic approach.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
60
|
Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, Wang X, Ma C, Fan G, Wang W. Restoring Cardiac Functions after Myocardial Infarction-Ischemia/Reperfusion via an Exosome Anchoring Conductive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56892-56908. [PMID: 34823355 DOI: 10.1021/acsami.1c16481] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both myocardial infarction (MI) and the follow-up reperfusion will lead to an inevitable injury to myocardial tissues, such as cardiac dysfunctions, fibrosis, and reduction of intercellular cell-to-cell interactions. Recently, exosomes (Exo) derived from stem cells have demonstrated a robust capability to promote angiogenesis and tissue repair. However, the short half-life of Exo and rapid clearance lead to insufficient therapeutic doses in the lesion area. Herein, an injectable conductive hydrogel is constructed to bind Exo derived from human umbilical cord mesenchymal stem cells to treat myocardial injuries after myocardial infarction-ischemia/reperfusion (MI-I/R). To this end, a hyperbranched epoxy macromer (EHBPE) grafted by an aniline tetramer (AT) was synthesized to cross-link thiolated hyaluronic acid (HA-SH) and thiolated Exo anchoring a CP05 peptide via an epoxy/thiol "click" reaction. The resulting Gel@Exo composite system possesses multiple features, such as controllable gelation kinetics, shear-thinning injectability, conductivity matching the native myocardium, soft and dynamic stability adapting to heartbeats, and excellent cytocompatibility. After being injected into injured hearts of rats, the hydrogel effectively prolongs the retention of Exo in the ischemic myocardium. The cardiac functions have been considerably improved by Gel@Exo administration, as indicated by the enhancing ejection fraction and fractional shortening, and reducing fibrosis area. Immunofluorescence staining and reverse transcription-polymerase chain reaction (RT-PCR) results demonstrate that the expression of cardiac-related proteins (Cx43, Ki67, CD31, and α-SMA) and genes (VEGF-A, VEGF-B, vWF, TGF-β1, MMP-9, and Serca2a) are remarkably upregulated. The conductive Gel@Exo system can significantly improve cell-to-cell interactions, promote cell proliferation and angiogenesis, and result in a prominent therapeutic effect on MI-I/R, providing a promising therapeutic method for injured myocardial tissues.
Collapse
Affiliation(s)
- Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Si Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xianhua Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xin Jin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaodan Wang
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanrui Ma
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
61
|
Wagner KT, Radisic M. A New Role for Extracellular Vesicles in Cardiac Tissue Engineering and Regenerative Medicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100047. [PMID: 34927167 PMCID: PMC8680295 DOI: 10.1002/anbr.202100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Discovering new therapies to treat heart disease requires improved understanding of cardiac physiology at a cellular level. Extracellular vesicles (EVs) are plasma membrane-bound nano- and microparticles secreted by cells and known to play key roles in intercellular communication, often through transfer of biomolecular cargo. Advances in EV research have established techniques for EV isolation from tissue culture media or biofluids, as well as standards for quantitation and biomolecular characterization. EVs released by cardiac cells are known to be involved in regulating cardiac physiology as well as in the progression of myocardial diseases. Due to difficulty accessing the heart in vivo, advanced in vitro cardiac 'tissues-on-a-chip' have become a recent focus for studying EVs in the heart. These physiologically relevant models are producing new insight into the role of EVs in cardiac physiology and disease while providing a useful platform for screening novel EV-based therapeutics for cardiac tissue regeneration post-injury. Numerous hurdles have stalled the clinical translation of EV therapeutics for heart patients, but tissue-on-a-chip models are playing an important role in bridging the translational gap, improving mechanistic understanding of EV signalling in cardiac physiology, disease, and repair.
Collapse
Affiliation(s)
- Karl T Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
62
|
Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179226. [PMID: 34502146 PMCID: PMC8431142 DOI: 10.3390/ijms22179226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs–PEG–cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs–PEG–cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.
Collapse
|
63
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|
64
|
Mao Y, Qamar M, Qamar SA, Khan MI, Bilal M, Iqbal HM. Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. J Drug Deliv Sci Technol 2021; 64:102681. [DOI: 10.1016/j.jddst.2021.102681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
65
|
Chachques JC, Gardin C, Lila N, Ferroni L, Migonney V, Falentin-Daudre C, Zanotti F, Trentini M, Brunello G, Rocca T, Gasbarro V, Zavan B. Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines 2021; 9:824. [PMID: 34356888 PMCID: PMC8301323 DOI: 10.3390/biomedicines9070824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Chiara Gardin
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Nermine Lila
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Veronique Migonney
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Celine Falentin-Daudre
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, University of Padova, 35133 Padova, Italy;
| | - Tiberio Rocca
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
| | - Vincenzo Gasbarro
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
- Department of Medical Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Barbara Zavan
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| |
Collapse
|
66
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|