51
|
Selinger AJ, Cavallin NA, Yanai A, Birol I, Hof F. Template‐Directed Synthesis of Bivalent, Broad‐Spectrum Hosts for Neuromuscular Blocking Agents**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Allison J. Selinger
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd. Victoria BC V8W 2Y2 Canada
| | - Natalie A. Cavallin
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd. Victoria BC V8W 2Y2 Canada
| | - Anat Yanai
- Canada's Michael Smith Genome Sciences Centre BC Cancer Vancouver BC V5Z 4S6 Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre BC Cancer Vancouver BC V5Z 4S6 Canada
- Department of Medical Genetics University of British Columbia Vancouver BC V6T 1Z3 Canada
| | - Fraser Hof
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd. Victoria BC V8W 2Y2 Canada
| |
Collapse
|
52
|
Deng CL, Cheng M, Zavalij PY, Isaacs L. Thermodynamics of Pillararene•Guest Complexation: Blinded Dataset for the SAMPL9 Challenge. NEW J CHEM 2022; 46:995-1002. [PMID: 35250257 PMCID: PMC8896905 DOI: 10.1039/d1nj05209h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report an investigation of the complexation between a water soluble pillararene host (WP6) and a panel of hydrophobic cationic guests (G1 - G20) by a combination of 1H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered saline. We find that WP6 forms 1:1 complexes with Ka values in the 104 - 109 M-1 range driven by favorable enthalpic contributions. This thermodynamic dataset serves as blinded data for the SAMPL9 challenge.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
53
|
Ji QT, Mu XF, Hu DK, Fan LJ, Xiang SZ, Ye HJ, Gao XH, Wang PY. Fabrication of Host-Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and β-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2564-2577. [PMID: 34981928 DOI: 10.1021/acsami.1c19758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular chemistry provides huge potentials and opportunities in agricultural pest management. In an attempt to develop highly bioactive, eco-friendly, and biocompatible supramolecular complexes for managing intractable plant bacterial diseases, herein, a type of interesting adamantane-functionalized 1,3,4-oxadiazole was rationally prepared to facilitate the formation of supramolecular complexes via β-cyclodextrin-adamantane host-guest interactions. Initial antibacterial screening revealed that most of these adamantane-decorated 1,3,4-oxadiazoles were obviously bioactive against three typically destructive phytopathogens. The lowest EC50 values could reach 0.936 (III18), 0.889 (III18), and 2.10 (III19) μg/mL against the corresponding Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Next, the representative supramolecular binary complex III18@β-CD (binding mode 1:1) was successfully fabricated and characterized by 1H nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), high-resolution mass spectrometry (HRMS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Eventually, correlative water solubility and foliar surface wettability were significantly improved after the formation of host-guest assemblies. In vivo antibacterial evaluation found that the achieved supramolecular complex could distinctly alleviate the disease symptoms and promote the control efficiencies against rice bacterial blight (from 34.6-35.7% (III18) to 40.3-43.6% (III18@β-CD)) and kiwi canker diseases (from 41.0-42.3% (III18) to 53.9-68.0% (III18@β-CD)) at 200 μg/mL (active ingredient). The current study can provide a feasible platform and insight for constructing biocompatible supramolecular assemblies for managing destructive bacterial infections in agriculture.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiu-Hui Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
54
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
55
|
Selinger AJ, Cavallin NA, Yanai A, Birol I, Hof F. Template-Directed Synthesis of Bivalent, Broad-Spectrum Hosts for Neuromuscular Blocking Agents*. Angew Chem Int Ed Engl 2021; 61:e202113235. [PMID: 34889016 DOI: 10.1002/anie.202113235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 12/19/2022]
Abstract
We report on the synthesis of bivalent water-soluble calix[4]arene and calix[5]arene hosts, Super-sCx4 and Super-sCx5 as new broad-spectrum supramolecular binders of neuromuscular blocking agents (NMBAs). Synthesis was achieved using the target bisquaternary amine NMBAs as a template to link two highly anionic p-sulfonatocalixarene building blocks in aqueous solution. Bivalent anionic hosts Super-sCx4 and Super-sCx5 bind by engaging both quaternary amines present on a variety of NMBAs. We report low μM binding to structurally diverse alkyl, steroidal, curarine and benzylisoquinoline NMBAs with high selectivity over the neurotransmitter acetylcholine and a variety of other hydrophobic amines.
Collapse
Affiliation(s)
- Allison J Selinger
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC V8W 2Y2, Canada
| | - Natalie A Cavallin
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC V8W 2Y2, Canada
| | - Anat Yanai
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
56
|
Pan YC, Yue YX, Hu XY, Li HB, Guo DS. A Supramolecular Antidote to Macromolecular Toxins Prepared through Coassembly of Macrocyclic Amphiphiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104310. [PMID: 34418189 DOI: 10.1002/adma.202104310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Poisoning is a leading cause of admission to medical emergency departments and intensive care units. Supramolecular detoxification, which involves injecting supramolecular receptors that bind with toxins to suppress their biological activity, is an emerging strategy for poisoning treatment; it has few requirements and a broad application scope. However, it is still a formidable challenge to design supramolecular therapeutic materials as an antidote to macromolecular toxins, because the large size, flexible conformation, and presence of multiple and diverse binding sites of biomacromolecules hinder their recognition. Herein, a supramolecular antidote to macromolecular toxins is developed through the coassembly of macrocyclic amphiphiles, relying on heteromultivalent recognition between the coassembled components and toxic macromolecules. The coassembly of amphiphilic cyclodextrin and calixarene strongly and selectively captures melittin, a toxin studied herein; this imparts various therapeutic effects such as inhibiting the interactions of melittin with cell membranes, alleviating melittin cytotoxicity and hemolytic toxicity, reducing the mortality rate of melittin-poisoned mice, and mitigating damage to major organs. The use of the proposed antidote overcomes the limitation of supramolecular detoxification applicability to only small-molecular toxins. The antidote can also detoxify other macromolecular toxins as long as selective and strong binding is achieved because of the coassembling tunability.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
57
|
Shan P, Lin R, Liu M, Tao Z, Xiao X, Liu J. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
58
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
59
|
Cheng M, Isaacs L. Acyclic Cucurbituril Featuring Pendant Cyclodextrins. Supramol Chem 2021; 33:53-62. [PMID: 34305377 PMCID: PMC8294166 DOI: 10.1080/10610278.2021.1927033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
We report the design and synthesis of the acyclic cucurbit[n]uril-β-cyclodextrin chimeric host H1. The goal of the study is to deepen the cavity of the receptor to allow β-CD complexation of moieties on the guest (especially fentanyl) that protrude from the cavity of the primary acyclic CB[n] binding site to enhance binding affinity and deliver new supramolecular antidotes for fentanyl intoxication. 1H NMR spectroscopy was used to deduce the geometry of the complexes between H1 and H2 and the guest panel (G1 - G8 and fentanyl) whereas isothermal titration calorimetry was used to determine the thermodynamic parameters of complexation. Hosts H1 and H2 retain the essential molecular recognition features of CB[n] receptors, but chimeric host H1 binds slightly stronger toward the guest panel than H2 for reasons that remain unclear. Compared to tetraanionic hosts M1 and M2, the dianionic hosts H1 and H2 are less potent receptors which reflects the importance of electrostatic (ion-ion and ion-dipole) interactions in this series of hosts. The work highlights the challenges inherent in the optimization of binding affinity of hosts as potential supramolecular antidotes.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
60
|
Quan J, Zhang X, Ding Y, Li S, Qiu Y, Wang R, Zhou X. Cucurbit[7]uril as a Broad-Spectrum Antiviral Agent against Diverse RNA Viruses. Virol Sin 2021; 36:1165-1176. [PMID: 34037947 DOI: 10.1007/s12250-021-00404-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022] Open
Abstract
The emergence and re-emergence of RNA virus outbreaks highlight the urgent need for the development of broad-spectrum antivirals. Polyamines are positively-charged small molecules required for the infectivity of a wide range of RNA viruses, therefore may become good antiviral targets. Cucurbit[7]uril (CB[7]), a synthetic macrocyclic molecule, which can bind with amine-based organic compounds with high affinity, has been shown to regulate bioactive molecules through competitive binding. In this study, we tested the antiviral activity of CB[7] against diverse RNA viruses, including a panel of enteroviruses (i.e. human enterovirus A71, coxsackievirus A16, coxsackievirus B3, and echovirus 11), some flaviviruses (i.e. dengue virus and Zika virus), and an alphavirus representative Semliki forest virus. CB[7] can inhibit virus replications in a variety of cell lines, and its mechanism of action is through the competitive binding with polyamines. Our findings not only for the first time provide evidence that CB[7] can be a promising broad-spectrum antiviral agent, but more importantly, offer a novel therapeutic strategy to fight against RNA viruses by supramolecular sequestration of polyamines.
Collapse
Affiliation(s)
- Jia Quan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
61
|
Ruz P, Banerjee S, Khurana R, Barooah N, Sudarsan V, Bhasikuttan AC, Mohanty J. Metal-Free Supramolecular Catalytic Hydrolysis of Ammonia Borane through Cucurbituril Nanocavitands. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16218-16226. [PMID: 33793201 DOI: 10.1021/acsami.0c22213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia borane (AB) is considered a potential "on-board" hydrogen storage material. However, its implementation as a hydrogen reservoir in fuel cells is lacking due to the extremely slow release of hydrogen at room-temperature hydrolysis. In this study, a metal-free supramolecular strategy is demonstrated at room temperature to increase the hydrolysis rate and yield of hydrogen along with significant reduction in ammonia release by using cucurbit[5/8]uril (CB5/CB8) nanocavitands as catalysts. The complex of AB with CB stabilizes the ammonium ion at the host portals, which reduces ammonia release and enhances hydrogen yield. The complexation brings down the activation energy of hydrolysis from 103.8 to ∼27.5 kJ mol-1 (for CB5), a value close to the Pt/Pd nanoparticle-based catalysts reported so far. The high catalytic performance and reusability of CB catalysts at very low concentration make AB a promising supramolecular alternative for a sustainable "on-board" energy source.
Collapse
Affiliation(s)
- Priyanka Ruz
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Seemita Banerjee
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Raman Khurana
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vasanthakumaran Sudarsan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
62
|
|
63
|
Soni SS, Alsasa A, Rodell CB. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front Chem 2021; 9:658548. [PMID: 33889565 PMCID: PMC8055865 DOI: 10.3389/fchem.2021.658548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a central role in the development and progression of human disease. Modulation of the immune response is therefore a critical therapeutic target that enables us to approach some of the most vexing problems in medicine today such as obesity, cancer, viral infection, and autoimmunity. Methods of manipulating the immune system through therapeutic delivery centralize around two common themes: the local delivery of biomaterials to affect the surrounding tissue or the systemic delivery of soluble material systems, often aided by context-specific cell or tissue targeting strategies. In either case, supramolecular interactions enable control of biomaterial composition, structure, and behavior at the molecular-scale; through rational biomaterial design, the realization of next-generation immunotherapeutics and immunotheranostics is therefore made possible. This brief review highlights methods of harnessing macromolecular interaction for immunotherapeutic applications, with an emphasis on modes of drug delivery.
Collapse
Affiliation(s)
| | | | - Christopher B. Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|