51
|
Shi CX, Kortüm KM, Zhu YX, Bruins LA, Jedlowski P, Votruba PG, Luo M, Stewart RA, Ahmann J, Braggio E, Stewart AK. CRISPR Genome-Wide Screening Identifies Dependence on the Proteasome Subunit PSMC6 for Bortezomib Sensitivity in Multiple Myeloma. Mol Cancer Ther 2017; 16:2862-2870. [PMID: 28958990 DOI: 10.1158/1535-7163.mct-17-0130] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Abstract
Bortezomib is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. Consequently, we employed CRISPR targeting 19,052 human genes to identify unbiased targets that contribute to bortezomib resistance. Specifically, we engineered an RPMI8226 multiple myeloma cell line to express Cas9 infected by lentiviral vector CRISPR library and cultured derived cells in doses of bortezomib lethal to parental cells. Sequencing was performed on surviving cells to identify inactivated genes responsible for drug resistance. From two independent whole-genome screens, we selected 31 candidate genes and constructed a second CRISPR sgRNA library, specifically targeting each of these 31 genes with four sgRNAs. After secondary screening for bortezomib resistance, the top 20 "resistance" genes were selected for individual validation. Of these 20 targets, the proteasome regulatory subunit PSMC6 was the only gene validated to reproducibly confer bortezomib resistance. We confirmed that inhibition of chymotrypsin-like proteasome activity by bortezomib was significantly reduced in cells lacking PSMC6. We individually investigated other members of the PSMC group (PSMC1 to 5) and found that deficiency in each of those subunits also imparts bortezomib resistance. We found 36 mutations in 19S proteasome subunits out of 895 patients in the IA10 release of the CoMMpass study (https://themmrf.org). Our findings demonstrate that the PSMC6 subunit is the most prominent target required for bortezomib sensitivity in multiple myeloma cells and should be examined in drug-refractory populations. Mol Cancer Ther; 16(12); 2862-70. ©2017 AACR.
Collapse
Affiliation(s)
- Chang-Xin Shi
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - K Martin Kortüm
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona.,Department of Hematology, University Hospital Würzburg, Würzburg, Germany
| | - Yuan Xiao Zhu
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Laura A Bruins
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Patrick Jedlowski
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | | | - Moulun Luo
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, Arizona
| | - Robert A Stewart
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Jonathan Ahmann
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - A Keith Stewart
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona. .,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
52
|
Regulating protein breakdown through proteasome phosphorylation. Biochem J 2017; 474:3355-3371. [PMID: 28947610 DOI: 10.1042/bcj20160809] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
The ubiquitin proteasome system degrades the great majority of proteins in mammalian cells. Countless studies have described how ubiquitination promotes the selective degradation of different cell proteins. However, there is a small but the growing literature that protein half-lives can also be regulated by post-translational modifications of the 26S proteasome. The present study reviews the ability of several kinases to alter proteasome function through subunit phosphorylation. For example, PKA (protein kinase A) and DYRK2 (dual-specificity tyrosine-regulated kinase 2) stimulate the proteasome's ability to degrade ubiquitinated proteins, peptides, and adenosine triphosphate, while one kinase, ASK1 (apoptosis signal-regulating kinase 1), inhibits proteasome function during apoptosis. Proteasome phosphorylation is likely to be important in regulating protein degradation because it occurs downstream from many hormones and neurotransmitters, in conditions that raise cyclic adenosine monophosphate or cyclic guanosine monophosphate levels, after calcium influx following synaptic depolarization, and during phases of the cell cycle. Beyond its physiological importance, pharmacological manipulation of proteasome phosphorylation has the potential to combat various diseases. Inhibitors of phosphodiesterases by activating PKA or PKG (protein kinase G) can stimulate proteasomal degradation of misfolded proteins that cause neurodegenerative or myocardial diseases and even reduce the associated pathology in mouse models. These observations are promising since in many proteotoxic diseases, aggregation-prone proteins impair proteasome function, and disrupt protein homeostasis. Conversely, preventing subunit phosphorylation by DYRK2 slows cell cycle progression and tumor growth. However, further research is essential to determine how phosphorylation of different subunits by these (or other) kinases alters the properties of this complex molecular machine and thus influence protein degradation rates.
Collapse
|
53
|
Ben Younes K, Body S, Costé É, Viailly PJ, Miloudi H, Coudre C, Jardin F, Ben Aissa-Fennira F, Sola B. A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. BMC Cancer 2017; 17:538. [PMID: 28797244 PMCID: PMC5553741 DOI: 10.1186/s12885-017-3530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell hemopathy characterized by the t(11;14) translocation and the aberrant overexpression of cyclin D1. This results in an unrestrained cell proliferation. Other genetic alterations are common in MCL cells such as SOX11 expression, mutations of ATM and/or TP53 genes, activation of the NF-κB signaling pathway and NOTCH receptors. These alterations lead to the deregulation of the apoptotic machinery and resistance to drugs. We observed that among a panel of MCL cell lines, REC1 cells were resistant towards genotoxic stress. We studied the molecular basis of this resistance. Methods We analyzed the cell response regarding apoptosis, senescence, cell cycle arrest, DNA damage response and finally the 26S proteasome activity following a genotoxic treatment that causes double strand DNA breaks. Results MCL cell lines displayed various sensitivity/resistance towards genotoxic stress and, in particular, REC1 cells did not enter apoptosis or senescence after an etoposide treatment. Moreover, the G2/M cell cycle checkpoint was deficient in REC1 cells. We observed that three main actors of apoptosis, senescence and cell cycle regulation (cyclin D1, MCL1 and CDC25A) failed to be degraded by the proteasome machinery in REC1 cells. We ruled out a default of the βTrCP E3-ubiquitine ligase but detected a lowered 26S proteasome activity in REC1 cells compared to other cell lines. Conclusion The resistance of MCL cells to genotoxic stress correlates with a low 26S proteasome activity. This could represent a relevant biomarker for a subtype of MCL patients with a poor response to therapies and a high risk of relapse. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3530-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khaoula Ben Younes
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Simon Body
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Élodie Costé
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Pierre-Julien Viailly
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Hadjer Miloudi
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Clémence Coudre
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Fabrice Jardin
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Fatma Ben Aissa-Fennira
- Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Brigitte Sola
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France. .,MICAH, UFR Santé, CHU Côte de Nacre, 14032, Caen Cedex, France.
| |
Collapse
|
54
|
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science 2017; 353:353/6306/aaf1420. [PMID: 27708008 DOI: 10.1126/science.aaf1420] [Citation(s) in RCA: 848] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Julia Hanchard
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Susan D Lee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Erin B Styles
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Jolanda van Leeuwen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Nydia van Dyk
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Elena Kuzmin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jeff S Piotrowski
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Sondra Bahr
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yiqun Chen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Christoph F Kurat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Zhijian Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Natasha Pascoe
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sara Sharifpoor
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Emira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Scott W Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Harsha Garadi Suresh
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yizhao Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hongwei Zhu
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Noel Malod-Dognin
- Computer Science Deptartment, University College London, London WC1E 6BT, UK
| | - Vuk Janjic
- Department of Computing, Imperial College London, UK
| | - Natasa Przulj
- Computer Science Deptartment, University College London, London WC1E 6BT, UK. School of Computing (RAF), Union University, Belgrade, Serbia
| | - Olga G Troyanskaya
- Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Igor Stagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tian Xia
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany. Department of Genetics, School of Medicine and Stanford Genome Technology Center Stanford University, Palo Alto, CA 94304, USA
| | - Claire L Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Adam P Rosebrock
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Amy A Caudy
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1.
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
55
|
Cerqueira PG, Passos-Silva DG, Vieira-da-Rocha JP, Mendes IC, de Oliveira KA, Oliveira CFB, Vilela LFF, Nagem RAP, Cardoso J, Nardelli SC, Krieger MA, Franco GR, Macedo AM, Pena SDJ, Schenkman S, Gomes DA, Guerra-Sá R, Machado CR. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system. Mol Biochem Parasitol 2017; 212:55-67. [PMID: 28137628 DOI: 10.1016/j.molbiopara.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/24/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.
Collapse
Affiliation(s)
- Paula G Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Passos-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João P Vieira-da-Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Cecilia Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karla A de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila F B Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liza F F Vilela
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Marco A Krieger
- Instituto de Biologia Molecular do Paraná, Curitiba, Paraná, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea M Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio D J Pena
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Dawidson A Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Guerra-Sá
- Departamento de Ciências Biológicas & Núcleo de Pesquisa em Ciências Biológicas, Instituto de Ciências Exatas e Biológica, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Carlos R Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
56
|
Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proc Natl Acad Sci U S A 2016; 114:382-387. [PMID: 28028240 DOI: 10.1073/pnas.1619067114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.
Collapse
|
57
|
Mayor T, Sharon M, Glickman MH. Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 2016; 311:C793-C804. [PMID: 27605452 DOI: 10.1152/ajpcell.00198.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Collapse
Affiliation(s)
- Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada;
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; and
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
58
|
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2016; 21:1406-15. [PMID: 26646497 DOI: 10.1038/nm.4001] [Citation(s) in RCA: 587] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of intracellular damage is an almost universal hallmark of aging. An improved understanding of the systems that contribute to cellular protein quality control has shed light on the reasons for the increased vulnerability of the proteome to stress in aging cells. Maintenance of protein homeostasis, or proteostasis, is attained through precisely coordinated systems that rapidly correct unwanted proteomic changes. Here we focus on recent developments that highlight the multidimensional nature of the proteostasis networks, which allow for coordinated protein homeostasis intracellularly, in between cells and even across organs, as well as on how they affect common age-associated diseases when they malfunction in aging.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
59
|
Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol 2016; 34:634-6. [PMID: 27159373 PMCID: PMC4900911 DOI: 10.1038/nbt.3567] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
Abstract
We compare the ability of shRNA and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We find that the precision of the two libraries in detecting essential genes is similar and that combining data from both screens improves performance. Notably, results from the two screens show little correlation, which can be partially explained by identification of distinct essential biological processes with each technology.
Collapse
|
60
|
Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J Biol Chem 2016; 291:13147-59. [PMID: 27129254 DOI: 10.1074/jbc.m116.717652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
The proteasome is an intracellular protease complex consisting of the 20S catalytic core and its associated regulators, including the 19S complex, PA28αβ, PA28γ, PA200, and PI31. Inhibition of the proteasome induces autoregulatory de novo formation of 20S and 26S proteasome complexes. Formation of alternative proteasome complexes, however, has not been investigated so far. We here show that catalytic proteasome inhibition results in fast recruitment of PA28γ and PA200 to 20S and 26S proteasomes within 2-6 h. Rapid formation of alternative proteasome complexes did not involve transcriptional activation of PA28γ and PA200 but rather recruitment of preexisting activators to 20S and 26S proteasome complexes. Recruitment of proteasomal activators depended on the extent of active site inhibition of the proteasome with inhibition of β5 active sites being sufficient for inducing recruitment. Moreover, specific inhibition of 26S proteasome activity via siRNA-mediated knockdown of the 19S subunit RPN6 induced recruitment of only PA200 to 20S proteasomes, whereas PA28γ was not mobilized. Here, formation of alternative PA200 complexes involved transcriptional activation of the activator. Alternative proteasome complexes persisted when cells had regained proteasome activity after pulse exposure to proteasome inhibitors. Knockdown of PA28γ sensitized cells to proteasome inhibitor-mediated growth arrest. Thus, formation of alternative proteasome complexes appears to be a formerly unrecognized but integral part of the cellular response to impaired proteasome function and altered proteostasis.
Collapse
Affiliation(s)
- Vanessa Welk
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Olivier Coux
- the Centre de Recherche de Biochimie Macromoléculaire (CRBM-CNRS UMR 5237), Université de Montpellier, 34293 Montpellier, France, and
| | - Vera Kleene
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Claire Abeza
- the Centre de Recherche de Biochimie Macromoléculaire (CRBM-CNRS UMR 5237), Université de Montpellier, 34293 Montpellier, France, and
| | - Dietrich Trümbach
- the Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Oliver Eickelberg
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany,
| |
Collapse
|
61
|
mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 2015; 112:15790-7. [PMID: 26669439 DOI: 10.1073/pnas.1521919112] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440-443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth.
Collapse
|
62
|
Cho KI, Haney V, Yoon D, Hao Y, Ferreira PA. Uncoupling phototoxicity-elicited neural dysmorphology and death by insidious function and selective impairment of Ran-binding protein 2 (Ranbp2). FEBS Lett 2015; 589:3959-68. [PMID: 26632511 DOI: 10.1016/j.febslet.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Victoria Haney
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yin Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States; Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|