51
|
Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength. J Neurosci 2017; 37:6224-6230. [PMID: 28539418 DOI: 10.1523/jneurosci.0418-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 11/21/2022] Open
Abstract
Action potential-evoked vesicle fusion comprises the majority of neurotransmission within chemical synapses, but action potential-independent spontaneous neurotransmission also contributes to the collection of signals sent to the postsynaptic cell. Previous work has implicated spontaneous neurotransmission in homeostatic synaptic scaling, but few studies have selectively manipulated spontaneous neurotransmission without substantial changes in evoked neurotransmission to study this function in detail. Here we used a quadruple knockdown strategy to reduce levels of proteins within the soluble calcium-binding double C2 domain (Doc2)-like protein family to selectively reduce spontaneous neurotransmission in cultured mouse and rat neurons. Activity-evoked responses appear normal while both excitatory and inhibitory spontaneous events exhibit reduced frequency. Excitatory miniature postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents (mIPSCs), increase in amplitude after quadruple knockdown. This increase in synaptic efficacy correlates with reduced phosphorylation levels of eukaryotic elongation factor 2 and also requires the presence of elongation factor 2 kinase. Together, these data suggest that spontaneous neurotransmission independently contributes to the regulation of synaptic efficacy, and action potential-evoked and spontaneous neurotransmission can be segregated at least partially on a molecular level.SIGNIFICANCE STATEMENT Action potential-evoked and spontaneous neurotransmission have been observed in nervous system circuits as long as methods have existed to measure them. Despite being well studied, controversy still remains about whether these forms of neurotransmission are regulated independently on a molecular level or whether they are simply a continuum of neurotransmission modes. In this study, members of the Doc2 family of presynaptic proteins were eliminated, which caused a reduction in spontaneous neurotransmission, whereas action potential-evoked neurotransmission remained relatively normal. This protein loss also caused an increase in synaptic strength, suggesting that spontaneous neurotransmission is able to communicate independently with the postsynaptic neuron and trigger downstream signaling cascades that regulate the synaptic state.
Collapse
|
52
|
Newman ZL, Hoagland A, Aghi K, Worden K, Levy SL, Son JH, Lee LP, Isacoff EY. Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction. Neuron 2017; 93:1388-1404.e10. [PMID: 28285823 DOI: 10.1016/j.neuron.2017.02.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/18/2016] [Accepted: 02/15/2017] [Indexed: 11/28/2022]
Abstract
Synaptic connections undergo activity-dependent plasticity during development and learning, as well as homeostatic re-adjustment to ensure stability. Little is known about the relationship between these processes, particularly in vivo. We addressed this with novel quantal resolution imaging of transmission during locomotive behavior at glutamatergic synapses of the Drosophila larval neuromuscular junction. We find that two motor input types, Ib and Is, provide distinct forms of excitatory drive during crawling and differ in key transmission properties. Although both inputs vary in transmission probability, active Is synapses are more reliable. High-frequency firing "wakes up" silent Ib synapses and depresses Is synapses. Strikingly, homeostatic compensation in presynaptic strength only occurs at Ib synapses. This specialization is associated with distinct regulation of postsynaptic CaMKII. Thus, basal synaptic strength, short-term plasticity, and homeostasis are determined input-specifically, generating a functional diversity that sculpts excitatory transmission and behavioral function.
Collapse
Affiliation(s)
- Zachary L Newman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Krishan Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kurtresha Worden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabrina L Levy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jun Ho Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Luke P Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Biomedical Institute for Global Health Research and Technology, National University of Singapore, 119077 Singapore, Singapore
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
53
|
Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun 2017; 8:14436. [PMID: 28186166 PMCID: PMC5311059 DOI: 10.1038/ncomms14436] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that stimulus-evoked and spontaneous neurotransmitter release processes are mechanistically distinct. Here we targeted the non-canonical synaptic vesicle SNAREs Vps10p-tail-interactor-1a (vti1a) and vesicle-associated membrane protein 7 (VAMP7) to specifically inhibit spontaneous release events and probe whether these events signal independently of evoked release to the postsynaptic neuron. We found that loss of vti1a and VAMP7 impairs spontaneous high-frequency glutamate release and augments unitary event amplitudes by reducing postsynaptic eukaryotic elongation factor 2 kinase (eEF2K) activity subsequent to the reduction in N-methyl-D-aspartate receptor (NMDAR) activity. Presynaptic, but not postsynaptic, loss of vti1a and VAMP7 occludes NMDAR antagonist-induced synaptic potentiation in an intact circuit, confirming the role of these vesicular SNAREs in setting synaptic strength. Collectively, these results demonstrate that spontaneous neurotransmission signals independently of stimulus-evoked release and highlight its role as a key regulator of postsynaptic efficacy.
Collapse
|
54
|
Schaukowitch K, Reese AL, Kim SK, Kilaru G, Joo JY, Kavalali ET, Kim TK. An Intrinsic Transcriptional Program Underlying Synaptic Scaling during Activity Suppression. Cell Rep 2017; 18:1512-1526. [PMID: 28178527 PMCID: PMC5524384 DOI: 10.1016/j.celrep.2017.01.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 11/15/2016] [Accepted: 01/14/2017] [Indexed: 11/15/2022] Open
Abstract
Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calcium channel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.
Collapse
Affiliation(s)
- Katie Schaukowitch
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Austin L Reese
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Seung-Kyoon Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jae-Yeol Joo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
55
|
Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS One 2017; 12:e0169506. [PMID: 28052116 PMCID: PMC5215418 DOI: 10.1371/journal.pone.0169506] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Differentiated neurons can be rapidly acquired, within days, by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons, called iNGNs, which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation, including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2, called CatCh, we could control iNGN activity with blue light stimulation. In combination with optogenetic tools, iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity, and these networks had excitatory glutamatergic synapses, which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings, whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission, along with the ability to scale-up the size of the cultures.
Collapse
|
56
|
Reese AL, Kavalali ET. Single synapse evaluation of the postsynaptic NMDA receptors targeted by evoked and spontaneous neurotransmission. eLife 2016; 5. [PMID: 27882871 PMCID: PMC5148599 DOI: 10.7554/elife.21170] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that within individual synapses spontaneous and evoked release processes are segregated and regulated independently. In the hippocampus, earlier electrophysiological recordings suggested that spontaneous and evoked glutamate release can activate separate groups of postsynaptic NMDA receptors with limited overlap. However, it is still unclear how this separation of NMDA receptors is distributed across individual synapses. In a previous paper (Reese and Kavalali, 2015) we showed that NMDA receptor mediated spontaneous transmission signals to the postsynaptic protein translation machinery through Ca2+-induced Ca2+ release. Here, we show that in rat hippocampal neurons although spontaneous and evoked glutamate release driven NMDA receptor mediated Ca2+ transients often occur at the same synapse, these two signals do not show significant correlation or cross talk. DOI:http://dx.doi.org/10.7554/eLife.21170.001
Collapse
Affiliation(s)
- Austin L Reese
- Departments of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Departments of Physiology, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
57
|
Weng W, Chen Y, Wang M, Zhuang Y, Behnisch T. Potentiation of Schaffer-Collateral CA1 Synaptic Transmission by eEF2K and p38 MAPK Mediated Mechanisms. Front Cell Neurosci 2016; 10:247. [PMID: 27826228 PMCID: PMC5078695 DOI: 10.3389/fncel.2016.00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
The elongation factor 2 kinase (eEF2K), likewise known as CaMKIII, has been demonstrated to be involved in antidepressant responses of NMDA receptor antagonists. Even so, it remains open whether direct inhibition of eEF2K without altering up-stream or other signaling pathways affects hippocampal synaptic transmission and neuronal network synchrony. Inhibition of eEF2K by the selective and potent eEF2K inhibitor A-484954 induced a fast pre-synaptically mediated enhancement of synaptic transmission and synchronization of neural network activity. The eEF2K-inhibition mediated potentiation of synaptic transmission of hippocampal CA1 neurons is most notably independent of protein synthesis and does not rely on protein kinase C, protein kinase A or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1/2. Moreover, the strengthening of synaptic transmission in the response to the inhibition of eEF2K was strongly attenuated by the inhibition of p38 MAPK. In addition, we show the involvement of barium-sensitive and more specific the TWIK-related potassium-1 (TREK-1) channels in the eEF2K-inhibition mediated potentiation of synaptic transmission. These findings reveal a novel pathway of eEF2K mediated regulation of hippocampal synaptic transmission. Further research is required to study whether such compounds could be beneficial for the development of mood disorder treatments with a fast-acting antidepressant response.
Collapse
Affiliation(s)
- Weiguang Weng
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Ying Chen
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Man Wang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Yinghan Zhuang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
58
|
Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 2016; 26:1007-20. [PMID: 27573174 PMCID: PMC5034106 DOI: 10.1038/cr.2016.100] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis.
Collapse
|
59
|
Raab-Graham KF, Workman ER, Namjoshi S, Niere F. Pushing the threshold: How NMDAR antagonists induce homeostasis through protein synthesis to remedy depression. Brain Res 2016; 1647:94-104. [PMID: 27125595 DOI: 10.1016/j.brainres.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron's critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies-deep brain stimulation and NMDAR antagonists-alter the neuron's "depressed" state by pushing the neuron's current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| | - Emily R Workman
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Sanjeev Namjoshi
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|