51
|
Blevins AS, Bassett DS, Scott EK, Vanwalleghem GC. From calcium imaging to graph topology. Netw Neurosci 2022; 6:1125-1147. [PMID: 38800465 PMCID: PMC11117109 DOI: 10.1162/netn_a_00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2024] Open
Abstract
Systems neuroscience is facing an ever-growing mountain of data. Recent advances in protein engineering and microscopy have together led to a paradigm shift in neuroscience; using fluorescence, we can now image the activity of every neuron through the whole brain of behaving animals. Even in larger organisms, the number of neurons that we can record simultaneously is increasing exponentially with time. This increase in the dimensionality of the data is being met with an explosion of computational and mathematical methods, each using disparate terminology, distinct approaches, and diverse mathematical concepts. Here we collect, organize, and explain multiple data analysis techniques that have been, or could be, applied to whole-brain imaging, using larval zebrafish as an example model. We begin with methods such as linear regression that are designed to detect relations between two variables. Next, we progress through network science and applied topological methods, which focus on the patterns of relations among many variables. Finally, we highlight the potential of generative models that could provide testable hypotheses on wiring rules and network progression through time, or disease progression. While we use examples of imaging from larval zebrafish, these approaches are suitable for any population-scale neural network modeling, and indeed, to applications beyond systems neuroscience. Computational approaches from network science and applied topology are not limited to larval zebrafish, or even to systems neuroscience, and we therefore conclude with a discussion of how such methods can be applied to diverse problems across the biological sciences.
Collapse
Affiliation(s)
- Ann S. Blevins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan K. Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Australia
| | - Gilles C. Vanwalleghem
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
52
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
53
|
Suryadi, Cheng RK, Birkett E, Jesuthasan S, Chew LY. Dynamics and potential significance of spontaneous activity in the habenula. eNeuro 2022; 9:ENEURO.0287-21.2022. [PMID: 35981869 PMCID: PMC9450562 DOI: 10.1523/eneuro.0287-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The habenula is an evolutionarily conserved structure of the vertebrate brain that is essential for behavioural flexibility and mood control. It is spontaneously active and is able to access diverse states when the animal is exposed to sensory stimuli. Here we investigate the dynamics of habenula spontaneous activity, to gain insight into how sensitivity is optimized. Two-photon calcium imaging was performed in resting zebrafish larvae at single cell resolution. An analysis of avalanches of inferred spikes suggests that the habenula is subcritical. Activity had low covariance and a small mean, arguing against dynamic criticality. A multiple regression estimator of autocorrelation time suggests that the habenula is neither fully asynchronous nor perfectly critical, but is reverberating. This pattern of dynamics may enable integration of information and high flexibility in the tuning of network properties, thus providing a potential mechanism for the optimal responses to a changing environment.Significance StatementSpontaneous activity in neurons shapes the response to stimuli. One structure with a high level of spontaneous neuronal activity is the habenula, a regulator of broadly acting neuromodulators involved in mood and learning. How does this activity influence habenula function? We show here that the habenula of a resting animal is near criticality, in a state termed reverberation. This pattern of dynamics is consistent with high sensitivity and flexibility, and may enable the habenula to respond optimally to a wide range of stimuli.
Collapse
Affiliation(s)
- Suryadi
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Elliot Birkett
- Institute of Molecular and Cell Biology, Singapore 138673
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Lock Yue Chew
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Complexity Institute, Nanyang Technological University, Singapore 637335
| |
Collapse
|
54
|
The Influence of the Recording Time in Modelling the Swimming Behaviour of the Freshwater Inbenthic Copepod Bryocamptus pygmaeus. WATER 2022. [DOI: 10.3390/w14131996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis of copepod behaviour gained an increasing impetus over the past decade thanks to the advent of computer-assisted video analysis tools. Since the automated tracking consists in detecting the animal’s position frame by frame and improving signals corrupted by strong background noise, a crucial role is played by the length of the video recording. The aim of this study is to: (i) assess whether the recording time influences the analysis of a suite of movement descriptive parameters; (ii) understand if the recording time influences the outcome of the statistical analyses when hypotheses on the effect of toxicants/chemicals on the freshwater invertebrate behaviour are tested. We investigated trajectory parameters commonly used in behavioural studies—swimming speed, percentage of activity and trajectory convex hull—derived from the trajectories described by the inbenthic–interstitial freshwater copepod Bryocamptus pygmaeus exposed to a sub-lethal concentration of diclofenac. The analyses presented in this work indicate that the recording time did not influence the outcome of the results for the swimming speed and the percentage of activity. For the trajectory convex hull area, our results showed that a recording session lasting at least 3 min provided robust results. However, further investigations are needed to disentangle the role of concurrent factors, such as the behavioural analysis of multiple individuals simultaneously, whether they are of the same or opposite sex and the implications on sexual behaviour, competition for resources and predation.
Collapse
|
55
|
Kwon V, Cai P, Dixon CT, Hamlin V, Spencer CG, Rojas AM, Hamilton M, Shiau CE. Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration into the brain disrupting daytime locomotion. Commun Biol 2022; 5:464. [PMID: 35577844 PMCID: PMC9110401 DOI: 10.1038/s42003-022-03410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is known to disrupt normal behavior, yet the underlying neuroimmune interactions remain elusive. Here, we investigated whether inappropriate macrophage-evoked inflammation alters CNS control of daily-life animal locomotion using a set of zebrafish mutants selected for specific macrophage dysfunction and microglia deficiency. Large-scale genetic and computational analyses revealed that NOD-like receptor nlrc3l mutants are capable of normal motility and visuomotor response, but preferentially swim less in the daytime, suggesting possible low motivation rather than physical impairment. Examining their brain activities and structures implicates impaired dopaminergic descending circuits, where neutrophils abnormally infiltrate. Furthermore, neutrophil depletion recovered daytime locomotion. Restoring wild-type macrophages reversed behavioral and neutrophil aberrations, while three other microglia-lacking mutants failed to phenocopy nlrc3l mutants. Overall, we reveal how peripheral inflammatory macrophages with elevated pro-inflammatory cues (including il1β, tnfα, cxcl8a) in the absence of microglia co-opt neutrophils to infiltrate the brain, thereby potentially enabling local circuitry modulation affecting daytime locomotion.
Collapse
Affiliation(s)
- Victoria Kwon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiwen Cai
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cameron T Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Hamlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline G Spencer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alison M Rojas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Hamilton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
56
|
Lin A, Witvliet D, Hernandez-Nunez L, Linderman SW, Samuel ADT, Venkatachalam V. Imaging whole-brain activity to understand behavior. NATURE REVIEWS. PHYSICS 2022; 4:292-305. [PMID: 37409001 PMCID: PMC10320740 DOI: 10.1038/s42254-022-00430-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 07/07/2023]
Abstract
The brain evolved to produce behaviors that help an animal inhabit the natural world. During natural behaviors, the brain is engaged in many levels of activity from the detection of sensory inputs to decision-making to motor planning and execution. To date, most brain studies have focused on small numbers of neurons that interact in limited circuits. This allows analyzing individual computations or steps of neural processing. During behavior, however, brain activity must integrate multiple circuits in different brain regions. The activities of different brain regions are not isolated, but may be contingent on one another. Coordinated and concurrent activity within and across brain areas is organized by (1) sensory information from the environment, (2) the animal's internal behavioral state, and (3) recurrent networks of synaptic and non-synaptic connectivity. Whole-brain recording with cellular resolution provides a new opportunity to dissect the neural basis of behavior, but whole-brain activity is also mutually contingent on behavior itself. This is especially true for natural behaviors like navigation, mating, or hunting, which require dynamic interaction between the animal, its environment, and other animals. In such behaviors, the sensory experience of an unrestrained animal is actively shaped by its movements and decisions. Many of the signaling and feedback pathways that an animal uses to guide behavior only occur in freely moving animals. Recent technological advances have enabled whole-brain recording in small behaving animals including nematodes, flies, and zebrafish. These whole-brain experiments capture neural activity with cellular resolution spanning sensory, decision-making, and motor circuits, and thereby demand new theoretical approaches that integrate brain dynamics with behavioral dynamics. Here, we review the experimental and theoretical methods that are being employed to understand animal behavior and whole-brain activity, and the opportunities for physics to contribute to this emerging field of systems neuroscience.
Collapse
Affiliation(s)
- Albert Lin
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Daniel Witvliet
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Luis Hernandez-Nunez
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Vivek Venkatachalam
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
57
|
Leyden C, Brüggemann T, Debinski F, Simacek CA, Dehmelt FA, Arrenberg AB. Efficacy of Tricaine (MS-222) and Hypothermia as Anesthetic Agents for Blocking Sensorimotor Responses in Larval Zebrafish. Front Vet Sci 2022; 9:864573. [PMID: 35419446 PMCID: PMC8996001 DOI: 10.3389/fvets.2022.864573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tricaine, or MS-222, is the most commonly used chemical anesthetic in zebrafish research. It is thought to act via blocking voltage-gated sodium channels, though its mechanism of action, particularly at the neuronal level, is not yet fully understood. Here, we first characterized the effects of tricaine on both body balance and touch responses in freely swimming animals, before determining its effect on the neural activity underlying the optokinetic response at the level of motion perception, sensorimotor signaling and the generation of behavior in immobilized animals. We found that the standard dose for larvae (168 mg/L) induced loss of righting reflex within 30 seconds, which then recovered within 3 minutes. Optokinetic behavior recovered within 15 minutes. Calcium imaging showed that tricaine interferes with optokinetic behavior by interruption of the signals between the pretectum and hindbrain. The motion sensitivity indices of identified sensory neurons were unchanged in larvae exposed to tricaine, though fewer such neurons were detected, leaving a small population of active sensory neurons. We then compared tricaine with gradual cooling, a potential non-chemical alternative method of anesthesia. While neuronal tuning appeared to be affected in a similar manner during gradual cooling, gradual cooling induced a surge in calcium levels in both the pretectum and hindbrain. This calcium surge, alongside a drop in heartrate, is potentially associated with harmful changes in physiology and suggests that tricaine is a better anesthetic agent than gradual cooling for zebrafish laboratory research.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Timo Brüggemann
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florentyna Debinski
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Clara A Simacek
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florian A Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
58
|
Patch A, Paz A, Holt KJ, Duboué ER, Keene AC, Kowalko JE, Fily Y. Kinematic analysis of social interactions deconstructs the evolved loss of schooling behavior in cavefish. PLoS One 2022; 17:e0265894. [PMID: 35385509 PMCID: PMC8985933 DOI: 10.1371/journal.pone.0265894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Fish display a remarkable diversity of social behaviors, both within and between species. While social behaviors are likely critical for survival, surprisingly little is known about how they evolve in response to changing environmental pressures. With its highly social surface form and multiple populations of a largely asocial, blind, cave-dwelling form, the Mexican tetra, Astyanax mexicanus, provides a powerful model to study the evolution of social behavior. Here we use motion tracking and analysis of swimming kinematics to quantify social swimming in four Astyanax mexicanus populations. In the light, surface fish school, maintaining both close proximity and alignment with each other. In the dark, surface fish no longer form coherent schools, however, they still show evidence of an attempt to align and maintain proximity when they find themselves near another fish. In contrast, cavefish from three independently-evolved populations (Pachón, Molino, Tinaja) show little preference for proximity or alignment, instead exhibiting behaviors that suggest active avoidance of each other. Two of the three cave populations we studied also slow down when more fish are present in the tank, a behavior which is not observed in surface fish in light or the dark, suggesting divergent responses to conspecifics. Using data-driven computer simulations, we show that the observed reduction in swimming speed is sufficient to alter the way fish explore their environment: it can increase time spent exploring away from the walls. Thus, the absence of schooling in cavefish is not merely a consequence of their inability to see, but may rather be a genuine behavioral adaptation that impacts the way they explore their environment.
Collapse
Affiliation(s)
- Adam Patch
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Karla J. Holt
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
59
|
Rajan G, Lafaye J, Faini G, Carbo-Tano M, Duroure K, Tanese D, Panier T, Candelier R, Henninger J, Britz R, Judkewitz B, Gebhardt C, Emiliani V, Debregeas G, Wyart C, Del Bene F. Evolutionary divergence of locomotion in two related vertebrate species. Cell Rep 2022; 38:110585. [PMID: 35354040 DOI: 10.1016/j.celrep.2022.110585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Locomotion exists in diverse forms in nature; however, little is known about how closely related species with similar neuronal circuitry can evolve different navigational strategies to explore their environments. Here, we investigate this question by comparing divergent swimming pattern in larval Danionella cerebrum (DC) and zebrafish (ZF). We show that DC displays long continuous swimming events when compared with the short burst-and-glide swimming in ZF. We reveal that mesencephalic locomotion maintenance neurons in the midbrain are sufficient to cause this increased swimming. Moreover, we propose that the availability of dissolved oxygen and timing of swim bladder inflation drive the observed differences in the swim pattern. Our findings uncover the neural substrate underlying the evolutionary divergence of locomotion and its adaptation to their environmental constraints.
Collapse
Affiliation(s)
- Gokul Rajan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), Sorbonne Universités, UPMC Univ Paris 06 CNRS UMR 7225, Inserm U1127, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Jörg Henninger
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Ralf Britz
- Senckenberg Naturhistorische Sammlungen Dresden, Museum für Zoologie, 01109 Dresden, Germany
| | - Benjamin Judkewitz
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Georges Debregeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau (ICM), Sorbonne Universités, UPMC Univ Paris 06 CNRS UMR 7225, Inserm U1127, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
60
|
Albers JL, Steibel JP, Klingler RH, Ivan LN, Garcia-Reyero N, Carvan MJ, Murphy CA. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3514-3523. [PMID: 35201763 DOI: 10.1021/acs.est.1c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
61
|
de Vito G, Turrini L, Müllenbroich C, Ricci P, Sancataldo G, Mazzamuto G, Tiso N, Sacconi L, Fanelli D, Silvestri L, Vanzi F, Pavone FS. Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1516-1536. [PMID: 35414999 PMCID: PMC8973167 DOI: 10.1364/boe.434146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one-photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish brain (5 Hz) while keeping low the laser intensity on the specimen. We applied our system to the study of pharmacologically-induced acute seizures, characterizing the spatial-temporal dynamics of pathological activity and describing for the first time the appearance of caudo-rostral ictal waves (CRIWs).
Collapse
Affiliation(s)
- Giuseppe de Vito
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, Florence, Italy, 50139, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- School of Physics and Astronomy, Kelvin Building, University of Glasgow, G12 8QQ, Glasgow, UK
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Giuseppe Sancataldo
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Natascia Tiso
- University of Padova, Department of Biology, Via U. Bassi 58/B, Padova 35131, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Duccio Fanelli
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
62
|
Niemeyer JE, Gadamsetty P, Chun C, Sylvester S, Lucas JP, Ma H, Schwartz TH, Aksay ERF. Seizures initiate in zones of relative hyperexcitation in a zebrafish epilepsy model. Brain 2022; 145:2347-2360. [PMID: 35196385 DOI: 10.1093/brain/awac073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/12/2022] Open
Abstract
Seizures are thought to arise from an imbalance of excitatory and inhibitory neuronal activity. While most classical studies suggest excessive excitatory neural activity plays a generative role, some recent findings challenge this view and instead argue that excessive activity in inhibitory neurons initiates seizures. We investigated this question of imbalance in a zebrafish seizure model with two-photon imaging of excitatory and inhibitory neuronal activity throughout the brain using a nuclear-localized calcium sensor. We found that seizures consistently initiated in circumscribed zones of the midbrain before propagating to other brain regions. Excitatory neurons were both more prevalent and more likely to be recruited than inhibitory neurons in initiation as compared with propagation zones. These findings support a mechanistic picture whereby seizures initiate in a region of hyper-excitation, then propagate more broadly once inhibitory restraint in the surround is overcome.
Collapse
Affiliation(s)
- James E Niemeyer
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Poornima Gadamsetty
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chanwoo Chun
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sherika Sylvester
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jacob P Lucas
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
63
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
64
|
Duchemin A, Privat M, Sumbre G. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. Front Neural Circuits 2022; 15:814128. [PMID: 35069128 PMCID: PMC8777272 DOI: 10.3389/fncir.2021.814128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the presence of moving visual stimuli, the majority of animals follow the Fourier motion energy (luminance), independently of other stimulus features (edges, contrast, etc.). While the behavioral response to Fourier motion has been studied in the past, how Fourier motion is represented and processed by sensory brain areas remains elusive. Here, we investigated how visual moving stimuli with or without the first Fourier component (square-wave signal or missing fundamental signal) are represented in the main visual regions of the zebrafish brain. First, we monitored the larva's optokinetic response (OKR) induced by square-wave and missing fundamental signals. Then, we used two-photon microscopy and GCaMP6f zebrafish larvae to monitor neuronal circuit dynamics in the optic tectum and the pretectum. We observed that both the optic tectum and the pretectum circuits responded to the square-wave gratings. However, only the pretectum responded specifically to the direction of the missing-fundamental signal. In addition, a group of neurons in the pretectum responded to the direction of the behavioral output (OKR), independently of the type of stimulus presented. Our results suggest that the optic tectum responds to the different features of the stimulus (e.g., contrast, spatial frequency, direction, etc.), but does not respond to the direction of motion if the motion information is not coherent (e.g., the luminance and the edges and contrast in the missing-fundamental signal). On the other hand, the pretectum mainly responds to the motion of the stimulus based on the Fourier energy.
Collapse
|
65
|
Reddy G, Desban L, Tanaka H, Roussel J, Mirat O, Wyart C. A lexical approach for identifying behavioural action sequences. PLoS Comput Biol 2022; 18:e1009672. [PMID: 35007275 PMCID: PMC8782473 DOI: 10.1371/journal.pcbi.1009672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2022] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called "BASS" to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data.
Collapse
Affiliation(s)
- Gautam Reddy
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Hidenori Tanaka
- Physics & Informatics Laboratories, NTT Research, Inc., East Palo Alto, California, United States of America
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
66
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
67
|
Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, Nwabudike I, Flavell SW. A neural circuit for flexible control of persistent behavioral states. eLife 2021; 10:e62889. [PMID: 34792019 PMCID: PMC8660023 DOI: 10.7554/elife.62889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural activity in freely moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states.
Collapse
Affiliation(s)
- Ni Ji
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Gurrein K Madan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Guadalupe I Fabre
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Alyssa Dayan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - Ijeoma Nwabudike
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
68
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
69
|
Harpaz R, Aspiras AC, Chambule S, Tseng S, Bind MA, Engert F, Fishman MC, Bahl A. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish. SCIENCE ADVANCES 2021; 7:eabi7460. [PMID: 34613782 PMCID: PMC8494438 DOI: 10.1126/sciadv.abi7460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
It is not understood how changes in the genetic makeup of individuals alter the behavior of groups of animals. Here, we find that, even at early larval stages, zebrafish regulate their proximity and alignment with each other. Two simple visual responses, one that measures relative visual field occupancy and one that accounts for global visual motion, suffice to account for the group behavior that emerges. Mutations in genes known to affect social behavior in humans perturb these simple reflexes in individual larval zebrafish and change their emergent collective behaviors in the predicted fashion. Model simulations show that changes in these two responses in individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors reflect in part genetically defined primitive sensorimotor “motifs,” which are evident even in young larvae.
Collapse
Affiliation(s)
- Roy Harpaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ariel C. Aspiras
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sydney Chambule
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sierra Tseng
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marie-Abèle Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C. Fishman
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Armin Bahl
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
70
|
Goc GL, Lafaye J, Karpenko S, Bormuth V, Candelier R, Debrégeas G. Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability. BMC Biol 2021; 19:208. [PMID: 34548084 PMCID: PMC8456632 DOI: 10.1186/s12915-021-01126-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variability is a hallmark of animal behavior. It contributes to survival by endowing individuals and populations with the capacity to adapt to ever-changing environmental conditions. Intra-individual variability is thought to reflect both endogenous and exogenous modulations of the neural dynamics of the central nervous system. However, how variability is internally regulated and modulated by external cues remains elusive. Here, we address this question by analyzing the statistics of spontaneous exploration of freely swimming zebrafish larvae and by probing how these locomotor patterns are impacted when changing the water temperatures within an ethologically relevant range. RESULTS We show that, for this simple animal model, five short-term kinematic parameters - interbout interval, turn amplitude, travelled distance, turn probability, and orientational flipping rate - together control the long-term exploratory dynamics. We establish that the bath temperature consistently impacts the means of these parameters, but leave their pairwise covariance unchanged. These results indicate that the temperature merely controls the sampling statistics within a well-defined kinematic space delineated by this robust statistical structure. At a given temperature, individual animals explore the behavioral space over a timescale of tens of minutes, suggestive of a slow internal state modulation that could be externally biased through the bath temperature. By combining these various observations into a minimal stochastic model of navigation, we show that this thermal modulation of locomotor kinematics results in a thermophobic behavior, complementing direct gradient-sensing mechanisms. CONCLUSIONS This study establishes the existence of a well-defined locomotor space accessible to zebrafish larvae during spontaneous exploration, and quantifies self-generated modulation of locomotor patterns. Intra-individual variability reflects a slow diffusive-like probing of this space by the animal. The bath temperature in turn restricts the sampling statistics to sub-regions, endowing the animal with basic thermophobicity. This study suggests that in zebrafish, as well as in other ectothermic animals, ambient temperature could be used to efficiently manipulate internal states in a simple and ethological way.
Collapse
Affiliation(s)
- Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Sophia Karpenko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.,Université Paris Sciences et Lettres, Paris, France.,Present address : Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.
| |
Collapse
|
71
|
Di Mauro G, Rauti R, Casani R, Chimowa G, Galibert AM, Flahaut E, Cellot G, Ballerini L. Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2161. [PMID: 34578477 PMCID: PMC8468975 DOI: 10.3390/nano11092161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/05/2023]
Abstract
The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Rossana Rauti
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Raffaele Casani
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - George Chimowa
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Anne Marie Galibert
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Emmanuel Flahaut
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| |
Collapse
|
72
|
Ramirez AD, Aksay ERF. Ramp-to-threshold dynamics in a hindbrain population controls the timing of spontaneous saccades. Nat Commun 2021; 12:4145. [PMID: 34230474 PMCID: PMC8260785 DOI: 10.1038/s41467-021-24336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Organisms have the capacity to make decisions based solely on internal drives. However, it is unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide a comprehensive map of the activity patterns underlying the generation of saccades made in the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover a range of responses surrounding spontaneous saccades, from cells that display tonic discharge only during fixations to neurons whose activity rises in advance of saccades by multiple seconds. When we lesion cells in these populations we find that ablation of neurons with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation using a ramp-to-threshold model and are able to predict the times of upcoming saccades using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a bound is a critical component of self-initiated saccadic movements.
Collapse
Affiliation(s)
- Alexandro D Ramirez
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
73
|
Leyden C, Brysch C, Arrenberg AB. A distributed saccade-associated network encodes high velocity conjugate and monocular eye movements in the zebrafish hindbrain. Sci Rep 2021; 11:12644. [PMID: 34135354 PMCID: PMC8209155 DOI: 10.1038/s41598-021-90315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
74
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
75
|
Bruzzone M, Chiarello E, Albanesi M, Miletto Petrazzini ME, Megighian A, Lodovichi C, Dal Maschio M. Whole brain functional recordings at cellular resolution in zebrafish larvae with 3D scanning multiphoton microscopy. Sci Rep 2021; 11:11048. [PMID: 34040051 PMCID: PMC8154985 DOI: 10.1038/s41598-021-90335-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Optical recordings of neuronal activity at cellular resolution represent an invaluable tool to investigate brain mechanisms. Zebrafish larvae is one of the few model organisms where, using fluorescence-based reporters of the cell activity, it is possible to optically reconstruct the neuronal dynamics across the whole brain. Typically, leveraging the reduced light scattering, methods like lightsheet, structured illumination, and light-field microscopy use spatially extended excitation profiles to detect in parallel activity signals from multiple cells. Here, we present an alternative design for whole brain imaging based on sequential 3D point-scanning excitation. Our approach relies on a multiphoton microscope integrating an electrically tunable lens. We first apply our approach, adopting the GCaMP6s activity reporter, to detect functional responses from retinal ganglion cells (RGC) arborization fields at different depths within the zebrafish larva midbrain. Then, in larvae expressing a nuclear localized GCaMP6s, we recorded whole brain activity with cellular resolution. Adopting a semi-automatic cell segmentation, this allowed reconstructing the activity from up to 52,000 individual neurons across the brain. In conclusion, this design can easily retrofit existing imaging systems and represents a compact, versatile and reliable tool to investigate neuronal activity across the larva brain at high resolution.
Collapse
Affiliation(s)
- Matteo Bruzzone
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Enrico Chiarello
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Marco Albanesi
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
- Veneto Institute of Molecular Medicine, VIMM, via Orus 2, Padua, Italy
- Institute of Neuroscience, CNR-IN, Padua, Italy
| | - Marco Dal Maschio
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy.
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy.
| |
Collapse
|
76
|
Chen AB, Deb D, Bahl A, Engert F. Algorithms underlying flexible phototaxis in larval zebrafish. J Exp Biol 2021; 224:268333. [PMID: 34027982 DOI: 10.1242/jeb.238386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
To thrive, organisms must maintain physiological and environmental variables in suitable ranges. Given that these variables undergo constant fluctuations over varying time scales, how do biological control systems maintain control over these values? We explored this question in the context of phototactic behavior in larval zebrafish. We demonstrate that larval zebrafish use phototaxis to maintain environmental luminance at a set point, that the value of this set point fluctuates on a time scale of seconds when environmental luminance changes, and that it is determined by calculating the mean input across both sides of the visual field. These results expand on previous studies of flexible phototaxis in larval zebrafish; they suggest that larval zebrafish exert homeostatic control over the luminance of their surroundings, and that feedback from the surroundings drives allostatic changes to the luminance set point. As such, we describe a novel behavioral algorithm with which larval zebrafish exert control over a sensory variable.
Collapse
Affiliation(s)
- Alex B Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Diptodip Deb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Armin Bahl
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
77
|
In vivo calcium imaging reveals disordered interictal network dynamics in epileptic stxbp1b zebrafish. iScience 2021; 24:102558. [PMID: 34142057 PMCID: PMC8184515 DOI: 10.1016/j.isci.2021.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
STXBP1 mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.e., interictal period) could provide a valuable step toward understanding epileptic networks. To study these networks in the context of STXBP1 mutations, we combine a larval zebrafish model with in vivo fast confocal calcium imaging and extracellular local field potential recordings. Stxbp1b mutants display transient periods of elevated activity among local clusters of interacting neurons. These network "cascade" events were significantly larger in size and duration in mutants. At mesoscale resolution, cascades exhibit neurodevelopmental abnormalities. At single-cell scale, we describe spontaneous hyper-synchronized neuronal ensembles. That calcium imaging reveals uniquely disordered brain states during periods between pathological ictal-like seizure events is striking and represents a potential interictal biomarker.
Collapse
|
78
|
Guilbeault NC, Guerguiev J, Martin M, Tate I, Thiele TR. BonZeb: open-source, modular software tools for high-resolution zebrafish tracking and analysis. Sci Rep 2021; 11:8148. [PMID: 33854104 PMCID: PMC8047029 DOI: 10.1038/s41598-021-85896-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/08/2021] [Indexed: 11/09/2022] Open
Abstract
We present BonZeb-a suite of modular Bonsai packages which allow high-resolution zebrafish tracking with dynamic visual feedback. Bonsai is an increasingly popular software platform that is accelerating the standardization of experimental protocols within the neurosciences due to its speed, flexibility, and minimal programming overhead. BonZeb can be implemented into novel and existing Bonsai workflows for online behavioral tracking and offline tracking with batch processing. We demonstrate that BonZeb can run a variety of experimental configurations used for gaining insights into the neural mechanisms of zebrafish behavior. BonZeb supports head-fixed closed-loop and free-swimming virtual open-loop assays as well as multi-animal tracking, optogenetic stimulation, and calcium imaging during behavior. The combined performance, ease of use and versatility of BonZeb opens new experimental avenues for researchers seeking high-resolution behavioral tracking of larval zebrafish.
Collapse
Affiliation(s)
- Nicholas C Guilbeault
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jordan Guerguiev
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Martin
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Isabelle Tate
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
79
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
80
|
Cheung KY, Jesuthasan SJ, Baxendale S, van Hateren NJ, Marzo M, Hill CJ, Whitfield TT. Olfactory Rod Cells: A Rare Cell Type in the Larval Zebrafish Olfactory Epithelium With a Large Actin-Rich Apical Projection. Front Physiol 2021; 12:626080. [PMID: 33716772 PMCID: PMC7952648 DOI: 10.3389/fphys.2021.626080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
We report the presence of a rare cell type, the olfactory rod cell, in the developing zebrafish olfactory epithelium. These cells each bear a single actin-rich rod-like apical projection extending 5–10 μm from the epithelial surface. Live imaging with a ubiquitous Lifeact-RFP label indicates that the olfactory rods can oscillate. Olfactory rods arise within a few hours of the olfactory pit opening, increase in numbers and size during larval stages, and can develop in the absence of olfactory cilia. Olfactory rod cells differ in morphology from the known classes of olfactory sensory neuron, but express reporters driven by neuronal promoters. A sub-population of olfactory rod cells expresses a Lifeact-mRFPruby transgene driven by the sox10 promoter. Mosaic expression of this transgene reveals that olfactory rod cells have rounded cell bodies located apically in the olfactory epithelium and have no detectable axon. We offer speculation on the possible function of these cells in the Discussion.
Collapse
Affiliation(s)
- King Yee Cheung
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Suresh J Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas J van Hateren
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mar Marzo
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Christopher J Hill
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
81
|
Li G, Ashraf I, François B, Kolomenskiy D, Lechenault F, Godoy-Diana R, Thiria B. Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle. Commun Biol 2021; 4:40. [PMID: 33446863 PMCID: PMC7809443 DOI: 10.1038/s42003-020-01521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
This paper addresses the physical mechanism of intermittent swimming by considering the burst-and-coast regime of fish swimming at different speeds. The burst-and-coast regime consists of a cycle with two successive phases, i.e., a phase of active undulation powered by the fish muscles followed by a passive gliding phase. Observations of real fish whose swimming gait is forced in a water flume from low to high speed regimes are performed, using a full description of the fish kinematics and mechanics. We first show that fish modulate a unique intrinsic cycle to sustain the demanded speed by modifying the bursting to coasting ratio while maintaining the duration of the cycle nearly constant. Secondly, we show using numerical simulations that the chosen kinematics by correspond to optimized gaits for swimming speeds larger than 1 body length per second. Li et al. use experimental observations of red-nose tetrafish and mathematical simulations to model the burst-and-coast swimming regime. This study shows that in order to sustain the necessary speed, fish adopt a unique intrinsic cycle by modifying the burst to coast ratio and can implement this pattern at a range of swimming speeds.
Collapse
Affiliation(s)
- Gen Li
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Intesaaf Ashraf
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France
| | - Bill François
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France
| | - Dmitry Kolomenskiy
- Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo, Japan
| | - Frédéric Lechenault
- Laboratoire de Physique de l'École Normale Supérieure (LPENS), 75005, Paris, France
| | - Ramiro Godoy-Diana
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France.
| | - Benjamin Thiria
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France.
| |
Collapse
|
82
|
Saska D, Pichler P, Qian C, Buckley CL, Lagnado L. μSPIM Toolset: A software platform for selective plane illumination microscopy. J Neurosci Methods 2021; 347:108952. [PMID: 33017646 PMCID: PMC7762823 DOI: 10.1016/j.jneumeth.2020.108952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Selective Plane Illumination Microscopy (SPIM) is a fluorescence imaging technique that allows volumetric imaging at high spatio-temporal resolution to monitor neural activity in live organisms such as larval zebrafish. A major challenge in the construction of a custom SPIM microscope using a scanned laser beam is the control and synchronization of the various hardware components. NEW METHOD We present an open-source software, μSPIM Toolset, built around the widely adopted MicroManager platform, that provides control and acquisition functionality for a SPIM. A key advantage of μSPIM Toolset is a series of calibration procedures that optimize acquisition for a given set-up, making it relatively independent of the optical design of the microscope or the hardware used to build it. RESULTS μSPIM Toolset allows imaging of calcium activity throughout the brain of larval zebrafish at rates of 100 planes per second with single cell resolution. COMPARISON WITH EXISTING METHODS Several designs of SPIM have been published but are focused on imaging of developmental processes using a slower setup with a moving stage and therefore have limited use for functional imaging. In comparison, μSPIM Toolset uses a scanned beam to allow imaging at higher acquisition frequencies while minimizing disturbance of the sample. CONCLUSIONS The μSPIM Toolset provides a flexible solution for the control of SPIM microscopes and demonstrated its utility for brain-wide imaging of neural activity in larval zebrafish.
Collapse
Affiliation(s)
- Daniel Saska
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | - Paul Pichler
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | - Chen Qian
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | | | - Leon Lagnado
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
83
|
Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish. Methods Mol Biol 2021; 2191:201-220. [PMID: 32865747 DOI: 10.1007/978-1-0716-0830-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.
Collapse
|
84
|
Bergel A, Tiran E, Deffieux T, Demené C, Tanter M, Cohen I. Adaptive modulation of brain hemodynamics across stereotyped running episodes. Nat Commun 2020; 11:6193. [PMID: 33273463 PMCID: PMC7713412 DOI: 10.1038/s41467-020-19948-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
During locomotion, theta and gamma rhythms are essential to ensure timely communication between brain structures. However, their metabolic cost and contribution to neuroimaging signals remain elusive. To finely characterize neurovascular interactions during locomotion, we simultaneously recorded mesoscale brain hemodynamics using functional ultrasound (fUS) and local field potentials (LFP) in numerous brain structures of freely-running overtrained rats. Locomotion events were reliably followed by a surge in blood flow in a sequence involving the retrosplenial cortex, dorsal thalamus, dentate gyrus and CA regions successively, with delays ranging from 0.8 to 1.6 seconds after peak speed. Conversely, primary motor cortex was suppressed and subsequently recruited during reward uptake. Surprisingly, brain hemodynamics were strongly modulated across trials within the same recording session; cortical blood flow sharply decreased after 10-20 runs, while hippocampal responses strongly and linearly increased, particularly in the CA regions. This effect occurred while running speed and theta activity remained constant and was accompanied by an increase in the power of hippocampal, but not cortical, high-frequency oscillations (100-150 Hz). Our findings reveal distinct vascular subnetworks modulated across fast and slow timescales and suggest strong hemodynamic adaptation, despite the repetition of a stereotyped behavior.
Collapse
Affiliation(s)
- Antoine Bergel
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Elodie Tiran
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Thomas Deffieux
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Charlie Demené
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Mickaël Tanter
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Ivan Cohen
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
| |
Collapse
|
85
|
Abstract
Thermoregulation is critical for survival and animals therefore employ strategies to keep their body temperature within a physiological range. As ectotherms, fish exclusively rely on behavioral strategies for thermoregulation. Different species of fish seek out their specific optimal temperatures through thermal navigation by biasing behavioral output based on experienced environmental temperatures. Like other vertebrates, fish sense water temperature using thermoreceptors in trigeminal and dorsal root ganglia neurons that innervate the skin. Recent research in larval zebrafish has revealed how neural circuits subsequently transform this sensation of temperature into thermoregulatory behaviors. Across fish species, thermoregulatory strategies rely on a modulation of swim vigor based on current temperature and a modulation of turning based on temperature change. Interestingly, temperature preferences are not fixed but depend on other environmental cues and internal states. The following review is intended as an overview on the current knowledge as well as open questions in fish thermoregulation.
Collapse
Affiliation(s)
- Martin Haesemeyer
- The Ohio State University College of Medicine, Department of Neuroscience, Columbus, OH, USA.
| |
Collapse
|
86
|
Loring MD, Thomson EE, Naumann EA. Whole-brain interactions underlying zebrafish behavior. Curr Opin Neurobiol 2020; 65:88-99. [PMID: 33221591 PMCID: PMC10697041 DOI: 10.1016/j.conb.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Detailed quantification of neural dynamics across the entire brain will be the key to genuinely understanding perception and behavior. With the recent developments in microscopy and biosensor engineering, the zebrafish has made a grand entrance in neuroscience as its small size and optical transparency enable imaging access to its entire brain at cellular and even subcellular resolution. However, until recently many neurobiological insights were largely correlational or provided little mechanistic insight into the brain-wide population dynamics generated by diverse types of neurons. Now with increasingly sophisticated behavioral, imaging, and causal intervention paradigms, zebrafish are revealing how entire vertebrate brains function. Here we review recent research that fulfills promises made by the early wave of technical advances. These studies reveal new features of brain-wide neural processing and the importance of integrative investigation and computational modelling. Moreover, we outline the future tools necessary for solving broader brain-scale circuit problems.
Collapse
Affiliation(s)
- Matthew D Loring
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eric E Thomson
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eva A Naumann
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States.
| |
Collapse
|
87
|
Haney WA, Moussaoui B, Strother JA. Prolonged exposure to stressors suppresses exploratory behavior in zebrafish larvae. J Exp Biol 2020; 223:jeb224964. [PMID: 33106298 DOI: 10.1242/jeb.224964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022]
Abstract
Environmental stressors induce rapid physiological and behavioral shifts in vertebrate animals. However, the neurobiological mechanisms responsible for stress-induced changes in behavior are complex and not well understood. Similar to mammalian vertebrates, zebrafish adults display a preference for dark environments that is associated with predator avoidance, enhanced by stressors, and broadly used in assays for anxiety-like behavior. Although the larvae of zebrafish are a prominent model organism for understanding neural circuits, few studies have examined the effects of stressors on their behavior. This study examines the effects of noxious chemical and electric shock stressors on locomotion and light preference in zebrafish larvae. We found that both stressors elicited similar changes in behavior. Acute exposure induced increased swimming activity, while prolonged exposure depressed activity. Neither stressor produced a consistent shift in light-dark preference, but prolonged exposure to these stressors resulted in a pronounced decrease in exploration of different visual environments. We also examined the effects of exposure to a noxious chemical cue using whole-brain calcium imaging, and identified neural correlates in the area postrema, an area of the hindbrain containing noradrenergic and dopaminergic neurons. Pharmaceutical blockade experiments showed that α-adrenergic receptors contribute to the behavioral response to an acute stressor but are not necessary for the response to a prolonged stressor. These results indicate that zebrafish larvae have complex behavioral responses to stressors comparable to those of adult animals, and also suggest that these responses are mediated by similar neural pathways.
Collapse
Affiliation(s)
- William A Haney
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Bushra Moussaoui
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - James A Strother
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
88
|
Mu Y, Narayan S, Mensh BD, Ahrens MB. Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish. Curr Opin Neurobiol 2020; 64:151-160. [PMID: 33091825 DOI: 10.1016/j.conb.2020.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023]
Abstract
The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.
Collapse
Affiliation(s)
- Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, and Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
89
|
Barrios JP, Wang WC, England R, Reifenberg E, Douglass AD. Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating Brainstem Premotor Nuclei in Zebrafish. Curr Biol 2020; 30:4606-4618.e4. [PMID: 33007241 DOI: 10.1016/j.cub.2020.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023]
Abstract
Dopamine (DA)-producing neurons are critically involved in the production of motor behaviors in multiple circuits that are conserved from basal vertebrates to mammals. Although there is increasing evidence that DA neurons in the hypothalamus play a locomotor role, their precise contributions to behavior and the circuit mechanisms by which they are achieved remain unclear. Here, we demonstrate that tyrosine-hydroxylase-2-expressing (th2+) DA neurons in the zebrafish hypothalamus fire phasic bursts of activity to acutely promote swimming and modulate audiomotor behaviors on fast timescales. Their anatomy and physiology reveal two distinct functional DA modules within the hypothalamus. The first comprises an interconnected set of cerebrospinal-fluid-contacting DA nuclei surrounding the 3rd ventricle, which lack distal projections outside of the hypothalamus and influence locomotion through unknown means. The second includes neurons in the preoptic nucleus, which send long-range projections to targets throughout the brain, including the mid- and hindbrain, where they activate premotor circuits involved in swimming and sensorimotor integration. These data suggest a broad regulation of motor behavior by DA neurons within multiple hypothalamic nuclei and elucidate a novel functional mechanism for the preoptic DA neurons in the initiation of movement.
Collapse
Affiliation(s)
- Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Roman England
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica Reifenberg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
90
|
Oldfield CS, Grossrubatscher I, Chávez M, Hoagland A, Huth AR, Carroll EC, Prendergast A, Qu T, Gallant JL, Wyart C, Isacoff EY. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. eLife 2020; 9:e56619. [PMID: 32985972 PMCID: PMC7561350 DOI: 10.7554/elife.56619] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/26/2020] [Indexed: 01/16/2023] Open
Abstract
Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.
Collapse
Affiliation(s)
- Claire S Oldfield
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Irene Grossrubatscher
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | | | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Alex R Huth
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Andrew Prendergast
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Tony Qu
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Jack L Gallant
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Claire Wyart
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
91
|
Hierarchical Compression Reveals Sub-Second to Day-Long Structure in Larval Zebrafish Behavior. eNeuro 2020; 7:ENEURO.0408-19.2020. [PMID: 32241874 PMCID: PMC7405074 DOI: 10.1523/eneuro.0408-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Animal behavior is dynamic, evolving over multiple timescales from milliseconds to days and even across a lifetime. To understand the mechanisms governing these dynamics, it is necessary to capture multi-timescale structure from behavioral data. Here, we develop computational tools and study the behavior of hundreds of larval zebrafish tracked continuously across multiple 24-h day/night cycles. We extracted millions of movements and pauses, termed bouts, and used unsupervised learning to reduce each larva’s behavior to an alternating sequence of active and inactive bout types, termed modules. Through hierarchical compression, we identified recurrent behavioral patterns, termed motifs. Module and motif usage varied across the day/night cycle, revealing structure at sub-second to day-long timescales. We further demonstrate that module and motif analysis can uncover novel pharmacological and genetic mutant phenotypes. Overall, our work reveals the organization of larval zebrafish behavior at multiple timescales and provides tools to identify structure from large-scale behavioral datasets.
Collapse
|
92
|
Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CCJ, Tseng HA, Bensussen S, Narayan S, Yang CT, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon YG, Ullmann JFP, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES. Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator. Neuron 2020; 107:470-486.e11. [PMID: 32592656 DOI: 10.1016/j.neuron.2020.05.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 05/09/2019] [Accepted: 05/20/2020] [Indexed: 01/11/2023]
Abstract
Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.
Collapse
Affiliation(s)
- Or A Shemesh
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changyang Linghu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Daniel Goodwin
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Orhan Tunc Celiker
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Howard J Gritton
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Michael F Romano
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Ruixuan Gao
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Hua-An Tseng
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Seth Bensussen
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Limor Freifeld
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Cody A Siciliano
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ishan Gupta
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Joyce Wang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Nikita Pak
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Young-Gyu Yoon
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA; School of Electrical Engineering, KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Jeremy F P Ullmann
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Burcu Guner-Ataman
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Habiba Noamany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Zoe R Sheinkopf
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Shoh Asano
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Amy E Keating
- Department of Biological Engineering, MIT, Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edward S Boyden
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
93
|
Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep 2020; 10:10339. [PMID: 32587370 PMCID: PMC7316714 DOI: 10.1038/s41598-020-67182-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Exposure to stress during early life affects subsequent behaviors and increases the vulnerability to adult pathologies, a phenomenon that has been well documented in humans and rodents. In this study, we introduce a chronic unpredictable stress protocol adapted to young zebrafish, which is an increasingly popular vertebrate model in neuroscience research. We exposed zebrafish to a series of intermittent and unpredictable mild stressors from day 10 to 17 post-fertilization. The stressed fish showed a reduced exploration of a novel environment one day post-stress and an increased responsiveness to dark-light transition two days post-stress, indicative of heightened anxiety-related behaviors. The stress-induced decrease in exploration lasted for at least three days and returned to control levels within one week. Moreover, stressed fish were on average 8% smaller than their control siblings two days post-stress and returned to control levels within one week. All together, our results demonstrate that young zebrafish exposed to chronic unpredictable stress develop growth and behavioral alterations akin to those observed in rodent models.
Collapse
Affiliation(s)
- Archana Golla
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henrik Østby
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
94
|
Kermen F, Darnet L, Wiest C, Palumbo F, Bechert J, Uslu O, Yaksi E. Stimulus-specific behavioral responses of zebrafish to a large range of odors exhibit individual variability. BMC Biol 2020; 18:66. [PMID: 32539727 PMCID: PMC7296676 DOI: 10.1186/s12915-020-00801-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Odor-driven behaviors such as feeding, mating, and predator avoidance are crucial for animal survival. The neural pathways processing these behaviors have been well characterized in a number of species, and involve the activity of diverse brain regions following stimulation of the olfactory bulb by specific odors. However, while the zebrafish olfactory circuitry is well understood, a comprehensive characterization linking odor-driven behaviors to specific odors is needed to better relate olfactory computations to animal responses. RESULTS Here, we used a medium-throughput setup to measure the swimming trajectories of 10 zebrafish in response to 17 ecologically relevant odors. By selecting appropriate locomotor metrics, we constructed ethograms systematically describing odor-induced changes in the swimming trajectory. We found that adult zebrafish reacted to most odorants using different behavioral programs and that a combination of a few relevant behavioral metrics enabled us to capture most of the variance in these innate odor responses. We observed that individual components of natural food and alarm odors do not elicit the full behavioral response. Finally, we show that zebrafish blood elicits prominent defensive behaviors similar to those evoked by skin extract and activates spatially overlapping olfactory bulb domains. CONCLUSION Altogether, our results highlight a prominent intra- and inter-individual variability in zebrafish odor-driven behaviors and identify a small set of waterborne odors that elicit robust responses. Our behavioral setup and our results will be useful resources for future studies interested in characterizing innate olfactory behaviors in aquatic animals.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- KU Leuven, 3000, Leuven, Belgium.
| | - Lea Darnet
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Christoph Wiest
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Jack Bechert
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Ozge Uslu
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
95
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
96
|
Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R. A Neural Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain. Curr Biol 2020; 30:2321-2333.e6. [PMID: 32386533 DOI: 10.1016/j.cub.2020.04.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
All animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum organizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Peripheral computations thus reflect natural input statistics, whereas central brain activity precisely codes information needed for behavior. This general principle could organize sensorimotor transformations across animal species.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany; Institute of Neuroscience, Technical University of Munich, Munich 80802, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich 80802, Germany.
| |
Collapse
|
97
|
Farouj Y, Karahanoglu FI, Van De Ville D. Deconvolution of Sustained Neural Activity From Large-Scale Calcium Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1094-1103. [PMID: 31545714 DOI: 10.1109/tmi.2019.2942765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent technological advances in light-sheet microscopy make it possible to perform whole-brain functional imaging at the cellular level with the use of Ca2+ indicators. The outstanding spatial extent and resolution of this type of data open unique opportunities for understanding the complex organization of neuronal circuits across the brain. However, the analysis of this data remains challenging because the observed variations in fluorescence are, in fact, noisy indirect measures of the neuronal activity. Moreover, measuring over large field-of-view negatively impact temporal resolution and signal-to-noise ratio, which further impedes conventional spike inference. Here we argue that meaningful information can be extracted from large-scale functional imaging data by deconvolving with the calcium response and by modeling moments of sustained neuronal activity instead of individual spikes. Specifically, we characterize the calcium response by a linear system of which the inverse is a differential operator. This operator is then included in a regularization term promoting sparsity of activity transients through generalized total variation. Our results illustrate the numerical performance of the algorithm on simulated signals; i.e., we show the firing rate phase transition at which our model outperforms spike inference. Finally, we apply the proposed algorithm to experimental data from zebrafish larvæ. In particular, we show that, when applied to a specific group of neurons, the algorithm retrieves neural activation that matches the locomotor behavior unknown to the method.
Collapse
|
98
|
Dunn TW, Fitzgerald JE. Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience. eLife 2020; 9:e53684. [PMID: 32207682 PMCID: PMC7162656 DOI: 10.7554/elife.53684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Optical refraction causes light to bend at interfaces between optical media. This phenomenon can significantly distort visual stimuli presented to aquatic animals in water, yet refraction has often been ignored in the design and interpretation of visual neuroscience experiments. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.
Collapse
Affiliation(s)
- Timothy W Dunn
- Duke Forge, Duke Global Neurosurgery and Neurology, Departments of Statistical Science and Neurosurgery, Duke UniversityDurhamUnited States
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
99
|
Guitchounts G, Cox D. 64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Sci Rep 2020; 10:3830. [PMID: 32123283 PMCID: PMC7052209 DOI: 10.1038/s41598-020-60873-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
A chief goal in neuroscience is to understand how neuronal activity relates to behavior, perception, and cognition. However, monitoring neuronal activity over long periods of time is technically challenging, and limited, in part, by the invasive nature of recording tools. While electrodes allow for recording in freely-behaving animals, they tend to be bulky and stiff, causing damage to the tissue they are implanted in. One solution to this invasiveness problem may be probes that are small enough to fly under the immune system's radar. Carbon fiber (CF) electrodes are thinner and more flexible than typical metal or silicon electrodes, but the arrays described in previous reports had low channel counts and required time-consuming manual assembly. Here we report the design of an expanded-channel-count carbon fiber electrode array (CFEA) as well as a method for fast preparation of the recording sites using acid etching and electroplating with PEDOT-TFB, and demonstrate the ability of the 64-channel CFEA to record from rat visual cortex. We include designs for interfacing the system with micro-drives or flex-PCB cables for recording from multiple brain regions, as well as a facilitated method for coating CFs with the insulator Parylene-C. High-channel-count CFEAs may thus be an alternative to traditional microwire-based electrodes and a practical tool for exploring the neural code.
Collapse
Affiliation(s)
- Grigori Guitchounts
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Program in Neuroscience, Harvard University, Cambridge, Massachusetts, 02138, USA.
| | - David Cox
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
100
|
Betzel RF. Organizing principles of whole-brain functional connectivity in zebrafish larvae. Netw Neurosci 2020; 4:234-256. [PMID: 32166210 PMCID: PMC7055648 DOI: 10.1162/netn_a_00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Network science has begun to reveal the fundamental principles by which large-scale brain networks are organized, including geometric constraints, a balance between segregative and integrative features, and functionally flexible brain areas. However, it remains unknown whether whole-brain networks imaged at the cellular level are organized according to similar principles. Here, we analyze whole-brain functional networks reconstructed from calcium imaging data recorded in larval zebrafish. Our analyses reveal that functional connections are distance-dependent and that networks exhibit hierarchical modular structure and hubs that span module boundaries. We go on to show that spontaneous network structure places constraints on stimulus-evoked reconfigurations of connections and that networks are highly consistent across individuals. Our analyses reveal basic organizing principles of whole-brain functional brain networks at the mesoscale. Our overarching methodological framework provides a blueprint for studying correlated activity at the cellular level using a low-dimensional network representation. Our work forms a conceptual bridge between macro- and mesoscale network neuroscience and opens myriad paths for future studies to investigate network structure of nervous systems at the cellular level.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|