51
|
Wei Y, Toth JI, Blanco GA, Bobkov AA, Petroski MD. Adapted ATPase domain communication overcomes the cytotoxicity of p97 inhibitors. J Biol Chem 2018; 293:20169-20180. [PMID: 30381397 DOI: 10.1074/jbc.ra118.004301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
The AAA+ ATPase p97 regulates ubiquitin-dependent protein homeostasis and has been pursued as a cancer drug target. The ATP-competitive inhibitor CB-5083 and allosteric inhibitor NMS-873 are the most advanced p97 inhibitors described to date. Previous studies have reported that their cytotoxicity can be readily overcome and involves single p97 mutations in the linker between the D1 and D2 ATPase domains and within D2. We report here that the proline 472 to leucine (P472L) mutation, in the D1-D2 linker and identified in CB-5083-resistant cells, desensitizes p97 to both inhibitor classes. This mutation does not disrupt the distinct D2-binding sites of the inhibitors. Instead, P472L changes ATPase domain communication within the p97 hexamer. P472L enhances cooperative D2 ATP binding and hydrolysis. This mechanism alters the function of the D1-D2 linker in the control of D2 activity involving the ATP-bound state of D1. Although increased D2 activity is sufficient to desensitize the P472L mutant to NMS-873, the mutant's desensitization to CB-5083 also requires D1 ATPase domain function. Our study highlights the remarkable adaptability of p97 ATPase domain communication that enables escape from mechanistically distinct classes of cytotoxic p97 inhibitors.
Collapse
Affiliation(s)
- Yang Wei
- From the NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Julia I Toth
- From the NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Gabrielle A Blanco
- From the NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Andrey A Bobkov
- From the NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Matthew D Petroski
- From the NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037.
| |
Collapse
|
52
|
Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 2018; 54:1-9. [PMID: 30268910 PMCID: PMC6420056 DOI: 10.1016/j.sbi.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
A large body of work has gone into understanding the effect of mutations on protein structure and function. Conventional treatments have involved quantifying the change in stability, activity and relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming increasingly apparent that mutational perturbations consistently modulate the packing and dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from the mutated site. Such long-range modulation of protein features can distinctly tune protein stability and the native conformational ensemble contributing to allosteric modulation of function. In this review, I summarize a series of experimental and computational observations that highlight the incredibly pliable nature of proteins and their response to mutational perturbations manifested via the intra-protein interaction network. I highlight how an intimate understanding of mutational effects could pave the way for integrating stability, folding, cooperativity and even allostery within a single physical framework.
Collapse
|
53
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
54
|
Weinhäupl K, Brennich M, Kazmaier U, Lelievre J, Ballell L, Goldberg A, Schanda P, Fraga H. The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. J Biol Chem 2018; 293:8379-8393. [PMID: 29632076 PMCID: PMC5986217 DOI: 10.1074/jbc.ra118.002251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death.
Collapse
Affiliation(s)
- Katharina Weinhäupl
- From the Institut de Biologie Structurale, University of Grenoble Alpes-CEA, CNRS, IBS, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Martha Brennich
- the European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Uli Kazmaier
- the Institute of Organic Chemistry, Saarland University, Campus C4.2, 66123 Saarbrücken, Germany
| | - Joel Lelievre
- the Diseases of the Developing World Discovery Performance Unit, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluis Ballell
- the Diseases of the Developing World Discovery Performance Unit, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Alfred Goldberg
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Paul Schanda
- From the Institut de Biologie Structurale, University of Grenoble Alpes-CEA, CNRS, IBS, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France,
| | - Hugo Fraga
- From the Institut de Biologie Structurale, University of Grenoble Alpes-CEA, CNRS, IBS, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France,
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
- the Departamento de Biomedicina, Faculdade de Medicina and i3S, Instituto de Investigaçào e Inovaçào em Saúde, Universidade do Porto, Alameda Professor Hernàni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
55
|
Two novel VCP missense variants identified in Japanese patients with multisystem proteinopathy. Hum Genome Var 2018; 5:9. [PMID: 29899994 PMCID: PMC5976715 DOI: 10.1038/s41439-018-0009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
VCP mutations were first associated with inclusion body myopathy with Paget’s disease of bone and frontotemporal dementia (IBMPFD) but was later associated with amyotrophic lateral sclerosis and Charcot–Marie–Tooth disease. Now, a new name, “multisystem proteinopathy (MSP)”, is proposed for this condition. VCP encodes valosin-containing protein, which is involved in protein degradation in the ubiquitin proteasome system. We report here two MSP patients with two novel heterozygous missense variants in VCP: c.259G>T (p.Val87Phe) and c.376A>G (p.Ile126Val).
Collapse
|
56
|
Walker C, El-Khamisy SF. Perturbed autophagy and DNA repair converge to promote neurodegeneration in amyotrophic lateral sclerosis and dementia. Brain 2018; 141:1247-1262. [PMID: 29584802 PMCID: PMC5917746 DOI: 10.1093/brain/awy076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining genomic stability constitutes a major challenge facing cells. DNA breaks can arise from direct oxidative damage to the DNA backbone, the inappropriate activities of endogenous enzymes such as DNA topoisomerases, or due to transcriptionally-derived RNA/DNA hybrids (R-loops). The progressive accumulation of DNA breaks has been linked to several neurological disorders. Recently, however, several independent studies have implicated nuclear and mitochondrial genomic instability, perturbed co-transcriptional processing, and impaired cellular clearance pathways as causal and intertwined mechanisms underpinning neurodegeneration. Here, we discuss this emerging paradigm in the context of amyotrophic lateral sclerosis and frontotemporal dementia, and outline how this knowledge paves the way to novel therapeutic interventions.
Collapse
Affiliation(s)
- Callum Walker
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- The Institute of Cancer Research, London, UK
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
57
|
Tang WK, Zhang T, Ye Y, Xia D. Structural basis for nucleotide-modulated p97 association with the ER membrane. Cell Discov 2017; 3:17045. [PMID: 29238611 PMCID: PMC5725882 DOI: 10.1038/celldisc.2017.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023] Open
Abstract
Association of the cytosolic AAA (ATPases associated with various cellular activities) protein p97 to membranes is essential for various cellular processes including endoplasmic reticulum (ER)-associated degradation. The p97 consists of two ATPase domains and an N domain that interacts with numerous cofactors. The N domain of p97 is known to undergo a large nucleotide-dependent conformation switch, but its physiological relevance is unclear. Here we show p97 is recruited to canine ER membranes predominantly by interacting with VCP-interacting membrane protein (VIMP), an ER-resident protein. We found that the recruitment is modulated through a nucleotide-dependent conformation switch of the N domain in wild-type p97, but this modulation is absent in pathogenic mutants. We demonstrate the molecular mechanism of the modulation by a series of structures of p97, VIMP and their complexes and suggest a physiological role of the nucleotide-dependent N domain conformation switch. The lack of modulation in pathogenic mutants is caused by changes in interactions between the N and D1 domain, as demonstrated by multiple intermediate positions adopted by N domains of mutant p97. Our findings suggest the nucleotide-modulated membrane association may also have a role in other p97-dependent processes.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
58
|
VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell 2017; 69:182-194. [PMID: 29153394 DOI: 10.1016/j.molcel.2017.10.028] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The AAA+-type ATPase p97 governs an ever-expanding number of cellular processes reaching from degradation of damaged proteins and organelles to key signaling events and chromatin regulation with thousands of client proteins. With its relevance for cellular homeostasis and genome stability, it is linked to muscular and neuronal degeneration and, conversely, constitutes an attractive anti-cancer drug target. Its molecular function is ATP-driven protein unfolding, which is directed by ubiquitin and assisted by a host of cofactor proteins. This activity underlies p97's diverse ability to pull proteins out of membranes, unfold proteins for proteasomal degradation, or segregate proteins from partners for downstream activity. Recent advances in structural analysis and biochemical reconstitution have underscored this notion, resolved detailed molecular motions within the p97 hexamer, and suggested substrate threading through the central channel of the p97 hexamer as the driving mechanism. We will discuss the mechanisms and open questions in the context of the diverse cellular activities.
Collapse
|
59
|
Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc Natl Acad Sci U S A 2017; 114:E9846-E9854. [PMID: 29087330 DOI: 10.1073/pnas.1712297114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the α-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes.
Collapse
|
60
|
Rao MV, Williams DR, Cocklin S, Loll PJ. Interaction between the AAA + ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 2017; 292:18392-18407. [PMID: 28939772 DOI: 10.1074/jbc.m117.806281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Indexed: 12/29/2022] Open
Abstract
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Collapse
Affiliation(s)
- Maya V Rao
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Dewight R Williams
- the LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Patrick J Loll
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
61
|
Burr R, Ribbens D, Raychaudhuri S, Stewart EV, Ho J, Espenshade PJ. Dsc E3 ligase localization to the Golgi requires the ATPase Cdc48 and cofactor Ufd1 for activation of sterol regulatory element-binding protein in fission yeast. J Biol Chem 2017; 292:16333-16350. [PMID: 28821619 DOI: 10.1074/jbc.m117.802025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA+) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe, generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe.
Collapse
Affiliation(s)
- Risa Burr
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Diedre Ribbens
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sumana Raychaudhuri
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Emerson V Stewart
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jason Ho
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter J Espenshade
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
62
|
Abstract
A conserved AAA+ ATPase, called Cdc48 in yeast and p97 or VCP in metazoans, plays an essential role in many cellular processes by segregating polyubiquitinated proteins from complexes or membranes. For example, in endoplasmic reticulum (ER)-associated protein degradation (ERAD), Cdc48/p97 pulls polyubiquitinated, misfolded proteins out of the ER and transfers them to the proteasome. Cdc48/p97 consists of an N-terminal domain and two ATPase domains (D1 and D2). Six Cdc48 monomers form a double-ring structure surrounding a central pore. Cdc48/p97 cooperates with a number of different cofactors, which bind either to the N-terminal domain or to the C-terminal tail. The mechanism of Cdc48/p97 action is poorly understood, despite its critical role in many cellular systems. Recent in vitro experiments using yeast Cdc48 and its heterodimeric cofactor Ufd1/Npl4 (UN) have resulted in novel mechanistic insight. After interaction of the substrate-attached polyubiquitin chain with UN, Cdc48 uses ATP hydrolysis in the D2 domain to move the polypeptide through its central pore, thereby unfolding the substrate. ATP hydrolysis in the D1 domain is involved in substrate release from the Cdc48 complex, which requires the cooperation of the ATPase with a deubiquitinase (DUB). Surprisingly, the DUB does not completely remove all ubiquitin molecules; the remaining oligoubiquitin chain is also translocated through the pore. Cdc48 action bears similarities to the translocation mechanisms employed by bacterial AAA ATPases and the eukaryotic 19S subunit of the proteasome, but differs significantly from that of a related type II ATPase, the NEM-sensitive fusion protein (NSF). Many questions about Cdc48/p97 remain unanswered, including how it handles well-folded substrate proteins, how it passes substrates to the proteasome, and how various cofactors modify substrates and regulate its function.
Collapse
Affiliation(s)
- Nicholas Bodnar
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tom Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
63
|
Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. Proc Natl Acad Sci U S A 2017; 114:E6822-E6829. [PMID: 28760999 DOI: 10.1073/pnas.1707974114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p97/VCP, a member of the AAA+ (ATPases associated with diverse cellular activities) family of proteins, is implicated in the etiology of a group of degenerative diseases affecting bone and muscle tissue as well as the central nervous system. Methyl-TROSY-based NMR studies have previously revealed how disease-causing mutations deregulate a subtle dynamic conformational equilibrium involving the N-terminal domain (NTD) with implications for the binding of certain adaptors, providing insight into how disease mutations lead to abnormal function. Herein the conformational plasticity of the p97 system is explored in an attempt to identify hotspots that can serve as targets for restoring function in disease mutants by shifting the position of the NTD back to its wild-type location. Although p97 is overall robust with respect to extensive mutagenesis throughout the protein involving conservative substitutions of hydrophobic residues, key positions have been identified that alter the NTD equilibrium; these lie in specific regions that localize to the interface between the NTD and the D1 nucleotide-binding domain of the complex. Notably, for a severe disease mutant involving an R155C substitution the NTD equilibrium can be shifted back to its wild-type position by mutation at a secondary site with restoration of wild-type two-pronged binding of the UBXD1 adaptor protein that is impaired in disease; this underlies the potential for recovering function by targeting p97 disease mutants with drug molecules.
Collapse
|
64
|
Tillotson J, Zerio CJ, Harder B, Ambrose AJ, Jung KS, Kang M, Zhang DD, Chapman E. Arsenic Compromises Both p97 and Proteasome Functions. Chem Res Toxicol 2017; 30:1508-1514. [PMID: 28636814 PMCID: PMC5687067 DOI: 10.1021/acs.chemrestox.7b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to arsenic is a worldwide problem that affects more than 200 million people. The underlying mechanisms of arsenic toxicity have been difficult to ascertain due to arsenic's pleotropic effects. A number of recent investigations have shown that arsenic can compromise protein quality control through the ubiquitin proteasome system (UPS) or the endoplasmic reticulum associated protein degradation (ERAD) pathway. In this article, a link between arsenic and protein quality control is reported. Biochemical and cellular data demonstrate a misregulation of the ATPase cycle of the ATPase associated with various cellular activities (AAA+) chaperone, p97. Interestingly, the loss of p97 activity is due to the increased rate of ATP hydrolysis, which mimics a collection of pathogenic genetic p97 lesions. Cellular studies, using a well characterized reporter of both the proteasome and p97, show the proteasome to also be compromised. This loss of both p97 and proteasome functions can explain the catastrophic protein quality control issues observed in acute, high level arsenic exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donna D. Zhang
- Corresponding Authors: (D.D.Z.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0119. Tel: 520-626-9918. .; (E.C.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0207. Tel: 520-626-2740.
| | - Eli Chapman
- Corresponding Authors: (D.D.Z.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0119. Tel: 520-626-9918. .; (E.C.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0207. Tel: 520-626-2740.
| |
Collapse
|
65
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
66
|
A conserved inter-domain communication mechanism regulates the ATPase activity of the AAA-protein Drg1. Sci Rep 2017; 7:44751. [PMID: 28303975 PMCID: PMC5356007 DOI: 10.1038/srep44751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 11/14/2022] Open
Abstract
AAA-ATPases fulfil essential roles in different cellular pathways and often act in form of hexameric complexes. Interaction with pathway-specific substrate and adaptor proteins recruits them to their targets and modulates their catalytic activity. This substrate dependent regulation of ATP hydrolysis in the AAA-domains is mediated by a non-catalytic N-terminal domain. The exact mechanisms that transmit the signal from the N-domain and coordinate the individual AAA-domains in the hexameric complex are still the topic of intensive research. Here, we present the characterization of a novel mutant variant of the eukaryotic AAA-ATPase Drg1 that shows dysregulation of ATPase activity and altered interaction with Rlp24, its substrate in ribosome biogenesis. This defective regulation is the consequence of amino acid exchanges at the interface between the regulatory N-domain and the adjacent D1 AAA-domain. The effects caused by these mutations strongly resemble those of pathological mutations of the AAA-ATPase p97 which cause the hereditary proteinopathy IBMPFD (inclusion body myopathy associated with Paget’s disease of the bone and frontotemporal dementia). Our results therefore suggest well conserved mechanisms of regulation between structurally, but not functionally related members of the AAA-family.
Collapse
|
67
|
Boulton S, Akimoto M, Akbarizadeh S, Melacini G. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia. J Biol Chem 2017; 292:6414-6428. [PMID: 28174302 DOI: 10.1074/jbc.m116.773697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
Collapse
Affiliation(s)
- Stephen Boulton
- From the Departments of Biochemistry and Biomedical Sciences and
| | - Madoka Akimoto
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sam Akbarizadeh
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Biochemistry and Biomedical Sciences and .,Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|