51
|
Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, Qian W, Rota-Stabelli O, Yang N, Wang S, Wang G, Zhang G, Guo J, Gu LA, Chen L, Xing L, Xi Y, Liu F, Lin K, Guo M, Liu W, He K, Tian R, Jacquin-Joly E, Franck P, Siegwart M, Ometto L, Anfora G, Blaxter M, Meslin C, Nguyen P, Dalíková M, Marec F, Olivares J, Maugin S, Shen J, Liu J, Guo J, Luo J, Liu B, Fan W, Feng L, Zhao X, Peng X, Wang K, Liu L, Zhan H, Liu W, Shi G, Jiang C, Jin J, Xian X, Lu S, Ye M, Li M, Yang M, Xiong R, Walters JR, Li F. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat Commun 2019; 10:4237. [PMID: 31530873 PMCID: PMC6748993 DOI: 10.1038/s41467-019-12175-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/20/2019] [Indexed: 01/27/2023] Open
Abstract
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion. The codling moth, Cydia pomonella, is one of the major pests of pome fruit (apples and pears) and walnuts. Here, the authors sequence and analyze its genome, providing insights on olfactory and detoxification processes that may underlie its worldwide expansion.
Collapse
Affiliation(s)
- Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rui Tang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maohua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wanqiang Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Custom, Shanghai, 200135, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liuqi Aloy Gu
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66046, USA
| | - Longfei Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longsheng Xing
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Xi
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feiling Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kejian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruizheng Tian
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | | | - Pierre Franck
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Myriam Siegwart
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Lino Ometto
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy.,Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Gianfranco Anfora
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy.,Centre Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige (TN), Italy
| | - Mark Blaxter
- Edinburgh Genomics, and Institute of Evolutionary Biology, School of Biological Sciences, The King's Buildings, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Camille Meslin
- INRA, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Martina Dalíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jérôme Olivares
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Sandrine Maugin
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Jianru Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinding Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinmeng Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiapeng Luo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Likai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Xianxin Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Peng
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Kang Wang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Lang Liu
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Haixia Zhan
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoliang Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunyan Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sha Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mingli Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Minglu Yang
- Xinjiang Production & Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang, Tarim University, Alar, 843300, China
| | - Renci Xiong
- Xinjiang Production & Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang, Tarim University, Alar, 843300, China
| | - James R Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66046, USA.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
52
|
Yang X, Chen W, Song X, Ma X, Cotto-Rivera RO, Kain W, Chu H, Chen YR, Fei Z, Wang P. Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103209. [PMID: 31422154 DOI: 10.1016/j.ibmb.2019.103209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from Bacillus thuringiensis (Bt) are the primary recombinant proteins expressed in transgenic crops (Bt-crops) to confer insect resistance. Development of resistance to Bt toxins in insect populations threatens the sustainable application of Bt-crops in agriculture. The Bt toxin Cry2Ab is a major insecticidal protein used in current Bt-crops, and resistance to Cry2Ab has been selected in several insects, including the cabbage looper, Trichoplusia ni. In this study, the Cry2Ab resistance gene in T. ni was mapped to Chromosome 17 by genetic linkage analyses using a whole genome resequencing approach, and was then finely mapped using RNA-seq-based bulked segregant analysis (BSA) and amplicon sequencing (AmpSeq)-based fine linkage mapping to a locus containing two genes, ABCA1 and ABCA2. Mutations in ABCA1 and ABCA2 in Cry2Ab resistant T. ni were identified by both genomic DNA and cDNA sequencing. Analysis of the expression of ABCA1 and ABCA2 in T. ni larvae indicated that ABCA2 is abundantly expressed in the larval midgut, but ABCA1 is not a midgut-expressed gene. The mutation in ABCA2 in Cry2Ab resistant T. ni was identified to be an insertion of a transposon Tntransib in ABCA2. For confirmation of ABCA2 as the Cry2Ab-resistance gene, T. ni mutants with frameshift mutations in ABCA1 and ABCA2 were generated by CRISPR/Cas9 mutagenesis. Bioassays of the T. ni mutants with Cry2Ab verified that the mutations of ABCA1 did not change larval susceptibility to Cry2Ab, but the ABCA2 mutants were highly resistant to Cry2Ab. Genetic complementation test of the ABCA2 allele in Cry2Ab resistant T. ni with an ABCA2 mutant generated by CRISPR/Cas9 confirmed that the ABCA2 mutation in the Cry2Ab resistant strain confers the resistance. The results from this study confirmed that ABCA2 is essential for the toxicity of Cry2Ab in T. ni and mutation of ABCA2 confers the resistance to Cry2Ab in the resistant T. ni strain derived from a Bt resistant greenhouse population.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xiaozhao Song
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Xiaoli Ma
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Rey O Cotto-Rivera
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wendy Kain
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Hannah Chu
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA; Department of Science, John Jay College of Criminal Justice-City University of New York, New York, NY, 10019, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA; USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| |
Collapse
|
56
|
Talsania K, Mehta M, Raley C, Kriga Y, Gowda S, Grose C, Drew M, Roberts V, Cheng KT, Burkett S, Oeser S, Stephens R, Soppet D, Chen X, Kumar P, German O, Smirnova T, Hautman C, Shetty J, Tran B, Zhao Y, Esposito D. Genome Assembly and Annotation of the Trichoplusia ni Tni-FNL Insect Cell Line Enabled by Long-Read Technologies. Genes (Basel) 2019; 10:genes10020079. [PMID: 30678108 PMCID: PMC6409714 DOI: 10.3390/genes10020079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Trichoplusia ni derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusia ni-derived cell line Tni-FNL. Methods: By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL. Results: Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly. Conclusions: This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.
Collapse
Affiliation(s)
- Keyur Talsania
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Monika Mehta
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Castle Raley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yuliya Kriga
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sujatha Gowda
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Carissa Grose
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Matthew Drew
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Veronica Roberts
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Kwong Tai Cheng
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | | | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Daniel Soppet
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Xiongfeng Chen
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Parimal Kumar
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Oksana German
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Tatyana Smirnova
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Christopher Hautman
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Jyoti Shetty
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Bao Tran
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yongmei Zhao
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|