51
|
Zyryanova AF, Kashiwagi K, Rato C, Harding HP, Crespillo-Casado A, Perera LA, Sakamoto A, Nishimoto M, Yonemochi M, Shirouzu M, Ito T, Ron D. ISRIB Blunts the Integrated Stress Response by Allosterically Antagonising the Inhibitory Effect of Phosphorylated eIF2 on eIF2B. Mol Cell 2020; 81:88-103.e6. [PMID: 33220178 PMCID: PMC7837216 DOI: 10.1016/j.molcel.2020.10.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
The small molecule ISRIB antagonizes the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor for eIF2. We have found that ISRIB-mediated acceleration of eIF2B’s nucleotide exchange activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitize eIF2B to the inhibitory effect of eIF2(αP). ISRIB’s efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryoelectron microscopy (cryo-EM) showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other’s binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR. Mutually antagonistic binding of phosphorylated eIF2 and ISRIB to eIF2B Opposing structural rearrangement of eIF2B by binding ISRIB or phosphorylated eIF2 Phosphorylated eIF2 exposes ISRIB’s ability to enhance eIF2B activity in vitro Weak ISR-inhibitory activity of ISRIB in cells lacking phosphorylated eIF2
Collapse
Affiliation(s)
- Alisa F Zyryanova
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK
| | - Kazuhiro Kashiwagi
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Claudia Rato
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK
| | - Luke A Perera
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
52
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
53
|
Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC, Zode GS. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun 2020; 11:5594. [PMID: 33154371 PMCID: PMC7644693 DOI: 10.1038/s41467-020-19352-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
Collapse
Affiliation(s)
- Ramesh B Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Pinkal D Patel
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Shruti Patil
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles C Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences and the Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Val C Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA.
| |
Collapse
|
54
|
Motaln H, Čerček U, Recek N, Bajc Česnik A, Mozetič M, Rogelj B. Cold atmospheric plasma induces stress granule formation via an eIF2α-dependent pathway. Biomater Sci 2020; 8:5293-5305. [PMID: 32930691 DOI: 10.1039/d0bm00488j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cold atmospheric plasma is an ionized gas that shows promise in regenerative medical treatments, yet the mechanisms underlying its effects are still poorly understood. Plasma treatment promotes cell growth or cell death depending on the cell type and exposure parameters. To date, no early cell response to plasma, such as stress granule (SG) formation has been addressed. Cytoplasmic SGs are formed as an immediate cell response to acute stress stimuli by recruitment of over 140 proteins intertwined with cytoplasmic RNAs that leads to transient suspension of protein translation. Encouraged by the plasma effects in regenerative medicine and oncology, the atmospheric pressure plasma jet with argon gas flow is being utilized to treat SH-SY5Y cells with an inducible expression of the stress granule marker G3BP1, to gain an insight into early cell response to plasma and SG formation dynamics. Plasma effectively induces SG formation in the exposed cells in a flow/time-dependent manner, with the SG assembly clearly prompted by plasma-induced oxidative stress. Plasma causes SG formation via eIF2α-signaling, which is repressed with the SG formation inhibitor ISRIB. This insight into the early cell response to plasma treatment may lead to improved therapies in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.
| | | | | | | | | | | |
Collapse
|
55
|
Hughes DT, Halliday M, Smith HL, Verity NC, Molloy C, Radford H, Butcher AJ, Mallucci GR. Targeting the kinase insert loop of PERK selectively modulates PERK signaling without systemic toxicity in mice. Sci Signal 2020; 13:13/644/eabb4749. [PMID: 32788341 DOI: 10.1126/scisignal.abb4749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic activation of the unfolded protein response (UPR), notably the branch comprising the kinase PERK and the translation initiation factor eIF2α, is a pathological feature of many neurodegenerative diseases caused by protein misfolding. Partial reduction of UPR signaling at the level of phosphorylated eIF2α is neuroprotective and avoids the pancreatic toxicity caused by full inhibition of PERK kinase activity. However, other stress pathways besides the UPR converge on phosphorylated eIF2α in the integrated stress response (ISR), which is critical to normal cellular function. We explored whether partial inhibition of PERK signaling may be a better therapeutic option. PERK-mediated phosphorylation of eIF2α requires its binding to the insert loop within PERK's kinase domain, which is, itself, phosphorylated at multiple sites. We found that, as expected, Akt mediates the phosphorylation of Thr799 in PERK. This phosphorylation event reduced eIF2α binding to PERK and selectively attenuated downstream signaling independently of PERK activity and the broader ISR. Induction of Thr799 phosphorylation with a small-molecule activator of Akt similarly reduced PERK signaling and increased both neuronal and animal survival without measurable pancreatic toxicity in a mouse model of prion disease. Thus, promoting PERK phosphorylation at Thr799 to partially down-regulate PERK-eIF2α signaling while avoiding widespread ISR inhibition may be a safe therapeutic approach in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel T Hughes
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Mark Halliday
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Heather L Smith
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Nicholas C Verity
- MRC Toxicology Unit at the University of Cambridge, Hodgkin Building, Leicester LE1 7HB, UK
| | - Colin Molloy
- MRC Toxicology Unit at the University of Cambridge, Hodgkin Building, Leicester LE1 7HB, UK
| | - Helois Radford
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Adrian J Butcher
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK.
| |
Collapse
|
56
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
57
|
Rabouw HH, Visser LJ, Passchier TC, Langereis MA, Liu F, Giansanti P, van Vliet ALW, Dekker JG, van der Grein SG, Saucedo JG, Anand AA, Trellet ME, Bonvin AMJJ, Walter P, Heck AJR, de Groot RJ, van Kuppeveld FJM. Inhibition of the integrated stress response by viral proteins that block p-eIF2-eIF2B association. Nat Microbiol 2020; 5:1361-1373. [PMID: 32690955 DOI: 10.1038/s41564-020-0759-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells, when exposed to environmental or internal stress, activate the integrated stress response (ISR) to restore homeostasis and promote cell survival. Specific stress stimuli prompt dedicated stress kinases to phosphorylate eukaryotic initiation factor 2 (eIF2). Phosphorylated eIF2 (p-eIF2) in turn sequesters the eIF2-specific guanine exchange factor eIF2B to block eIF2 recycling, thereby halting translation initiation and reducing global protein synthesis. To circumvent stress-induced translational shutdown, viruses encode ISR antagonists. Those identified so far prevent or reverse eIF2 phosphorylation. We now describe two viral proteins-one from a coronavirus and the other from a picornavirus-that have independently acquired the ability to counteract the ISR at its very core by acting as a competitive inhibitor of p-eIF2-eIF2B interaction. This allows continued formation of the eIF2-GTP-Met-tRNAi ternary complex and unabated global translation at high p-eIF2 levels that would otherwise cause translational arrest. We conclude that eIF2 and p-eIF2 differ in their interaction with eIF2B to such effect that p-eIF2-eIF2B association can be selectively inhibited.
Collapse
Affiliation(s)
- Huib H Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Linda J Visser
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim C Passchier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - José G Dekker
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Susanne G van der Grein
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jesús G Saucedo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aditya A Anand
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Mikael E Trellet
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
58
|
Tang YJ, Chen H, Yi Y, Chen GM, Yang FW, Li Y, Tian RD, Huang WG, Cheng QJ, He YH. Inhibition of eIF2 α Dephosphorylation Protects Hepatocytes from Apoptosis by Alleviating ER Stress in Acute Liver Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2626090. [PMID: 32566674 PMCID: PMC7293739 DOI: 10.1155/2020/2626090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α) is an important factor along the main pathways for endoplasmic reticulum (ER) stress-mediated apoptosis. In this study, we investigated the effects of eIF2α phosphorylation on hepatocyte apoptosis and the ER stress mechanisms in acute liver injury. METHODS eIF2α phosphorylation and apoptosis under ER stress were monitored and measured in male BALB/c mice with acute liver injury and human hepatocyte line LO2 cells. RESULTS Carbon tetrachloride (CCl4) administration triggered ER stress and hepatocyte apoptosis, as well as eIF2α phosphorylation in mice. Inhibition of eIF2α dephosphorylation, as the pretreatment with 4-phenylbutyric acid (chemical chaperone, ER stress inhibitor), mitigated CCl4-induced intrahepatic ER stress, apoptosis, and liver injury. In an ER stress model of LO2 cells induced by thapsigargin (disrupting ER calcium balance), inhibition of eIF2α dephosphorylation reduced ER stress and apoptosis, while PERK knockdown reduced eIF2α phosphorylation and exacerbated ER stress and apoptosis. CONCLUSIONS eIF2α phosphorylation is one of the mechanisms employed by ER stress for restoring cellular homeostasis. Inhibition of eIF2α dephosphorylation mitigates hepatocyte apoptosis by alleviating ER stress in acute liver injuries.
Collapse
Affiliation(s)
- Yong-Jing Tang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yu Yi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Gui-Mei Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Ying Li
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Ren-Dong Tian
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Wen-Ge Huang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Qi-Jiao Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| |
Collapse
|
59
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
60
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 873] [Impact Index Per Article: 174.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
61
|
Marintchev A, Ito T. eIF2B and the Integrated Stress Response: A Structural and Mechanistic View. Biochemistry 2020; 59:1299-1308. [PMID: 32200625 DOI: 10.1021/acs.biochem.0c00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic translation initiation factor eIF2 is a GTPase, which brings the initiator Met-tRNAi to the ribosome as the eIF2-GTP·Met-tRNAi ternary complex (TC). TC regeneration is catalyzed by the guanine nucleotide exchange factor (GEF) eIF2B. eIF2 phosphorylation by several stress-induced kinases converts it into a competitive inhibitor of eIF2B. Inhibition of eIF2B activity lowers cellular TC concentrations, which in turn triggers the integrated stress response (ISR). Depending on its degree of activation and duration, the ISR protects the cell from the stress or can itself induce apoptosis. ISR dysregulation is a causative factor in the pathology of multiple neurodegenerative disorders, while ISR inhibitors are neuroprotective. The realization that eIF2B is a promising therapeutic target has triggered significant interest in its structure and its mechanisms of action and regulation. Recently, four groups published the cryo-electron microscopy structures of eIF2B with its substrate eIF2 and/or its inhibitor, phosphorylated eIF2 [eIF2(α-P)]. While all three structures of the nonproductive eIF2B·eIF2(α-P) complex are similar to each other, there is a sharp disagreement between the published structures of the productive eIF2B·eIF2 complex. One group reports a structure similar to that of the nonproductive complex, whereas two others observe a vastly different eIF2B·eIF2 complex. Here, we discuss the recent reports on the structure, function, and regulation of eIF2B; the preclinical data on the use of ISR inhibitors for the treatment of neurodegenerative disorders; and how the new structural and biochemical information can inform and influence the use of eIF2B as a therapeutic target.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
62
|
Chen G, Yang X, He Y, Tang Y, Tian R, Huang W, Chen H, Yang F, Li Y, Lin S. Inhibiting alpha subunit of eukaryotic initiation factor 2 dephosphorylation protects injured hepatocytes and reduces hepatocyte proliferation in acute liver injury. Croat Med J 2019; 60:532-544. [PMID: 31894919 PMCID: PMC6952896 DOI: 10.3325/cmj.2019.60.532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023] Open
Abstract
AIM To investigate the impact of alpha subunit of eukaryotic initiation factor 2 (eIF2α) phosphorylation on liver regeneration. METHODS Male BALB/c mice were intraperitoneally injected with carbon tetrachloride (CCl4) to induce liver injury. Human hepatocyte LO2 cells were incubated with thapsigargin to induce endoplasmic reticulum (ER) stress. Salubrinal, integrated stress response inhibitor (ISRIB), and DnaJC3 overexpression were used to alter eIF2α phosphorylation levels. RESULTS CCl4 administration induced significant ER stress and eIF2α phosphorylation, and increased hepatocyte proliferation proportionally to the extent of injury. Inhibiting eIF2α dephosphorylation with salubrinal pretreatment significantly mitigated liver injury and hepatocyte proliferation. In LO2 cells, thapsigargin induced significant eIF2α phosphorylation and inhibited proliferation. Inhibiting eIF2α dephosphorylation partly restored cell proliferation during ER stress. CONCLUSIONS In acute liver injury, inhibiting eIF2α dephosphorylation protects injured hepatocytes and reduces hepatocyte proliferation.
Collapse
Affiliation(s)
| | | | - Yihuai He
- Yihuai He, Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, No. 201 Dalian Street, Zunyi, 563003, Guizhou, China,
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord 2019; 11:29. [PMID: 31839000 PMCID: PMC6913031 DOI: 10.1186/s11689-019-9292-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The mitochondrial aminoacyl-tRNA synthetase proteins (mt-aaRSs) are a group of nuclear-encoded enzymes that facilitate conjugation of each of the 20 amino acids to its cognate tRNA molecule. Mitochondrial diseases are a large, clinically heterogeneous group of disorders with diverse etiologies, ages of onset, and involved organ systems. Diseases related to mt-aaRS mutations are associated with specific syndromes that affect the central nervous system and produce highly characteristic MRI patterns, prototypically the DARS2, EARS, and AARS2 leukodystrophies, which are caused by mutations in mitochondrial aspartyl-tRNA synthetase, mitochondria glutamate tRNA synthetase, and mitochondrial alanyl-tRNA synthetase, respectively. BODY: The disease patterns emerging for these leukodystrophies are distinct in terms of the age of onset, nature of disease progression, and predominance of involved white matter tracts. In DARS2 and EARS2 disorders, earlier disease onset is typically correlated with more significant brain abnormalities, rapid neurological decline, and greater disability. In AARS2 leukodystrophy cases reported thus far, there is nearly invariable progression to severe disability and atrophy of involved brain regions, often within a decade. Although most mutations are compound heterozygous inherited in an autosomal recessive fashion, homozygous variants are found in each disorder and demonstrate high phenotypic variability. Affected siblings manifest disease on a wide spectrum. CONCLUSION The syndromic nature and selective vulnerability of white matter tracts in these disorders suggests there may be a shared mechanism of mitochondrial dysfunction to target for study. There is evidence that the clinical variability and white matter tract specificity of each mt-aaRS leukodystrophy depend on both canonical and non-canonical effects of the mutations on the process of mitochondrial translation. Furthermore, different sensitivities to the mt-aaRS mutations have been observed based on cell type. Most mutations result in at least partial retention of mt-aaRS enzyme function with varied effects on the mitochondrial respiratory chain complexes. In EARS2 and AARS2 cells, this appears to result in cumulative impairment of respiration. Mt-aaRS mutations may also affect alternative biochemical pathways such as the integrated stress response, a homeostatic program in eukaryotic cells that typically confers cytoprotection, but can lead to cell death when abnormally activated in response to pathologic states. Systematic review of this group of disorders and further exploration of disease mechanisms in disease models and neural cells are warranted.
Collapse
Affiliation(s)
- Amena Smith Fine
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205 USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Miriam L. Kaufman
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
64
|
Young-Baird SK, Lourenço MB, Elder MK, Klann E, Liebau S, Dever TE. Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB. Mol Cell 2019; 77:875-886.e7. [PMID: 31836389 DOI: 10.1016/j.molcel.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Dysregulation of cellular protein synthesis is linked to a variety of diseases. Mutations in EIF2S3, encoding the γ subunit of the heterotrimeric eukaryotic translation initiation factor eIF2, cause MEHMO syndrome, an X-linked intellectual disability disorder. Here, using patient-derived induced pluripotent stem cells, we show that a mutation at the C terminus of eIF2γ impairs CDC123 promotion of eIF2 complex formation and decreases the level of eIF2-GTP-Met-tRNAiMet ternary complexes. This reduction in eIF2 activity results in dysregulation of global and gene-specific protein synthesis and enhances cell death upon stress induction. Addition of the drug ISRIB, an activator of the eIF2 guanine nucleotide exchange factor, rescues the cell growth, translation, and neuronal differentiation defects associated with the EIF2S3 mutation, offering the possibility of therapeutic intervention for MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA.
| | - Maíra Bertolessi Lourenço
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
65
|
Anand AA, Walter P. Structural insights into ISRIB, a memory‐enhancing inhibitor of the integrated stress response. FEBS J 2019; 287:239-245. [DOI: 10.1111/febs.15073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Aditya A. Anand
- Department of Biochemistry and Biophysics University of California at San Francisco San Francisco CA USA
- Howard Hughes Medical Institute San Francisco CA USA
| | - Peter Walter
- Department of Biochemistry and Biophysics University of California at San Francisco San Francisco CA USA
- Howard Hughes Medical Institute San Francisco CA USA
| |
Collapse
|
66
|
Karagöz GE, Aragón T, Acosta-Alvear D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res 2019; 8. [PMID: 31723416 PMCID: PMC6833987 DOI: 10.12688/f1000research.19848.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery more than 25 years ago, great progress has been made in our understanding of the unfolded protein response (UPR), a homeostatic mechanism that adjusts endoplasmic reticulum (ER) function to satisfy the physiological demands of the cell. However, if ER homeostasis is unattainable, the UPR switches to drive cell death to remove defective cells in an effort to protect the health of the organism. This functional dichotomy places the UPR at the crossroads of the adaptation versus apoptosis decision. Here, we focus on new developments in UPR signaling mechanisms, in the interconnectivity among the signaling pathways that make up the UPR in higher eukaryotes, and in the coordination between the UPR and other fundamental cellular processes.
Collapse
Affiliation(s)
- G Elif Karagöz
- Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, Spain
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
67
|
Kashiwagi K, Yokoyama T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, Shirouzu M, Ito T. Structural basis for eIF2B inhibition in integrated stress response. Science 2019; 364:495-499. [PMID: 31048492 DOI: 10.1126/science.aaw4104] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/05/2019] [Indexed: 01/02/2023]
Abstract
A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5'-triphosphate-dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo-electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Takahashi
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
68
|
Terumitsu-Tsujita M, Kitaura H, Miura I, Kiyama Y, Goto F, Muraki Y, Ominato S, Hara N, Simankova A, Bizen N, Kashiwagi K, Ito T, Toyoshima Y, Kakita A, Manabe T, Wakana S, Takebayashi H, Igarashi H. Glial pathology in a novel spontaneous mutant mouse of the Eif2b5 gene: a vanishing white matter disease model. J Neurochem 2019; 154:25-40. [PMID: 31587290 DOI: 10.1111/jnc.14887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.
Collapse
Affiliation(s)
- Mika Terumitsu-Tsujita
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.,Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Administrative Section of Radiation Protection, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Hiroki Kitaura
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yuji Kiyama
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumiko Goto
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Muraki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shiho Ominato
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
69
|
Abbink TEM, Wisse LE, Jaku E, Thiecke MJ, Voltolini-González D, Fritsen H, Bobeldijk S, Ter Braak TJ, Polder E, Postma NL, Bugiani M, Struijs EA, Verheijen M, Straat N, van der Sluis S, Thomas AAM, Molenaar D, van der Knaap MS. Vanishing white matter: deregulated integrated stress response as therapy target. Ann Clin Transl Neurol 2019; 6:1407-1422. [PMID: 31402619 PMCID: PMC6689685 DOI: 10.1002/acn3.50826] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Vanishing white matter (VWM) is a fatal, stress‐sensitive leukodystrophy that mainly affects children and is currently without treatment. VWM is caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B) that is crucial for initiation of mRNA translation and its regulation during the integrated stress response (ISR). Mutations reduce eIF2B activity. VWM pathomechanisms remain unclear. In contrast with the housekeeping function of eIF2B, astrocytes are selectively affected in VWM. One study objective was to test our hypothesis that in the brain translation of specific mRNAs is altered by eIF2B mutations, impacting primarily astrocytes. The second objective was to investigate whether modulation of eIF2B activity could ameliorate this altered translation and improve the disease. Methods Mice with biallelic missense mutations in eIF2B that recapitulate human VWM were used to screen for mRNAs with altered translation in brain using polysomal profiling. Findings were verified in brain tissue from VWM patients using qPCR and immunohistochemistry. The compound ISRIB (for “ISR inhibitor”) was administered to VWM mice to increase eIF2B activity. Its effect on translation, neuropathology, and clinical signs was assessed. Results In brains of VWM compared to wild‐type mice we observed the most prominent changes in translation concerning ISR mRNAs; their expression levels correlated with disease severity. We substantiated these findings in VWM patients’ brains. ISRIB normalized expression of mRNA markers, ameliorated brain white matter pathology and improved motor skills in VWM mice. Interpretation The present findings show that ISR deregulation is central in VWM pathomechanisms and a viable target for therapy.
Collapse
Affiliation(s)
- Truus E M Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lisanne E Wisse
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ermelinda Jaku
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michiel J Thiecke
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniel Voltolini-González
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hein Fritsen
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sander Bobeldijk
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Timo J Ter Braak
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Emiel Polder
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nienke L Postma
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eduard A Struijs
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nina Straat
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Complex Trait Genetics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Adri A M Thomas
- Developmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Brown DG, Wobst HJ. Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. J Med Chem 2019; 63:1823-1840. [PMID: 31268707 DOI: 10.1021/acs.jmedchem.9b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toxic misfolded proteins potentially underly many neurodegenerative diseases, but individual targets which regulate these proteins and their downstream detrimental effects are often unknown. Phenotypic screening is an unbiased method to screen for novel targets and therapeutic molecules and span the range from primitive model organisms such as Sacchaomyces cerevisiae, which allow for high-throughput screening to patient-derived cell-lines that have a close connection to the disease biology but are limited in screening capacity. This perspective will review current phenotypic models, as well as the chemical screening strategies most often employed. Advances in in 3D cell cultures, high-content screens, robotic microscopy, CRISPR screening, and use of machine learning methods to process the enormous amount of data generated by these screens are certain to change the paradigm for phenotypic screening and will be discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
71
|
Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, Tsai JC, Miller-Vedam LE, Walter P, Frost A. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science 2019; 364:491-495. [PMID: 31048491 PMCID: PMC6601628 DOI: 10.1126/science.aaw2922] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo-electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2α, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.
Collapse
Affiliation(s)
- Lillian R Kenner
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Aditya A Anand
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Henry C Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 67404 Illkirch, France
| | - Carolin J Klose
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Lea A McGeever
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Lakshmi E Miller-Vedam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
72
|
Hodgson RE, Varanda BA, Ashe MP, Allen KE, Campbell SG. Cellular eIF2B subunit localization: implications for the integrated stress response and its control by small molecule drugs. Mol Biol Cell 2019; 30:942-958. [PMID: 30726166 PMCID: PMC6589909 DOI: 10.1091/mbc.e18-08-0538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) is a G protein critical for translation. It is tightly regulated in the integrated stress response (ISR) via phosphorylation of eIF2α and the subsequent control of eukaryotic initiation factor 2B (eIF2B), a multisubunit guanine nucleotide exchange factor. Through studying the localization of eIF2B subunits, we identified cytoplasmic eIF2B bodies in mammalian cells. We highlight a relationship between body size and the eIF2B subunits localizing to them; larger bodies contain all subunits and smaller bodies contain predominantly catalytic subunits. eIF2 localizes to eIF2B bodies and shuttles within these bodies in a manner that correlates with eIF2B activity. On stress, eIF2α-P localizes predominately to larger bodies and results in a decreased shuttling of eIF2. Interestingly, drugs that inhibit the ISR can rescue eIF2 shuttling in a manner correlating to levels of eIF2α-P. In contrast, smaller bodies show increased eIF2 shuttling in response to stress, which is accompanied by the localization of eIF2Bδ to these bodies, suggesting the formation of a novel trimeric complex of eIF2B. This response is mimicked by ISR-inhibiting drugs, providing insight into their potential mechanism of action. This study provides evidence that the composition and function of mammalian eIF2B bodies are regulated by the ISR and the drugs that control it.
Collapse
Affiliation(s)
- Rachel E Hodgson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Beatriz A Varanda
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - K Elizabeth Allen
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Susan G Campbell
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
73
|
[Vanishing white matter disease in adulthood]. DER NERVENARZT 2019; 90:840-842. [PMID: 30778629 DOI: 10.1007/s00115-019-0693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
74
|
Wong YL, LeBon L, Basso AM, Kohlhaas KL, Nikkel AL, Robb HM, Donnelly-Roberts DL, Prakash J, Swensen AM, Rubinstein ND, Krishnan S, McAllister FE, Haste NV, O'Brien JJ, Roy M, Ireland A, Frost JM, Shi L, Riedmaier S, Martin K, Dart MJ, Sidrauski C. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 2019; 8:42940. [PMID: 30624206 PMCID: PMC6326728 DOI: 10.7554/elife.42940] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.
Collapse
Affiliation(s)
- Yao Liang Wong
- Calico Life Sciences LLC, South San Francisco, United States
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | | | | | | | | | | | | | - Swathi Krishnan
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Nicole V Haste
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Lei Shi
- AbbVie, North Chicago, United States
| | | | - Kathleen Martin
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | |
Collapse
|
75
|
Aulas A, Lyons SM, Fay MM, Anderson P, Ivanov P. Nitric oxide triggers the assembly of "type II" stress granules linked to decreased cell viability. Cell Death Dis 2018; 9:1129. [PMID: 30425239 PMCID: PMC6234215 DOI: 10.1038/s41419-018-1173-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
We show that 3-morpholinosydnonimine (SIN-1)-induced nitric oxide (NO) triggers the formation of SGs. Whereas the composition of NO-induced SGs is initially similar to sodium arsenite (SA)-induced type I (cytoprotective) SGs, the progressive loss of eIF3 over time converts them into pro-death (type II) SGs. NO-induced SG assembly requires the phosphorylation of eIF2α, but the transition to type II SGs is temporally linked to the mTOR-regulated displacement of eIF4F complexes from the m7 guanine cap. Whereas SA does not affect mitochondrial morphology or function, NO alters mitochondrial integrity and function, resulting in increased ROS production, decreased cytoplasmic ATP, and plasma membrane permeabilization, all of which are supported by type II SG assembly. Thus, cellular energy balance is linked to the composition and function of NO-induced SGs in ways that determine whether cells live or die.
Collapse
Affiliation(s)
- Anaïs Aulas
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Marta M Fay
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,The Broad Institute of Harvard and M.I.T., Cambridge, MA, 02142, USA.
| |
Collapse
|
76
|
Atzmon A, Herrero M, Sharet-Eshed R, Gilad Y, Senderowitz H, Elroy-Stein O. Drug Screening Identifies Sigma-1-Receptor as a Target for the Therapy of VWM Leukodystrophy. Front Mol Neurosci 2018; 11:336. [PMID: 30279648 PMCID: PMC6153319 DOI: 10.3389/fnmol.2018.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Vanishing white matter (VWM) disease is an autosomal genetic leukodystrophy caused by mutations in subunits of eukaryotic translation initiation factor 2B (eIF2B). The clinical symptoms exhibit progressive loss of white matter in both hemispheres of the brain, accompanied by motor functions deterioration, neurological deficits, and early death. To date there is no treatment for VWM disease. The aim of this work was to expedite rational development of a therapeutic opportunity. Our approach was to design a computer-aided strategy for an efficient and reliable screening of drug-like molecules; and to use primary cultures of fibroblasts isolated from the Eif2b5R132H/R132H VWM mouse model for screening. The abnormal mitochondria content phenotype of the mutant cells was chosen as a read-out for a simple cell-based fluorescent assay to assess the effect of the tested compounds. We obtained a hit rate of 0.04% (20 hits out of 50,000 compounds from the selected library). All primary hits decreased mitochondria content and brought it closer to WT levels. Structural similarities between our primary hits and other compounds with known targets allowed the identification of three putative cellular pathways/targets: 11β-hydroxysteroid dehydrogenase type 1, Sonic hedgehog (Shh), and Sigma-1-Receptor (S1R). In addition to initial experimental indication of Shh pathway impairment in VWM mouse brains, the current study provides evidence that S1R is a relevant target for pharmaceutical intervention for potential treatment of the disease. Specifically, we found lower expression level of S1R protein in fibroblasts, astrocytes, and whole brains isolated from Eif2b5R132H/R132H compared to WT mice, and confirmed that one of the hits is a direct binder of S1R, acting as agonist. Furthermore, we provide evidence that treatment of mutant mouse fibroblasts and astrocytes with various S1R agonists corrects the functional impairments of their mitochondria and prevents their need to increase their mitochondria content for compensation purposes. Moreover, S1R activation enhances the survival rate of mutant cells under ER stress conditions, bringing it to WT levels. This study marks S1R as a target for drug development toward treatment of VWM disease. Moreover, it further establishes the important connection between white matter well-being and S1R-mediated proper mitochondria/ER function.
Collapse
Affiliation(s)
- Andrea Atzmon
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet-Eshed
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yocheved Gilad
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Orna Elroy-Stein
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
77
|
Abstract
Investigators from Calico Life Sciences LLC and AbbVie report the effects of a novel drug targeting the genetic basis of Vanishing White Matter Disease (VWMD).
Collapse
Affiliation(s)
- Divakar S Mithal
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Jennifer P Rubin
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| |
Collapse
|
78
|
Wang C, Tan Z, Niu B, Tsang KY, Tai A, Chan WCW, Lo RLK, Leung KKH, Dung NWF, Itoh N, Zhang MQ, Chan D, Cheah KSE. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife 2018; 7:37673. [PMID: 30024379 PMCID: PMC6053305 DOI: 10.7554/elife.37673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) is activated by diverse forms of cellular stress, including endoplasmic reticulum (ER) stress, and is associated with diseases. However, the molecular mechanism(s) whereby the ISR impacts on differentiation is incompletely understood. Here, we exploited a mouse model of Metaphyseal Chondrodysplasia type Schmid (MCDS) to provide insight into the impact of the ISR on cell fate. We show the protein kinase RNA-like ER kinase (PERK) pathway that mediates preferential synthesis of ATF4 and CHOP, dominates in causing dysplasia by reverting chondrocyte differentiation via ATF4-directed transactivation of Sox9. Chondrocyte survival is enabled, cell autonomously, by CHOP and dual CHOP-ATF4 transactivation of Fgf21. Treatment of mutant mice with a chemical inhibitor of PERK signaling prevents the differentiation defects and ameliorates chondrodysplasia. By preventing aberrant differentiation, titrated inhibition of the ISR emerges as a rationale therapeutic strategy for stress-induced skeletal disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Zhijia Tan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Wilson C W Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Rebecca L K Lo
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Keith K H Leung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nelson W F Dung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, University of Kyoto, Kyoto, Japan
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, United States.,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Danny Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
79
|
Pavitt GD. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1491. [PMID: 29989343 DOI: 10.1002/wrna.1491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Graham D Pavitt
- Division Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
80
|
Moon SL, Parker R. EIF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response. RNA (NEW YORK, N.Y.) 2018; 24:841-852. [PMID: 29632131 PMCID: PMC5959252 DOI: 10.1261/rna.066563.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/07/2018] [Indexed: 05/29/2023]
Abstract
Mutations in eIF2B genes cause vanishing white matter disease (VWMD), a fatal leukodystrophy that can manifest following physical trauma or illness, conditions that activate the integrated stress response (ISR). EIF2B is the guanine exchange factor for eIF2, facilitating ternary complex formation and translation initiation. During the ISR, eIF2α is phosphorylated and inhibits eIF2B, causing global translation suppression and stress-induced gene translation, allowing stress adaptation and recovery. We demonstrate that VWMD patient cells hypersuppress translation during the ISR caused by acute ER stress, delaying stress-induced gene expression and interrupting a negative feedback loop that allows translational recovery by GADD34-mediated dephosphorylation of phospho-eIF2α. Thus, cells from VWMD patients undergo a prolonged state of translational hyperrepression and fail to recover from stress. We demonstrate that small molecules targeting eIF2B or the eIF2α kinase PERK rescue translation defects in patient cells. Therefore, defects in the ISR could contribute to white matter loss in VWMD.
Collapse
Affiliation(s)
- Stephanie L Moon
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|