51
|
Janečková E, Feng J, Li J, Rodriguez G, Chai Y. Dynamic activation of Wnt, Fgf, and Hh signaling during soft palate development. PLoS One 2019; 14:e0223879. [PMID: 31613912 PMCID: PMC6793855 DOI: 10.1371/journal.pone.0223879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
The soft palate is a key component of the oropharyngeal complex that is critical for swallowing, breathing, hearing and speech. However, complete functional restoration in patients with cleft soft palate remains a challenging task. New insights into the molecular signaling network governing the development of soft palate will help to overcome these clinical challenges. In this study, we investigated whether key signaling pathways required for hard palate development are also involved in soft palate development in mice. We described the dynamic expression patterns of signaling molecules from well-known pathways, such as Wnt, Hh, and Fgf, during the development of the soft palate. We found that Wnt signaling is active throughout the development of soft palate myogenic sites, predominantly in cells of cranial neural crest (CNC) origin neighboring the myogenic cells, suggesting that Wnt signaling may play a significant role in CNC-myogenic cell-cell communication during myogenic differentiation in the soft palate. Hh signaling is abundantly active in early palatal epithelium, some myogenic cells, and the CNC-derived cells adjacent to the myogenic cells. Hh signaling gradually diminishes during the later stages of soft palate development, indicating its involvement mainly in early embryonic soft palate development. Fgf signaling is expressed most prominently in CNC-derived cells in the myogenic sites and persists until later stages of embryonic soft palate development. Collectively, our results highlight a network of Wnt, Hh, and Fgf signaling that may be involved in the development of the soft palate, particularly soft palate myogenesis. These findings provide a foundation for future studies on the functional significance of these signaling pathways individually and collectively in regulating soft palate development.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Gabriela Rodriguez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
52
|
Kwon RY, Watson CJ, Karasik D. Using zebrafish to study skeletal genomics. Bone 2019; 126:37-50. [PMID: 30763636 PMCID: PMC6626559 DOI: 10.1016/j.bone.2019.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 02/09/2019] [Indexed: 12/26/2022]
Abstract
While genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of skeletal diseases, animal models are required to identify causal mechanisms and to translate underlying biology into new therapies. Despite large-scale knockout mouse phenotyping efforts, the skeletal functions of most genes residing at GWAS-identified loci remain unknown, highlighting a need for complementary model systems to accelerate gene discovery. Over the past several decades, zebrafish (Danio rerio) has emerged as a powerful system for modeling the genetics of human diseases. In this review, our goal is to outline evidence supporting the utility of zebrafish for accelerating our understanding of human skeletal genomics, as well as gaps in knowledge that need to be filled for this purpose. We do this by providing a basic foundation of the zebrafish skeletal morphophysiology and phenotypes, and surveying evidence of skeletal gene homology and the use of zebrafish for post-GWAS analysis in other tissues and organs. We also outline challenges in translating zebrafish mutant phenotypes. Finally, we conclude with recommendations of future directions and how to leverage the large body of tools and knowledge of skeletal genetics in zebrafish for the needs of human skeletal genomic exploration. Due to their amenability to rapid genetic approaches, as well as the large number of conserved genetic and phenotypic features, there is a strong rationale supporting the use of zebrafish for human skeletal genomic studies.
Collapse
Affiliation(s)
- Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | - Claire J Watson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA.
| |
Collapse
|
53
|
Cooper RL, Lloyd VJ, Di-Poï N, Fletcher AG, Barrett PM, Fraser GJ. Conserved gene signalling and a derived patterning mechanism underlie the development of avian footpad scales. EvoDevo 2019; 10:19. [PMID: 31428299 PMCID: PMC6693258 DOI: 10.1186/s13227-019-0130-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains unclear. RESULTS Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithelium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent patterning of reticulate scales is consistent with reaction-diffusion (RD) simulation, whereby this primary domain subdivides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate model (the bearded dragon, Pogona vitticeps) develop synchronously across the ventral footpad surface. CONCLUSIONS Widely conserved gene signalling underlies the initial development of avian reticulate scales. However, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial appendage, patterned through a modified RD system.
Collapse
Affiliation(s)
- Rory L. Cooper
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Victoria J. Lloyd
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Gareth J. Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Biology, University of Florida, Gainesville, USA
| |
Collapse
|
54
|
Zheng XD, Yang QF, Xu ZY, Yang DQ. [Expression patterns of ectodysplasin and ectodysplasin receptor during early dental development in zebrafish]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:355-360. [PMID: 31512825 DOI: 10.7518/hxkq.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aims to study the expression patterns of ectodysplasin (EDA) and ectodysplasin receptor (EDAR) during the early development of zebrafish and provide a foundation for further research of the Eda signaling pathway in tooth development. METHODS Total RNA was extracted from zebrafish embryos at 48 hours postfertilization (hpf) and then reverse transcribed for cDNA library generation. The corresponding RNA polymerase was selected for the synthesis of the digoxin-labeled antisense mRNA probe of zebrafish pharyngeal tooth specific marker dlx2b and Eda signaling-associated genes eda and edar in vitro. The three sequences were ligated into a pGEMT vector with a TA cloning kit, and polymerase chain reaction (PCR) was applied to linearize the plasmid. The resultant PCR sequences were used as templates for synthesizing Dig-labeled mRNA probe dlx2b, eda, and edar. Zebrafish embryos were collected at 36, 48, 56, 60, 72, and 84 hpf, then whole mount in situ hybridization was performed for the detection of eda and edar expression patterns. Then, their expression patterns at 72 hpf were compared with the expression pattern of dlx2b. RESULTS The mRNA antisense probes of dlx2b, eda, and edar were successfully obtained. The positive signals of eda and edar were observed in zebrafish pharyngeal tooth region at 48-72 hpf and thus conform to the signals of dlx2b in the positive regions. CONCLUSIONS The ligand eda and edar, which are associated with the Eda signaling pathway, are strongly expressed only at the pharyngeal tooth region in zebrafish from tooth initiation to the morphogenesis stage. Thus, the Eda signaling pathway may be involved in the regulation of the early development of zebrafish pharyngeal teeth.
Collapse
Affiliation(s)
- Xue-Dan Zheng
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Qi-Fen Yang
- School of Life Sciences Southwest University, Chongqing 401147, China
| | - Zhi-Yun Xu
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - De-Qin Yang
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
55
|
Shono T, Thiery AP, Cooper RL, Kurokawa D, Britz R, Okabe M, Fraser GJ. Evolution and Developmental Diversity of Skin Spines in Pufferfishes. iScience 2019; 19:1248-1259. [PMID: 31353167 PMCID: PMC6831732 DOI: 10.1016/j.isci.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022] Open
Abstract
Teleost fishes develop remarkable varieties of skin ornaments. The developmental basis of these structures is poorly understood. The order Tetraodontiformes includes diverse fishes such as the ocean sunfishes, triggerfishes, and pufferfishes, which exhibit a vast assortment of scale derivatives. Pufferfishes possess some of the most extreme scale derivatives, dermal spines, erected during their characteristic puffing behavior. We demonstrate that pufferfish scale-less spines develop through conserved gene interactions that underlie general vertebrate skin appendage formation, including feathers and hair. Spine development retains conservation of the EDA (ectodysplasin) signaling pathway, important for the development of diverse vertebrate skin appendages, including these modified scale-less spines of pufferfish. Further modification of genetic signaling from both CRISPR-Cas9 and small molecule inhibition leads to loss or reduction of spine coverage, providing a mechanism for skin appendage diversification observed throughout the pufferfishes. Pufferfish spines have evolved broad variations in body coverage, enabling adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Takanori Shono
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK; Department of Anatomy, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Alexandre P Thiery
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Rory L Cooper
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Ralf Britz
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK; Department of Biology, University of Florida, Gainesville 32611, USA.
| |
Collapse
|
56
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
57
|
Cox BD, De Simone A, Tornini VA, Singh SP, Di Talia S, Poss KD. In Toto Imaging of Dynamic Osteoblast Behaviors in Regenerating Skeletal Bone. Curr Biol 2018; 28:3937-3947.e4. [PMID: 30503623 DOI: 10.1016/j.cub.2018.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Osteoblasts are matrix-depositing cells that can divide and heal bone injuries. Their deep-tissue location and the slow progression of bone regeneration challenge attempts to capture osteoblast behaviors in live tissue at high spatiotemporal resolution. Here, we have developed an imaging platform to monitor and quantify individual and collective behaviors of osteoblasts in adult zebrafish scales, skeletal body armor discs that regenerate rapidly after loss. Using a panel of transgenic lines that visualize and manipulate osteoblasts, we find that a founder pool of osteoblasts emerges through de novo differentiation within one day of scale plucking. These osteoblasts undergo division events that are largely uniform in frequency and orientation to establish a primordium. Osteoblast proliferation dynamics diversify across the primordium by two days after injury, with cell divisions focused near, and with orientations parallel to, the scale periphery, occurring coincident with dynamic localization of fgf20a gene expression. In posterior scale regions, cell elongation events initiate in areas soon occupied by mineralized grooves called radii, beginning approximately 2 days post injury, with patterned osteoblast death events accompanying maturation of these radii. By imaging at single-cell resolution, we detail acquisition of spatiotemporally distinct cell division, motility, and death dynamics within a founder osteoblast pool as bone regenerates.
Collapse
Affiliation(s)
- Ben D Cox
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro De Simone
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A Tornini
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Sumeet P Singh
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
58
|
Abstract
The same genes and signalling pathways control the formation of skin appendages in both fish and land animals.
Collapse
Affiliation(s)
- Hannah Brunsdon
- MRC Human Genetics Unit & Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - E Elizabeth Patton
- MRC Human Genetics Unit & Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
59
|
Fish Scales Dictate the Pattern of Adult Skin Innervation and Vascularization. Dev Cell 2018; 46:344-359.e4. [PMID: 30032992 DOI: 10.1016/j.devcel.2018.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/27/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022]
Abstract
As animals mature from embryonic to adult stages, the skin grows and acquires specialized appendages, like hairs, feathers, and scales. How cutaneous blood vessels and sensory axons adapt to these dramatic changes is poorly understood. By characterizing skin maturation in zebrafish, we discovered that sensory axons are delivered to the adult epidermis in organized nerves patterned by features in bony scales. These nerves associate with blood vessels and osteoblasts above scales. Osteoblasts create paths in scales that independently guide nerves and blood vessels during both development and regeneration. By preventing scale regeneration and examining mutants lacking scales, we found that scales recruit, organize, and polarize axons and blood vessels to evenly distribute them in the skin. These studies uncover mechanisms for achieving comprehensive innervation and vascularization of the adult skin and suggest that scales coordinate a metamorphosis-like transformation of the skin with sensory axon and vascular remodeling.
Collapse
|