51
|
Fabret C, Namy O. Translational accuracy of a tethered ribosome. Nucleic Acids Res 2021; 49:5308-5318. [PMID: 33950196 PMCID: PMC8136817 DOI: 10.1093/nar/gkab259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are evolutionary conserved ribonucleoprotein complexes that function as two separate subunits in all kingdoms. During translation initiation, the two subunits assemble to form the mature ribosome, which is responsible for translating the messenger RNA. When the ribosome reaches a stop codon, release factors promote translation termination and peptide release, and recycling factors then dissociate the two subunits, ready for use in a new round of translation. A tethered ribosome, called Ribo-T, in which the two subunits are covalently linked to form a single entity, was recently described in Escherichia coli. A hybrid ribosomal RNA (rRNA) consisting of both the small and large subunit rRNA sequences was engineered. The ribosome with inseparable subunits generated in this way was shown to be functional and to sustain cell growth. Here, we investigated the translational properties of Ribo-T. We analyzed its behavior during amino acid misincorporation, -1 or +1 frameshifting, stop codon readthrough, and internal translation initiation. Our data indicate that covalent attachment of the two subunits modifies the properties of the ribosome, altering its ability to initiate and terminate translation correctly.
Collapse
Affiliation(s)
- Celine Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
52
|
A translational riboswitch coordinates nascent transcription-translation coupling. Proc Natl Acad Sci U S A 2021; 118:2023426118. [PMID: 33850018 DOI: 10.1073/pnas.2023426118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial messenger RNA (mRNA) synthesis by RNA polymerase (RNAP) and first-round translation by the ribosome are often coupled to regulate gene expression, yet how coupling is established and maintained is ill understood. Here, we develop biochemical and single-molecule fluorescence approaches to probe the dynamics of RNAP-ribosome interactions on an mRNA with a translational preQ1-sensing riboswitch in its 5' untranslated region. Binding of preQ1 leads to the occlusion of the ribosome binding site (RBS), inhibiting translation initiation. We demonstrate that RNAP poised within the mRNA leader region promotes ribosomal 30S subunit binding, antagonizing preQ1-induced RBS occlusion, and that the RNAP-30S bridging transcription factors NusG and RfaH distinctly enhance 30S recruitment and retention, respectively. We further find that, while 30S-mRNA interaction significantly impedes RNAP in the absence of translation, an actively translating ribosome promotes productive transcription. A model emerges wherein mRNA structure and transcription factors coordinate to dynamically modulate the efficiency of transcription-translation coupling.
Collapse
|
53
|
Lalanne J, Parker DJ, Li G. Spurious regulatory connections dictate the expression-fitness landscape of translation factors. Mol Syst Biol 2021; 17:e10302. [PMID: 33900014 PMCID: PMC8073009 DOI: 10.15252/msb.202110302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
During steady-state cell growth, individual enzymatic fluxes can be directly inferred from growth rate by mass conservation, but the inverse problem remains unsolved. Perturbing the flux and expression of a single enzyme could have pleiotropic effects that may or may not dominate the impact on cell fitness. Here, we quantitatively dissect the molecular and global responses to varied expression of translation termination factors (peptide release factors, RFs) in the bacterium Bacillus subtilis. While endogenous RF expression maximizes proliferation, deviations in expression lead to unexpected distal regulatory responses that dictate fitness reduction. Molecularly, RF depletion causes expression imbalance at specific operons, which activates master regulators and detrimentally overrides the transcriptome. Through these spurious connections, RF abundances are thus entrenched by focal points within the regulatory network, in one case located at a single stop codon. Such regulatory entrenchment suggests that predictive bottom-up models of expression-fitness landscapes will require near-exhaustive characterization of parts.
Collapse
Affiliation(s)
- Jean‐Benoît Lalanne
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of PhysicsMassachusetts Institute of TechnologyCambridgeMAUSA
- Present address:
Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Darren J Parker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Present address:
Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Gene‐Wei Li
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
54
|
Sawyer EB, Phelan JE, Clark TG, Cortes T. A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Rep 2021; 34:108695. [PMID: 33535039 PMCID: PMC7856553 DOI: 10.1016/j.celrep.2021.108695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, can undergo prolonged periods of non-replicating persistence in the host. The mechanisms underlying this are not fully understood, but translational regulation is thought to play a role. A large proportion of mRNA transcripts expressed in M. tuberculosis lack canonical bacterial translation initiation signals, but little is known about the implications of this for fine-tuning of translation. Here, we perform ribosome profiling to characterize the translational landscape of M. tuberculosis under conditions of exponential growth and nutrient starvation. Our data reveal robust, widespread translation of non-canonical transcripts and point toward different translation initiation mechanisms compared to canonical Shine-Dalgarno transcripts. During nutrient starvation, patterns of ribosome recruitment vary, suggesting that regulation of translation in this pathogen is more complex than originally thought. Our data represent a rich resource for others seeking to understand translational regulation in bacterial pathogens.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jody E Phelan
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G Clark
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
55
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
56
|
Wen JD, Kuo ST, Chou HHD. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biol 2020; 18:1489-1500. [PMID: 33349119 DOI: 10.1080/15476286.2020.1861406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.
Collapse
Affiliation(s)
- Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung David Chou
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
57
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
58
|
Saito K, Green R, Buskirk AR. Ribosome recycling is not critical for translational coupling in Escherichia coli. eLife 2020; 9:59974. [PMID: 32965213 PMCID: PMC7538156 DOI: 10.7554/elife.59974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
We used ribosome profiling to characterize the biological role of ribosome recycling factor (RRF) in Escherichia coli. As expected, RRF depletion leads to enrichment of post-termination 70S complexes in 3′-UTRs. We also observe that elongating ribosomes are unable to complete translation because they are blocked by non-recycled ribosomes at stop codons. Previous studies have suggested a role for recycling in translational coupling within operons; if a ribosome remains bound to an mRNA after termination, it may re-initiate downstream. We found, however, that RRF depletion did not significantly affect coupling efficiency in reporter assays or in ribosome density genome-wide. These findings argue that re-initiation is not a major mechanism of translational coupling in E. coli. Finally, RRF depletion has dramatic effects on the activity of ribosome rescue factors tmRNA and ArfA. Our results provide a global view of the effects of the loss of ribosome recycling on protein synthesis in E. coli.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Molecular Biology and Genetics, Baltimore, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Baltimore, United States
| |
Collapse
|
59
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
60
|
Wakabayashi H, Warnasooriya C, Ermolenko DN. Extending the Spacing between the Shine-Dalgarno Sequence and P-Site Codon Reduces the Rate of mRNA Translocation. J Mol Biol 2020; 432:4612-4622. [PMID: 32544497 DOI: 10.1016/j.jmb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
By forming base-pairing interactions with the 3' end of 16S rRNA, mRNA Shine-Dalgarno (SD) sequences positioned upstream of open reading frames facilitate translation initiation. During the elongation phase of protein synthesis, intragenic SD-like sequences stimulate ribosome frameshifting and may also slow down ribosome movement along mRNA. Here, we show that the length of the spacer between the SD sequence and P-site codon strongly affects the rate of ribosome translocation. Increasing the spacer length beyond 6 nt destabilizes mRNA-tRNA-ribosome interactions and results in a 5- to 10-fold reduction of the translocation rate. These observations suggest that during translation, the spacer between the SD sequence and P-site codon undergoes structural rearrangements, which slow down mRNA translocation and promote mRNA frameshifting.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- Department of Biochemistry & Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Chandani Warnasooriya
- Department of Biochemistry & Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
61
|
Glaub A, Huptas C, Neuhaus K, Ardern Z. Recommendations for bacterial ribosome profiling experiments based on bioinformatic evaluation of published data. J Biol Chem 2020; 295:8999-9011. [PMID: 32385111 PMCID: PMC7335797 DOI: 10.1074/jbc.ra119.012161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.
Collapse
Affiliation(s)
- Alina Glaub
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Christopher Huptas
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany; Core Facility Microbiome, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
62
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
63
|
O'Loughlin S, Capece MC, Klimova M, Wills NM, Coakley A, Samatova E, O'Connor PBF, Loughran G, Weissman JS, Baranov PV, Rodnina MV, Puglisi JD, Atkins JF. Polysomes Bypass a 50-Nucleotide Coding Gap Less Efficiently Than Monosomes Due to Attenuation of a 5' mRNA Stem-Loop and Enhanced Drop-off. J Mol Biol 2020; 432:4369-4387. [PMID: 32454154 PMCID: PMC7245268 DOI: 10.1016/j.jmb.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Efficient translational bypassing of a 50-nt non-coding gap in a phage T4 topoisomerase subunit gene (gp60) requires several recoding signals. Here we investigate the function of the mRNA stem–loop 5′ of the take-off codon, as well as the importance of ribosome loading density on the mRNA for efficient bypassing. We show that polysomes are less efficient at mediating bypassing than monosomes, both in vitro and in vivo, due to their preventing formation of a stem–loop 5′ of the take-off codon and allowing greater peptidyl-tRNA drop off. A ribosome profiling analysis of phage T4-infected Escherichia coli yielded protected mRNA fragments within the normal size range derived from ribosomes stalled at the take-off codon. However, ribosomes at this position also yielded some 53-nucleotide fragments, 16 longer. These were due to protection of the nucleotides that form the 5′ stem–loop. NMR shows that the 5′ stem–loop is highly dynamic. The importance of different nucleotides in the 5′ stem–loop is revealed by mutagenesis studies. These data highlight the significance of the 5′ stem–loop for the 50-nt bypassing and further enhance appreciation of relevance of the extent of ribosome loading for recoding. Monosomes are more efficient than polysome in mediating 50-nt translational bypassing. A 5′ mRNA stem–loop facilitates translational bypassing by monosomes. Ribosome profiling yields an extra-long, 53-nt, protected fragment of mRNA.
Collapse
Affiliation(s)
- Sinéad O'Loughlin
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland
| | - Mark C Capece
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Arthur Coakley
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick B F O'Connor
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow 117997, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - John F Atkins
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
64
|
Aleksashin NA, Szal T, d'Aquino AE, Jewett MC, Vázquez-Laslop N, Mankin AS. A fully orthogonal system for protein synthesis in bacterial cells. Nat Commun 2020; 11:1858. [PMID: 32313034 PMCID: PMC7170887 DOI: 10.1038/s41467-020-15756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Ribosome engineering is a powerful approach for expanding the catalytic potential of the protein synthesis apparatus. Due to the potential detriment the properties of the engineered ribosome may have on the cell, the designer ribosome needs to be functionally isolated from the translation machinery synthesizing cellular proteins. One solution to this problem was offered by Ribo-T, an engineered ribosome with tethered subunits which, while producing a desired protein, could be excluded from general translation. Here, we provide a conceptually different design of a cell with two orthogonal protein synthesis systems, where Ribo-T produces the proteome, while the dissociable ribosome is committed to the translation of a specific mRNA. The utility of this system is illustrated by generating a comprehensive collection of mutants with alterations at every rRNA nucleotide of the peptidyl transferase center and isolating gain-of-function variants that enable the ribosome to overcome the translation termination blockage imposed by an arrest peptide.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Teresa Szal
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anne E d'Aquino
- Interdisciplinary Biological Science Program, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA. .,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
65
|
Saito K, Green R, Buskirk AR. Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. eLife 2020; 9:55002. [PMID: 32065583 PMCID: PMC7043885 DOI: 10.7554/elife.55002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Shine-Dalgarno (SD) motifs are thought to play an important role in translational initiation in bacteria. Paradoxically, ribosome profiling studies in E. coli show no correlation between the strength of an mRNA’s SD motif and how efficiently it is translated. Performing profiling on ribosomes with altered anti-Shine-Dalgarno sequences, we reveal a genome-wide correlation between SD strength and ribosome occupancy that was previously masked by other contributing factors. Using the antibiotic retapamulin to trap initiation complexes at start codons, we find that the mutant ribosomes select start sites correctly, arguing that start sites are hard-wired for initiation through the action of other mRNA features. We show that A-rich sequences upstream of start codons promote initiation. Taken together, our genome-wide study reveals that SD motifs are not necessary for ribosomes to determine where initiation occurs, though they do affect how efficiently initiation occurs.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|