951
|
Characterization of the Lipid Metabolism in Bladder Cancer to Guide Clinical Therapy. JOURNAL OF ONCOLOGY 2022; 2022:7679652. [PMID: 36131793 PMCID: PMC9484922 DOI: 10.1155/2022/7679652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Background Bladder cancer is one of the most common malignancies of the urinary system with an unfavorable prognosis. More and more studies have suggested that lipid metabolism could influence the progression and treatment of tumors. However, there are few studies exploring the relationship between lipid metabolism and bladder cancer. This study aimed to explore the roles that lipid metabolism-related genes play in patients with bladder cancer. Methods TCGA_BLCA cohort and GSE13507 cohort were included in this study, and transcriptional and somatic mutation profiles of 309 lipid metabolism-related genes were analyzed to discover the critical lipid metabolism-related genes in the incurrence and progression of bladder cancer. Furthermore, the TCGA_BLCA cohort was randomly divided into training set and validation set, and the GSE13507 cohort was served as an external independent validation set. We performed the LASSO regression and multivariate Cox regression in training set to develop a prognostic signature and further verified this signature in TCGA_BLCA validation set and GSE13507 external validation set. Finally, we systematically investigated the association between this signature and tumor microenvironment, drug response, and potential functions and then verified the differential expression status of signature genes in the protein level by immunohistochemistry. Results A novel 6-lipidmetabolism-related gene signature was identified and validated, and this risk score model could predict the prognosis of patients with bladder cancer. In addition, the prognostic model was tightly related to immune cell infiltration and tumor mutation burden. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) showed that mTOR signaling pathway, G2M checkpoint, fatty acid metabolism, and hypoxia were enriched in patients in the high-risk score groups. Furthermore, 3 therapies specific for bladder cancer patients in different risk scores were identified. Conclusion s. In conclusion, we investigated the lipid metabolism-related genes in bladder cancer through comprehensive bioinformatic analysis. A novel 6-gene signature associated with lipid metabolism for predicting the outcomes of patients with bladder cancer was conducted and validated. Furthermore, the risk score model could be utilized to indicate the choice of therapy in bladder cancer.
Collapse
|
952
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
953
|
Cui P, Li H, Wang C, Liu Y, Zhang M, Yin Y, Sun Z, Wang Y, Chen X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J Ovarian Res 2022; 15:103. [PMID: 36088429 PMCID: PMC9464398 DOI: 10.1186/s13048-022-01034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ubiquitin-binding enzyme E2T (UBE2T), a member of the E2 family of the ubiquitin–proteasome pathway, is associated with tumorigenesis of varioustumours; however, its role and mechanism in ovarian cancer remain unclear. Results Our study revealed that UBE2T is highly expressed in ovarian cancer; this high expression was closely related to poor prognosis. Immunohistochemistry was used to validate the high expression of UBE2T in ovarian cancer. This is the first study to demonstrate that UBE2T expression is higher in ovarian cancer with BRCA mutation. Moreover, we demonstrated that UBE2T gene silencing significantly inhibited ovarian cancer cell proliferation and invasion. The epithelial–mesenchymal transition (EMT) of ovarian cancer cells and phosphatidylinositol 3 kinase/protein kinase B (PI3K-AKT) pathway were significantly inhibited. Adding the mechanistic target of rapamycin activator MHY1485 activated the PI3K-AKT pathway and significantly restored the proliferative and invasive ability of ovarian cancer cells. Furthermore, a tumorigenesis experiment in nude mice revealed that tumour growth on mice body surface and tumour tissue EMT were significantly inhibited after UBE2T gene silencing. Conclusions This study demonstrated that UBE2T regulates EMT via the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. Moreover, UBE2T may interact with BRCA to affect ovarian cancer occurrence and development. Hence, UBE2T may be a valuable novel biomarker for the early diagnosis and prognosis and treatment of ovarian cancer. Further, UBE2T inhibition may be effective for treating ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01034-9.
Collapse
|
954
|
Li M, Li X, Chen S, Zhang T, Song L, Pei J, Sun G, Guo L. IPO5 Mediates EMT and Promotes Esophageal Cancer Development through the RAS-ERK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6570879. [PMID: 36120598 PMCID: PMC9481360 DOI: 10.1155/2022/6570879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022]
Abstract
Objective In the development of many tumors, IPO5, as a member of the nuclear transporter family, exerts a significant function. Also, IPO5 is used as a therapeutic target for tumors based on some reports. By studying IPO5 expression in esophageal cancer tissues, the mechanism associated with IPO5 improving esophageal cancer development was explored in this study. Methods To gain differentially expressed genes, this study utilized mRNA microarray and TCGA database for comprehensive analysis of esophageal cancer tissues and normal esophageal cancer tissues, and then the differentially expressed gene IPO5 was screened by us. To assess esophageal cancer patients' prognosis, this study also applied the Kaplan-Meier analysis, and we also conducted the GSEA enrichment analysis to investigate IPO5-related signaling pathways. This study performed TISIDB and TIMER online analysis tools to study the correlation between IPO5 and immune regulation and infiltration. We took specimens of esophageal cancer from patients and detected the expression of IPO5 in tumor and normal tissues by immunohistochemistry. The IPO5 gene-silenced esophageal cancer cell model was constructed by lentivirus transfection. Through the Transwell invasion assay, CCK-8 assay, and cell scratch assay, this study investigated the effects of IPO5 on cell propagation, invasion, and transfer. What is more, we identified the influences of IPO5 on the cell cycle through flow cytometry and established a subcutaneous tumor-forming model in nude mice. Immunohistochemistry was used to verify the expression of KI-67, and this study detected the modifications of cell pathway-related proteins using Western blot and applied EMT-related proteins to explain the mechanism of esophageal cancer induced by IPO5. Results According to database survival analysis, IPO5 high-expression patients had shorter disease-free survival than IPO5 low-expression patients. Compared to normal tissues, the IPO5 expression in cancer tissues was significantly higher in clinical trials (P < 0.05). Through TISIDB and TIMER database studies, we found that IPO5 could affect immune regulation, and the age of IPO5 expression grows with the increase of immune infiltration level. The IPO5 expression in esophageal cancer cells was higher than normal, especially in ECA109 and OE33 cells (P < 0.01). After knocking out IPO5 gene expression, cell proliferation capacity and invasion capacity were reduced (P < 0.05) and decreased (P < 0.01) in the IPO5-interfered group rather than the negative control group. The growth cycle of esophageal carcinoma cells was arrested in the G2/M phase after IPO5 gene silencing (P < 0.01). Tumor-forming experiments in nude mice confirmed that after IPO5 deletion, the tumor shrank, the expression of KI67 decreased, the downstream protein expression level of the RAS pathway decreased after sh-IPO5 interference (P < 0.01), and the level of EMT marker delined (P < 0.05). Conclusion In esophageal cancer, IPO5 is highly expressed and correlates with survival rate. Esophageal cancer cell growth and migration were significantly affected by the inhibition of IPO5 in vitro and in vivo. IPO5 mediates EMT using the RAS-ERK signaling pathway activation and promotes esophageal cancer cell development in vivo and in vitro.
Collapse
Affiliation(s)
- Meiyu Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaofei Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shujia Chen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianai Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liaoyuan Song
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayue Pei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guoyan Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lianyi Guo
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
955
|
Wang Z, Li Y, Yang J, Liang Y, Wang X, Zhang N, Kong X, Chen B, Wang L, Zhao W, Yang Q. Circ-TRIO promotes TNBC progression by regulating the miR-432-5p/CCDC58 axis. Cell Death Dis 2022; 13:776. [PMID: 36075896 PMCID: PMC9458743 DOI: 10.1038/s41419-022-05216-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023]
Abstract
Numerous studies have shown that circRNAs are aberrantly expressed in various cancers and play a significant role in tumor progression. However, the molecular mechanisms of circRNAs in triple-negative breast cancer (TNBC) remain ambiguous. By intersecting throughput data and qRT-PCR results from tissues and cell lines, circ-TRIO was identified as a potential oncogenic regulator of TNBC. Moreover, circ-TRIO expression was detected in TNBC tissues and was correlated with the recurrence and prognosis of TNBC patients. The circular characteristics of circ-TRIO were verified by RNase R and CHX assays. Functionally, the knockdown of circ-TRIO inhibited the proliferation, migration and invasion of TNBC cells, while the overexpression of circ-TRIO resulted in the opposite impacts. Mechanistically, a dual luciferase reporter assay and RNA immunoprecipitation were performed and indicated that circ-TRIO could combine with miR-432-5p to regulate the expression of coiled-coil domain containing 58 (CCDC58). In summary, our study illustrates that circ-TRIO plays an important role in the progression of TNBC by regulating the miR-432-5p/CCDC58 axis, which could broaden our insight into the underlying mechanisms and provide a novel prognostic marker of TNBC in the clinic.
Collapse
Affiliation(s)
- Zekun Wang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jingwen Yang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yiran Liang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolong Wang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Kong
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Chen
- grid.452402.50000 0004 1808 3430Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Lijuan Wang
- grid.452402.50000 0004 1808 3430Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- grid.452402.50000 0004 1808 3430Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- grid.452402.50000 0004 1808 3430Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China ,grid.452402.50000 0004 1808 3430Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China ,grid.27255.370000 0004 1761 1174Research Institute of Breast Cancer, Shandong University, Jinan, China
| |
Collapse
|
956
|
Regulating the Expression of HIF-1α or lncRNA: Potential Directions for Cancer Therapy. Cells 2022; 11:cells11182811. [PMID: 36139386 PMCID: PMC9496732 DOI: 10.3390/cells11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Previous studies have shown that tumors under a hypoxic environment can induce an important hypoxia-responsive element, hypoxia-induced factor-1α (HIF-1α), which can increase tumor migration, invasion, and metastatic ability by promoting epithelial-to-mesenchymal transition (EMT) in tumor cells. Currently, with the deeper knowledge of long noncoding RNAs (lncRNAs), more and more functions of lncRNAs have been discovered. HIF-1α can regulate hypoxia-responsive lncRNAs under hypoxic conditions, and changes in the expression level of lncRNAs can regulate the production of EMT transcription factors and signaling pathway transduction, thus promoting EMT progress. In conclusion, this review summarizes the regulation of the EMT process by HIF-1α and lncRNAs and discusses their relationship with tumorigenesis. Since HIF-1α plays an important role in tumor progression, we also summarize the current drugs that inhibit tumor progression by modulating HIF-1α.
Collapse
|
957
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 396] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
958
|
Renu K, Vinayagam S, Veeraraghavan VP, Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Dey A, Vellingiri B, Kandasamy S, Ramanathan G, Doss C GP, George A, Gopalakrishnan AV. Molecular Crosstalk between the Immunological Mechanism of the Tumor Microenvironment and Epithelial–Mesenchymal Transition in Oral Cancer. Vaccines (Basel) 2022; 10:vaccines10091490. [PMID: 36146567 PMCID: PMC9504083 DOI: 10.3390/vaccines10091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Oral cancer is a significant non-communicable disease affecting both emergent nations and developed countries. Squamous cell carcinoma of the head and neck represent the eight major familiar cancer types worldwide, accounting for more than 350,000 established cases every year. Oral cancer is one of the most exigent tumors to control and treat. The survival rate of oral cancer is poor due to local invasion along with recurrent lymph node metastasis. The tumor microenvironment contains a different population of cells, such as fibroblasts associated with cancer, immune-infiltrating cells, and other extracellular matrix non-components. Metastasis in a primary site is mainly due to multifaceted progression known as epithelial-to-mesenchymal transition (EMT). For the period of EMT, epithelial cells acquire mesenchymal cell functional and structural characteristics, which lead to cell migration enhancement and promotion of the dissemination of tumor cells. The present review links the tumor microenvironment and the role of EMT in inflammation, transcriptional factors, receptor involvement, microRNA, and other signaling events. It would, in turn, help to better understand the mechanism behind the tumor microenvironment and EMT during oral cancer.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Centre for Postgraduate and Research Studies, Periyar University, Dharmapuri 635205, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Institute of Energy Research, Jiangsu University, No 301, Xuefu Road, Zhenjiang 212013, China
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| |
Collapse
|
959
|
Luo B, Yuan Y, Zhu Y, Liang S, Dong R, Hou J, Li P, Xing Y, Lu Z, Lo R, Kuang GM. microRNA-145-5p inhibits prostate cancer bone metastatic by modulating the epithelial-mesenchymal transition. Front Oncol 2022; 12:988794. [PMID: 36147907 PMCID: PMC9486105 DOI: 10.3389/fonc.2022.988794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the effects of miRNA-145-5p on the tumor development and progression of prostate cancer (Pca) bone metastasis. Methods Levels of miRNA-145-5p were assessed by real-time quantitative PCR in PC3 (bone metastatic Pca cells), 22RV1 (non-metastatic Pca cells), RWPE-1 (non-cancerous prostate epithelial cells) and Pca tissues collected from patients with and without bone metastases. The impact of miRNA-145-5p on cell proliferation was tested by CCK8 assay, colony formation assay and flow cytometric cell cycle analysis. Effects on invasion and migration of PC3 cells were determined by Transwell and wound healing assays. Western blotting, enzyme-linked immunosorbent assay, and flow cytometry apoptosis analyses were also performed to assess roles in metastasis. Results Levels of miRNA-145-5p were decreased in Pca bone metastases and miRNA-145-5p inhibited cell proliferation, migration and invasion. miRNA-145-5p inhibited the expression of basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF) and transforming growth factor-β (TGF-β) in PC3 cells. miR-145-5p increased the expression of the epithelial marker E-cadherin and reduced the expression of matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9). It was found that miRNA-145-5p mediated the epithelial-mesenchymal transition (EMT) and induced apoptosis. Conclusions miRNA-145-5p negatively regulated the EMT, inhibited Pca bone metastasis and promoted apoptosis in Pca bone metastasis. Mimicry of miRNA-145-5p action raises the possibility of a novel target for treating Pca with bone metastases.
Collapse
Affiliation(s)
- Bingfeng Luo
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Yuan
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yifei Zhu
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Songwu Liang
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Runan Dong
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian Hou
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ping Li
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yaping Xing
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhenquan Lu
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Richard Lo
- Division of Urology, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Guan-Ming Kuang
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Guan-Ming Kuang,
| |
Collapse
|
960
|
Wang L, Li S, Fan H, Han M, Xie J, Du J, Peng F. Bifidobacterium lactis combined with Lactobacillus plantarum inhibit glioma growth in mice through modulating PI3K/AKT pathway and gut microbiota. Front Microbiol 2022; 13:986837. [PMID: 36147842 PMCID: PMC9486703 DOI: 10.3389/fmicb.2022.986837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is a common primary aggressive tumor with limited clinical treatment. Recently, growing research suggests that gut microbiota is involved in tumor progression, and several probiotics can inhibit tumor growth. However, evidence for the effect of probiotics on glioma is lacking. Here, we found that Bifidobacterium (B.) lactis combined with Lactobacillus (L.) plantarum reduced tumor volume, prolonged survival time and repaired the intestinal barrier damage in an orthotopic mouse model of glioma. Experiments demonstrated that B. lactis combined with L. plantarum suppressed the PI3K/AKT pathway and down-regulated the expression of Ki-67 and N-cadherin. The glioma-inhibitory effect of probiotic combination is also related to the modulation of gut microbiota composition, which is characterized by an increase in relative abundance of Lactobacillus and a decrease in some potential pathogenic bacteria. Additionally, probiotic combination altered fecal metabolites represented by fatty acyls and organic oxygen compounds. Together, our results prove that B. lactis combined with L. plantarum can inhibit glioma growth by suppressing PI3K/AKT pathway and regulating gut microbiota composition and metabolites in mice, thus suggesting the potential benefits of B. lactis and L. plantarum against glioma.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Junrong Du,
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Fu Peng,
| |
Collapse
|
961
|
Dhar R, Mukherjee S, Mukerjee N, Mukherjee D, Devi A, Ashraf GM, Alserihi RF, Tayeb HH, Hashem AM, Alexiou A, Thorate N. Interrelation between extracellular vesicles miRNAs with chronic lung diseases. J Cell Physiol 2022; 237:4021-4036. [PMID: 36063496 DOI: 10.1002/jcp.30867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022]
Abstract
Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.
Collapse
Affiliation(s)
- Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, West Bengal, India.,Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| | | | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nanasaheb Thorate
- Division of Medical Sciences, Nuffield Department of Women's & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
962
|
MMP1 Overexpression Promotes Cancer Progression and Associates with Poor Outcome in Head and Neck Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3058342. [PMID: 36105241 PMCID: PMC9467809 DOI: 10.1155/2022/3058342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-1 (MMP1) has been reported to play key roles in a variety of cancers by degrading the extracellular matrix. However, its carcinogenic roles have not been shown yet in head and neck squamous cell carcinoma (HNSCC). This study aimed to elucidate its expression pattern and functional roles as well as clinical significance in HNSCC. The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and immunohistochemistry (IHC) were utilized to determine the MMP1 expression pattern and the associations between its expression and patients' outcome in HNSCC. Mice tongue squamous cell carcinoma model induced by 4-nitroquinoline 1-oxide (4NQO) and siRNA-mediated cellular assay in vitro were utilized to evaluate the oncogenic role of MMP1. The biological functions and cancer-related pathways involved in MMP1-related genes were found through bioinformatics analysis. Both mRNA and protein abundance of MMP1 were highly increased in HNSCC as compared to its non-tumor counterparts. MMP1 overexpression positively correlated with advanced tumor size, cervical node metastasis, and advanced pathological grade and lower patients' survival. In the 4NQO-induced animal model, MMP1 expression increased along with the progression of the disease. In HNSCC cells, siRNA-mediated knockdown of MMP1 significantly inhibited cell proliferation, migration, and invasion and activated apoptosis and epithelia-mesenchymal transition (EMT). GSEA, GO, and KEGG analyses showed that MMP1 expression was significantly related to cancer-related pathways and cancer-related functions. Together, our results demonstrated MMP1 serves as a novel prognostic biomarker and putative oncogene in HNSCC.
Collapse
|
963
|
Long-term resistance to 5-fluorouracil promotes epithelial-mesenchymal transition, apoptosis evasion, autophagy, and reduced proliferation rate in colon cancer cells. Eur J Pharmacol 2022; 933:175253. [PMID: 36067803 DOI: 10.1016/j.ejphar.2022.175253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.
Collapse
|
964
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
965
|
Saitoh M. Epithelial–Mesenchymal Transition by Synergy between Transforming Growth Factor-β and Growth Factors in Cancer Progression. Diagnostics (Basel) 2022; 12:diagnostics12092127. [PMID: 36140527 PMCID: PMC9497767 DOI: 10.3390/diagnostics12092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) plays a crucial role in appropriate embryonic development, as well as wound healing, organ fibrosis, and cancer progression. During cancer progression, EMT is associated with the invasion, metastasis, and generation of circulating tumor cells and cancer stem cells, as well as resistance to chemo- and radiation therapy. EMT is induced by several transcription factors, known as EMT transcription factors (EMT-TFs). In nearly all cases, EMT-TFs appear to be regulated by growth factors or cytokines and extracellular matrix components. Among these factors, transforming growth factor (TGF)-β acts as the key mediator for EMT during physiological and pathological processes. TGF-β can initiate and maintain EMT by activating intracellular/intercellular signaling pathways and transcriptional factors. Recent studies have provided new insights into the molecular mechanisms underlying sustained EMT in aggressive cancer cells, EMT induced by TGF-β, and crosstalk between TGF-β and growth factors.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi 409-3898, Japan
| |
Collapse
|
966
|
Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, Guo T, Wang C, Lai D, Wu S, Zhao W, Mai H, Li H, Wang B, Ma X, Zhang X. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. J Transl Med 2022; 102:1011-1022. [PMID: 36775416 DOI: 10.1038/s41374-022-00797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors and is characterized by a poor prognosis. Although G2- and S -phase expressed-1 (GTSE1) is known to be involved in the progression and metastasis of various cancers, its significance and mechanism in ccRCC remain unknown. In the present study, we found that GTSE1 was overexpressed in ccRCC tissues, especially in metastatic samples. Moreover, high GTSE1 expression was positively correlated with higher pT stage, tumor size, clinical stage, and WHO/ISUP grade and worse prognosis. And GTSE1 expression served as an independent prognostic factor for overall survival (OS). In addition, GTSE1 knockdown inhibited ccRCC cell proliferation, migration, and invasion, and enhanced cell apoptosis in vitro and in vivo. GTSE1 was crucial for epithelial-mesenchymal transition (EMT) in ccRCC. Mechanistically, GTSE1 depletion could upregulate the expression of Krüppel-like factor 4 (KLF4), which acts as a tumor suppressor in ccRCC. Downregulation of KLF4 effectively rescued the inhibitory effect induced by GTSE1 knockdown and reversed the EMT process. Overall, our results revealed that GTSE1 served as an oncogene regulating EMT through KLF4 in ccRCC, and that GTSE1 could also serve as a novel prognostic biomarker and may represent a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongliang Lu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yan Huang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yundong Xuan
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiubin Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Paediatrics, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Chenfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Dong Lai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shengpan Wu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenlei Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hongzhao Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
967
|
Chen Z, He B, Zhao J, Li J, Zhu Y, Li L, Bao W, Zheng J, Yu H, Chen G. Brusatol suppresses the growth of intrahepatic cholangiocarcinoma by PI3K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154323. [PMID: 35858516 DOI: 10.1016/j.phymed.2022.154323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignancy with a hidden onset, high metastasis recurrence rate, and poor prognosis. Research on effective drugs for ICC is important for improving the prognosis of patients in the clinic. Brusatol is a quassinoid extracted from the seeds of Brucea sumatrana and has been shown to have the potential to inhibit tumor metastasis and proliferation. There has been no scientific research on the therapeutic effect of brusatol on ICC. Our study offers a novel strategy for the therapy of ICC. PURPOSE Explore effects of brusatol treatment on ICC and clarify the possible mechanism. STUDY DESIGN Various cell functional experiments and basic experimental techniques were applied to ICC cell lines to explore the influences of brusatol on ICC cells; this conclusion was further verified in animal models. METHODS The anti-cancer effects of the drug on the cell, protein, and RNA level were verified by cell functional experiments, WB blotting and transcriptome sequencing experiments, respectively. Finally, the experimental results were verified using subcutaneous tumor experiments in nude mice. RESULTS The consequences exhibited that the levels of epithelial markers of ICC cells increased after brusatol treatment, and the levels of interstitial indicators decreased, suppressing the epithelial-mesenchymal transition (EMT) process. Brusatol inhibited proliferation, induced apoptosis, and suppressed the migration and invasion abilities of Hucc-T1 and RBE oncocytes via activating PI3K/Akt pathway. It also suppressed the growth of Hucc-T1 xenografts in nude mice. CONCLUSION Brusatol inhibits the proliferation and EMT process in ICC oncocytes by the PI3K/Akt pathway and promotes apoptosis in oncocytes.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifeng Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leilei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiuyi Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
968
|
Suphakhong K, Terashima M, Wanna-udom S, Takatsuka R, Ishimura A, Takino T, Suzuki T. m6A RNA methylation regulates the transcription factors JUN and JUNB in TGF-β-induced epithelial-mesenchymal transition of lung cancer cells. J Biol Chem 2022; 298:102554. [PMID: 36183833 PMCID: PMC9619186 DOI: 10.1016/j.jbc.2022.102554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common internal chemical modification of mRNAs involved in many pathological processes including various cancers. In this study, we investigated the m6A-dependent regulation of JUN and JUNB transcription factors (TFs) during transforming growth factor-beta–induced epithelial–mesenchymal transition (EMT) of A549 and LC2/ad lung cancer cell lines, as the function and regulation of these TFs within this process remains to be clarified. We found that JUN and JUNB played an important and nonredundant role in the EMT-inducing gene expression program by regulating different mesenchymal genes and that their expressions were controlled by methyltransferase-like 3 (METTL3) m6A methyltransferase. METTL3–mediated regulation of JUN expression is associated with the translation process of JUN protein but not with the stability of JUN protein or mRNA, which is in contrast with the result of m6A-mediated regulation of JUNB mRNA stability. We identified the specific m6A motifs responsible for the regulation of JUN and JUNB in EMT within 3′UTR of JUN and JUNB. Furthermore, we discovered that different m6A reader proteins interacted with JUN and JUNB mRNA and controlled m6A-dependent expression of JUN protein and JUNB mRNA. These results demonstrate that the different modes of m6A-mediated regulation of JUN and JUNB TFs provide critical input in the gene regulatory network during transforming growth factor-beta–induced EMT of lung cancer cells.
Collapse
|
969
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
970
|
Ma K, Chen H, Wang K, Han X, Zhang Y, Wang H, Hu Z, Wang J. Pterostilbene inhibits the metastasis of TNBC via suppression of β-catenin-mediated epithelial to mesenchymal transition and stemness. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
971
|
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X, Mao L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed Pharmacother 2022; 153:113524. [PMID: 36076606 DOI: 10.1016/j.biopha.2022.113524] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
|
972
|
Taniguchi N, Okawa Y, Maeda K, Kanto N, Johnson EL, Harada Y. N-glycan branching enzymes involved in cancer, Alzheimer's disease and COPD and future perspectives. Biochem Biophys Res Commun 2022; 633:68-71. [DOI: 10.1016/j.bbrc.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
|
973
|
Lack of extracellular matrix switches TGF-β induced apoptosis of endometrial cells to epithelial to mesenchymal transition. Sci Rep 2022; 12:14821. [PMID: 36050359 PMCID: PMC9437059 DOI: 10.1038/s41598-022-18976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-β. It is well known that TGF-β is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-β remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-β-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-β-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-β-induced apoptosis. On the other hand, we demonstrate that TGF-β-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-β to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-β in normal versus tumoral cells.
Collapse
|
974
|
Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: A therapeutic perspective. Bull Cancer 2022; 109:960-971. [DOI: 10.1016/j.bulcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
|
975
|
Jang J, Cho EH, Cho Y, Ganzorig B, Kim KY, Kim MG, Kim C. Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2. Mol Cells 2022; 45:564-574. [PMID: 35950457 PMCID: PMC9385564 DOI: 10.14348/molcells.2022.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domainmediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14- dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.
Collapse
Affiliation(s)
- Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Youngkyung Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Binderya Ganzorig
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
976
|
Novel Insights into miR-944 in Cancer. Cancers (Basel) 2022; 14:cancers14174232. [PMID: 36077769 PMCID: PMC9454979 DOI: 10.3390/cancers14174232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary miR-944 is localized in intron 4 of TP63. ΔNp63 in intron 3 of TP63 recruits the transcription factor AP-2 to promote miR-944 gene expression, which mediates epidermal differentiation induction by ΔNp63. miR-944 is dysregulated in various cancers. In squamous cell carcinoma. miR-944 can target and inhibit 27 protein-coding genes, thereby regulating cell cycle, proliferation, apoptosis, epithelial mesenchymal transition, cancer cell invasion and migration, and other cell behaviors. The genes targeted by miR-944 are involved in three signaling pathways, including the Wnt/β-catenin pathway, Jak/STAT3 pathway, and PI3K/AKT pathway. miR-944 was regulated by a total of 11 competing endogenous RNAs, including 6 circular RNAs and 5 long non-coding RNAs. Abnormally expressed miR-944 can act as an independent prognostic factor and is closely related to tumor invasion, lymph node metastasis, TNM staging, and drug resistance. miR-944 is expected to become a critical biomarker with great clinical application value in cancer. Abstract miRNA is a class of endogenous short-chain non-coding RNAs consisting of about 22 nucleotides. miR-944 is located in the fourth intron of the TP63 gene in the 3q28 region. miR-944 is abnormally expressed in cancers in multiple systems including neural, endocrine, respiratory, reproductive, and digestive systems. miR-944 can target at least 27 protein-coding genes. miR-944 can regulate a series of cell behaviors, such as cell cycle, proliferation, invasion and migration, EMT, apoptosis, etc. miR-944 participates in the networks of 11 ceRNAs, including six circRNAs and five lncRNAs. miR-944 is involved in three signaling pathways. The abnormal expression of miR-944 is closely related to the clinicopathological conditions of various cancer patients. Deregulated expression of miR-944 is significantly associated with clinicopathology and prognosis in cancer patients. In addition, miR-944 is also associated with the development of DDP, RAPA, DOX, and PTX resistance in cancer cells. miR-944 is involved in the anticancer molecular mechanisms of matrine and Rhenium-liposome drugs. In conclusion, this work systematically summarizes the related findings of miR-944, which will provide potential hints for follow-up research on miR-944.
Collapse
|
977
|
Liu Z, Meng D, Wang J, Cao H, Feng P, Wu S, Wang N, Dang C, Hou P, Xia P. GASP1 enhances malignant phenotypes of breast cancer cells and decreases their response to paclitaxel by forming a vicious cycle with IGF1/IGF1R signaling pathway. Cell Death Dis 2022; 13:751. [PMID: 36042202 PMCID: PMC9427794 DOI: 10.1038/s41419-022-05198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
There is a potential correlation between G-protein-coupled receptor-associated sorting protein 1 (GASP1) and breast tumorigenesis. However, its biological function and underlying molecular mechanism in breast cancer have not been clearly delineated. Here, we demonstrated that GASP1 was highly expressed in breast cancers, and patients harboring altered GASP1 showed a worse prognosis than those with wild-type GASP1. Functional studies showed that GASP1 knockout significantly suppressed malignant properties of breast cancer cells, such as inhibition of cell proliferation, colony formation, migration, invasion and xenograft tumor growth in nude mice as well as induction of G1-phase cell cycle arrest, and vice versa. Mechanistically, GASP1 inhibited proteasomal degradation of insulin-like growth factor 1 receptor (IGF1R) by competitively binding to IGF1R with ubiquitin E3 ligase MDM2, thereby activating its downstream signaling pathways such as NF-κB, PI3K/AKT, and MAPK/ERK pathways given their critical roles in breast tumorigenesis and progression. IGF1, in turn, stimulated GASP1 expression by activating the PI3K/AKT pathway, forming a vicious cycle propelling the malignant progression of breast cancer. Besides, we found that GASP1 knockout obviously improved the response of breast cancer cells to paclitaxel. Collectively, this study demonstrates that GASP1 enhances malignant behaviors of breast cancer cells and decreases their cellular response to paclitaxel by interacting with and stabilizing IGF1R, and suggests that it may serve as a valuable prognostic factor and potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhao Liu
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Du Meng
- grid.452438.c0000 0004 1760 8119Department of Radio Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Jianling Wang
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Hongxin Cao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Feng
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Siyu Wu
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Na Wang
- grid.478124.c0000 0004 1773 123XDepartment of Endocrinology, Xi’an Central Hospital, 710003 Xi’an, People’s Republic of China
| | - Chengxue Dang
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| | - Peng Xia
- grid.452438.c0000 0004 1760 8119Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, People’s Republic of China
| |
Collapse
|
978
|
Nagle I, Richert A, Quinteros M, Janel S, Buysschaert E, Luciani N, Debost H, Thevenet V, Wilhelm C, Prunier C, Lafont F, Padilla-Benavides T, Boissan M, Reffay M. Surface tension of model tissues during malignant transformation and epithelial–mesenchymal transition. Front Cell Dev Biol 2022; 10:926322. [PMID: 36111347 PMCID: PMC9468677 DOI: 10.3389/fcell.2022.926322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial–mesenchymal transition is associated with migration, invasion, and metastasis. The translation at the tissue scale of these changes has not yet been enlightened while being essential in the understanding of tumor progression. Thus, biophysical tools dedicated to measurements on model tumor systems are needed to reveal the impact of epithelial–mesenchymal transition at the collective cell scale. Herein, using an original biophysical approach based on magnetic nanoparticle insertion inside cells, we formed and flattened multicellular aggregates to explore the consequences of the loss of the metastasis suppressor NME1 on the mechanical properties at the tissue scale. Multicellular spheroids behave as viscoelastic fluids, and their equilibrium shape is driven by surface tension as measured by their deformation upon magnetic field application. In a model of breast tumor cells genetically modified for NME1, we correlated tumor invasion, migration, and adhesion modifications with shape maintenance properties by measuring surface tension and exploring both invasive and migratory potential as well as adhesion characteristics.
Collapse
Affiliation(s)
- Irène Nagle
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Alain Richert
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Michael Quinteros
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT, United States
| | - Sébastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Edgar Buysschaert
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Henry Debost
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
| | - Véronique Thevenet
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
| | - Claire Wilhelm
- Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Paris, France
| | - Céline Prunier
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | | | - Mathieu Boissan
- Sorbonne Université, Centre de recherche Saint-Antoine, CRSA, Paris, France
- *Correspondence: Mathieu Boissan, ; Myriam Reffay,
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité and CNRS, Paris, France
- *Correspondence: Mathieu Boissan, ; Myriam Reffay,
| |
Collapse
|
979
|
Heterogeneity, inherent and acquired drug resistance in patient-derived organoid models of primary liver cancer. Cell Oncol (Dordr) 2022; 45:1019-1036. [PMID: 36036881 DOI: 10.1007/s13402-022-00707-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE We aimed to elucidate the applicability of tumor organoids for inherent drug resistance of primary liver cancer (PLC) and mechanisms of acquired drug resistance. METHODS PLC tissues were used to establish organoids, organoid-derived xenograft (ODX) and patient-derived xenograft (PDX) models. Acquired drug resistance was induced in hepatocellular carcinoma (HCC) organoids. Gene expression profiling was performed by RNA-sequencing. RESULTS Fifty-two organoids were established from 153 PLC patients. Compared with establishing PDX models, establishing organoids of HCC showed a trend toward a higher success rate (29.0% vs. 23.7%) and took less time (13.0 ± 4.7 vs. 25.1 ± 5.4 days, p = 2.28 × 10-13). Larger tumors, vascular invasion, higher serum AFP levels, advanced stages and upregulation of stemness- and proliferation-related genes were significantly associated with the successful establishment of HCC organoids and PDX. Organoids and ODX recapitulated PLC histopathological features, but were enriched in more aggressive cell types. PLC organoids were mostly resistant to lenvatinib in vitro but sensitive to lenvatinib in ODX models. Stemness- and epithelial-mesenchymal transition (EMT)-related gene sets were found to be upregulated, whereas liver development- and liver specific molecule-related gene sets were downregulated in acquired sorafenib-resistant organoids. Targeting the mTOR signaling pathway was effective in treating acquired sorafenib-resistant HCC organoids, possibly via inducing phosphorylated S6 kinase. Genes upregulated in acquired sorafenib-resistant HCC organoids were associated with an unfavorable prognosis. CONCLUSIONS HCC organoids perform better than PDX for drug screening. Acquired sorafenib resistance in organoids promotes HCC aggressiveness via facilitating stemness, retro-differentiation and EMT. Phosphorylated S6 kinase may be predictive for drug resistance in HCC.
Collapse
|
980
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
981
|
Li N, Zhai Z, Chen Y, Li X. Transcriptomic and immunologic implications of the epithelial-mesenchymal transition model reveal a novel role of SFTA2 in prognosis of non-small-cell lung carcinoma. Front Genet 2022; 13:911801. [PMID: 36092941 PMCID: PMC9458971 DOI: 10.3389/fgene.2022.911801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the second most common cancer worldwide, and most deaths are associated with epithelial-mesenchymal transition (EMT). Therefore, this study aimed to explore the role of EMT-related transcriptomic profiles in NSCLC and the effect of EMT-based signatures on clinical diagnosis, prognosis, and treatment responses for patients with NSCLC. After integrating the transcriptomics and clinicopathological data, we first constructed EMT clusters (C1 and C2) using machine learning algorithms, found the significant relationship between EMT clusters and survival outcomes, and then explored the impact of EMT clusters on the tumor heterogeneity, drug efficiency, and immune microenvironment of NSCLC. Prominently, differential-enriched tumor-infiltrated lymphocytes were found between EMT clusters, especially the macrophages and monocyte. Next, we identified the most significantly down-regulated gene SFTA2 in the EMT clusters C2 with poor prognosis. Using RT-qPCR and RNA-seq data from the public database, we found prominently elevated SFTA2 expression in NSCLC tissues compared with normal lung tissues, and the tumor suppressor role of SFTA2 in 82 Chinese patients with NSCLC. After Cox regression and survival analysis, we demonstrated that higher SFTA2 expression in tumor samples significantly predicts favorable prognosis of NSCLC based on multiple independent cohorts. In addition, the prognostic value of SFTA2 expression differs for patients with lung adenocarcinoma and squamous cell carcinoma. In conclusion, this study demonstrated that the EMT process is involved in the malignant progression and the constructed EMT clusters exerted significant predictive drug resistance and prognostic value for NSCLC patients. In addition, we first identified the high tumoral expression of SFTA2 correlated with better prognosis and could serve as a predictive biomarker for outcomes and treatment response of NSCLC patients.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Zhejiang, China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Center, Zhejiang Rongjun Hospital, Zhejiang, China
| | - Yuanbiao Chen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaofeng Li
- Department of Thoracic Disease Center, Zhejiang Rongjun Hospital, Zhejiang, China
| |
Collapse
|
982
|
Wang N, Gao X, Ji H, Ma S, Wu J, Dong J, Wang F, Zhao H, Liu Z, Yan X, Li B, Du J, Zhang J, Hu S. Machine learning-based screening of an epithelial-mesenchymal transition-related long non-coding RNA signature reveals lower-grade glioma prognosis and the tumor microenvironment and predicts antitumor therapy response. Front Mol Biosci 2022; 9:942966. [PMID: 36090045 PMCID: PMC9459009 DOI: 10.3389/fmolb.2022.942966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) confers high invasive and migratory capacity to cancer cells, which limits the effectiveness of tumor therapy. Long non-coding RNAs (lncRNAs) can regulate the dynamic process of EMT at different levels through various complex regulatory networks. We aimed to comprehensively analyze and screen EMT-related lncRNAs to characterize lower-grade glioma (LGG) tumor biology and provide new ideas for current therapeutic approaches. We retrieved 1065 LGG samples from the Cancer Genome Atlas and Chinese Glioma Genome Atlas by machine learning algorithms, identified three hub lncRNAs including CRNDE, LINC00665, and NEAT1, and established an EMT-related lncRNA signature (EMTrLS). This novel signature had strong prognostic value and potential clinical significance. EMTrLS described LGG genomic alterations and clinical features including gene mutations, tumor mutational burden, World Health Organization (WHO) grade, IDH status, and 1p/19q status. Notably, stratified analysis revealed activation of malignancy-related and metabolic pathways in the EMTrLS-high cohort. Moreover, the population with increased EMTrLS scores had increased cells with immune killing function. However, this antitumor immune function may be suppressed by increased Tregs and macrophages. Meanwhile, the relatively high expression of immune checkpoints explained the immunosuppressive state of patients with high EMTrLS scores. Importantly, we validated this result by quantifying the course of antitumor immunity. In particular, EMTrLS stratification enabled assessment of the responsiveness of LGG to chemotherapeutic drug efficacy and PD1 blockade. In conclusion, our findings complement the foundation of molecular studies of LGG, provide valuable insight into our understanding of EMT-related lncRNAs, and offer new strategies for LGG therapy.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Ma
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Hongtao Zhao
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Zhihui Liu
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Xiuwei Yan
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Bo Li
- Department of Neurosurgery, Taizhou First People’s Hospital, Taizhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jiheng Zhang, ; Jianyang Du, ; Shaoshan Hu,
| | - Jiheng Zhang
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiheng Zhang, ; Jianyang Du, ; Shaoshan Hu,
| | - Shaoshan Hu
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiheng Zhang, ; Jianyang Du, ; Shaoshan Hu,
| |
Collapse
|
983
|
Wang Y, Feng YC, Gan Y, Teng L, Wang L, La T, Wang P, Gu Y, Yan L, Li N, Zhang L, Wang L, Thorne RF, Zhang XD, Cao H, Shao FM. LncRNA MILIP links YBX1 to translational activation of Snai1 and promotes metastasis in clear cell renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:260. [PMID: 36028903 PMCID: PMC9414127 DOI: 10.1186/s13046-022-02452-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Distant metastasis is the major cause of clear cell renal cell carcinoma (ccRCC)-associated mortality. However, molecular mechanisms involved in ccRCC metastasis remain to be fully understood. With the increasing appreciation of the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance, the list of aberrantly expressed lncRNAs contributing to ccRCC pathogenesis is expanding rapidly.
Methods
Bioinformatics analysis was carried out to interrogate publicly available ccRCC datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human ccRCC tissues and cell lines, respectively. Chromatin immunoprecipitation and luciferase reporter assays were used to examine transcriptional regulation of gene expression. Wound healing as well as transwell migration and invasion assays were employed to monitor ccRCC cell migration and invasion in vitro. ccRCC metastasis was also examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were performed to test RNA–protein associations, whereas RNA-RNA interactions were tested using domain-specific chromatin isolation by RNA purification.
Results
MILIP expression was upregulated in metastatic compared with primary ccRCC tissues. The increased MILIP expression in metastatic ccRCC cells was driven by the transcription factor AP-2 gamma (TFAP2C). Knockdown of MILIP diminished the potential of ccRCC cell migration and invasion in vitro and reduced the formation of ccRCC metastatic lesions in vivo. The effect of MILIP on ccRCC cells was associated with alterations in the expression of epithelial-to-mesenchymal transition (EMT) hallmark genes. Mechanistically, MILIP formed an RNA-RNA duplex with the snail family transcriptional repressor 1 (Snai1) mRNA and bound to Y-box binding protein 1 (YBX1). This promoted the association between the YBX1 protein and the Snai1 mRNA, leading to increased translation of the latter. Snai1 in turn played an important role in MILIP-driven ccRCC metastasis.
Conclusions
The TFAP2C-responsive lncRNA MILIP drives ccRCC metastasis. Targeting MILIP may thus represent a potential avenue for ccRCC treatment.
Collapse
|
984
|
Abstract
The presence of diabetes mellitus (DM) has a critical influence on the occurrence and development of endometrial cancer (EC) and is associated with a poor prognosis. Patients with DM are twice as likely to progress to EC, probably because a high-glucose environment contributes to the growth and invasiveness of EC cells. In this review, we focus on the etiological links between DM and EC and provide an overview of potential biological mechanisms that may account for this relationship, including hyperglycemia, insulin resistance, hyperinsulinemia, glycolysis, chronic inflammation, obesity, and activation of signaling pathways involved in EC. Furthermore, we discuss the pharmacological management of EC associated with DM. Early treatment with metformin is expected to be an effective adjuvant alternative for EC in the future. This knowledge is important for further opening up preventive and therapeutic strategies for EC by targeting glucose metabolism.
Collapse
Affiliation(s)
- Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Xinling Zeng
- Department of gynaecology and obstetrics,The First School of Clinical Medicine,Yangtze University, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- *Correspondence: Jie Tan, Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: ); Cunjian Yi, Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: )
| | - Yi Xu
- Department of gynaecology and obstetrics,The First School of Clinical Medicine,Yangtze University, Jingzhou, Hubei, China
| | - Cunjian Yi
- Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- *Correspondence: Jie Tan, Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: ); Cunjian Yi, Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: )
| |
Collapse
|
985
|
Ahsan H, Islam SU, Ahmed MB, Lee YS. Role of Nrf2, STAT3, and Src as Molecular Targets for Cancer Chemoprevention. Pharmaceutics 2022; 14:1775. [PMID: 36145523 PMCID: PMC9505731 DOI: 10.3390/pharmaceutics14091775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex and multistage disease that affects various intracellular pathways, leading to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence or suppress its progression. In this strategy, chemopreventive agents target molecules involved in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its progression can form newer chemopreventive agents.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
986
|
Chen X, Zhou Z, Zhang Z, Zhao C, Li J, Jiang J, Huang B, Qin Y. Puerarin inhibits EMT induced by oxaliplatin via targeting carbonic anhydrase XII. Front Pharmacol 2022; 13:969422. [PMID: 36091779 PMCID: PMC9453025 DOI: 10.3389/fphar.2022.969422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Puerarin is a flavonoid molecule that widely exists in various plants. Puerarin has been reported to exhibit anti-tumor effects in various cancers. However, its exact underlying pharmacological mechanism is unclear. This study evaluated the anticancer effect of puerarin combined with oxaliplatin (OXA) in vitro and in vivo. Our results indicated that puerarin can reverse platinum-based anti-cancer drug resistance, and enhance the OXA’s anticancer effects on breast cancer. Furthermore, puerarin can inhibit migration and reverse the epithelial-mesenchymal transition (EMT) induced by low-dose OXA. Further studies showed that the carbonic anhydrase (CA) XII is a potential target of puerarin. In conclusion, puerarin is expected to become an adjuvant chemotherapy drug and potentially become one of the medicated foods for breast cancer patients.
Collapse
Affiliation(s)
- Xindong Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jingwen Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yuan Qin,
| |
Collapse
|
987
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
988
|
Malakoti F, Alemi F, Yeganeh SJ, Hosseini F, Shabestani N, Samemaleki S, Maleki M, Daneshvar SF, Montazer M, Yousefi B. Long noncoding RNA SNHG7-miRNA-mRNA axes crosstalk with oncogenic signaling pathways in human cancers. Chem Biol Drug Des 2022; 101:1151-1161. [PMID: 35993390 DOI: 10.1111/cbdd.14118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
LncRNAs and miRNAs are the two most important non-coding RNAs, which have been identified to be associated with cancer progression or prevention. The dysregulation of lncRNAs conducts tumorigenesis and metastasis in different ways. One of the mechanisms is that lncRNAs interact with miRNAs to regulate distinct cellular and genomic processes and cancer progression. LncRNA SNHG7 as an oncogene sponges miRNAs and develops lncRNA-miRNA-mRNA axes, leading to the regulation of several signaling pathways such as Wnt/β-Catenin, PI3K/AKT/mTOR, SIRT1, and Snail-EMT. Therefore, in this article, after a brief overview of lncRNA SNHG7-miRNA-mRNA axes' contribution to cancer development, we will discuss the role of lncRNA SNHG7 in the genes expression and signaling pathways related to cancers development via acting as a ceRNA.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Jafari Yeganeh
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Fathi Daneshvar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Thorax Surgery, Faculty of Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
989
|
Chai S, Wen Z, Zhang R, Bai Y, Liu J, Li J, Kongling W, Chen W, Wang F, Gao L. CCL25/CCR9 interaction promotes the malignant behavior of salivary adenoid cystic carcinoma via the PI3K/AKT signaling pathway. PeerJ 2022; 10:e13844. [PMID: 36003306 PMCID: PMC9394511 DOI: 10.7717/peerj.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background CC chemokine receptor 9 (CCR9), an organ-specific chemokine receptor, interacts with its exclusive ligand CCL25 to promote tumor proliferation and metastasis. However, the effect of CCR9 on salivary adenoid cystic carcinoma (SACC) malignant behavior remains unknown. This study aimed to investigate the specific molecular mechanism by which CCR9/CCL25 modulates malignant progression in SACC. Methods Immunohistochemistry staining and RT-qPCR analyses were performed to detect the correlation of CCR9 expression and tumor progression-associated markers in SACC. In vitro, SACC cell proliferation and apoptosis were evaluated using Cell Counting Kit-8 and colon formation, and cell migration and invasion were detected by wound healing and transwell assays. Vercirnon was used as an inhibitor of CCR9, and LY294002 was used as an inhibitor of the PI3K/AKT pathway in this study. Western blot and RT-qPCR assays were carried out to measure the downstream factors of the interaction of CCL25 and CCR9. The effect of CCL25 on the development of SACC in vivo was examined by a xenograft tumor model in nude mice following CCL25, Vercirnon and LY294002 treatment. Results CCR9 was highly expressed in SACC compared with adjacent salivary gland tissues, and its level was associated with tumor proliferation and metastases. CCL25 enhanced cell proliferation, migration, and invasion through its interaction with CCR9 and exerted an antiapoptotic effect on SACC cells. Targeting CCR9 via Vercirnon significantly reduced the phosphorylation level of AKT induced by CCL25. CCL25/CCR9 could activate its downstream factors through the PI3K/AKT signaling pathway, such as cyclin D1, BCL2 and SLUG, thus promoting SACC cell proliferation, antiapoptosis, invasion and metastasis. The in vivo data from the xenograft mouse models further proved that CCL25 administration promoted malignant tumor progression by activating the PI3K/AKT pathway. Conclusion The interaction of CCL25 and CCR9 promotes tumor growth and metastasis in SACC by activating the PI3K/AKT signaling pathway, offering a promising strategy for SACC treatment.
Collapse
Affiliation(s)
- Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
990
|
The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int J Mol Sci 2022; 23:ijms23169365. [PMID: 36012631 PMCID: PMC9408851 DOI: 10.3390/ijms23169365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.
Collapse
|
991
|
Xie P, Zhang Y, Chen R, Zheng J, Cui G. PTBP3 promotes tumorigenesis of glioblastoma by stabilizing Twist1. Transl Oncol 2022; 25:101520. [PMID: 35987089 PMCID: PMC9411677 DOI: 10.1016/j.tranon.2022.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
PTBP3 is upregulated in GBM and predicts poor prognosis. PTBP3 promotes proliferation, EMT, migration, and invasion of GBM. PTBP3 stabilizes Twist1 by decreasing its ubiquitination and degradation.
Objective Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and molecular mechanism of PTBP3 in GBM is little known. Methods qPCR and immunoblotting were used to detect PTBP3 expression levels in glioma tissues and cells. CCK8, Edu, flow cytometry, wound healing, and transwell assays were used to examined the function of PTBP3 in GBM. qPCR, Immunoblotting, and ubiquitination assays were performed to identify the mechanism of PTBP3. Results We found that PTBP3 was upregulated in GBM, and high expression of PTBP3 correlated with the poor survival of GBM patients. PTBP3 knockdown reduced proliferation, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, PTBP3 had an effect on the EMT of GBM. More importantly, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo. Conclusion This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Yueqing Zhang
- Department of Neurosurgery, Huai'an Cancer Hospital, No19 shanyang Road, Huai'an, Jiangsu 223200, P.R. China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.
| |
Collapse
|
992
|
Xiao L, Huang Y, Li Q, Wang S, Ma L, Fan Z, Tang Z, Yuan X, Liu B. Identification of a prognostic classifier based on EMT-related lncRNAs and the function of LINC01138 in tumor progression for lung adenocarcinoma. Front Mol Biosci 2022; 9:976878. [PMID: 36060239 PMCID: PMC9428519 DOI: 10.3389/fmolb.2022.976878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: This study aimed to develop a prognostic indicator based on epithelial-mesenchymal transition (EMT)-related long noncoding RNAs (lncRNAs) and explore the function of EMT-related lncRNAs in malignant progression in lung adenocarcinoma (LUAD). Materials and methods: A LUAD dataset was acquired from The Cancer Genome Atlas (TCGA) to identify prognostic EMT-related lncRNAs via differential expression analysis and univariate Cox regression analysis. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was utilized for variable selection and model construction. The EMT-related prognostic index (ERPI) was calculated according to the model and served as a classifier to divide LUAD individuals into high-ERPI and low-ERPI groups. A nomogram incorporating ERPI and clinicopathological variables was constructed. TCGA-LUAD, GSE50081, and GSE31210 were used to test the predictive capacity of the ERPI and nomogram. The characteristics of the tumor microenvironment (TME) were evaluated via the ESTIMATE, TIMER, and ssGSEA algorithms. Gene set variation analysis (GSVA) and ssGSEA were used to annotate the functions of the high-ERPI and low-ERPI groups. CCK8, transwell assay, wound-healing assay, and clone formation assay were conducted to clarify the biological functions of prognostic EMT-related lncRNAs. Results: Ninety-seven differentially expressed EMT-related lncRNAs were identified, 15 of which were related to overall survival (OS). A prognostic signature was constructed based on 14 prognostic EMT-related lncRNAs to calculate the ERPI of each patient, and the predictive ability of ERPI was verified in TCGA, GSE50081, and GSE31210. The low-ERPI group survived longer and had a lower percentage of patients in advanced stage than the high-ERPI group. The nomogram had the highest predictive accuracy, followed by ERPI and stage. Patients with low ERPI had higher infiltration degree of immune cells and stronger immune responses than those with high ERPI. A series of in vitro experiments demonstrated that knockdown of LINC01138 dampened variability, proliferation, and motility of A549 and H460 cells. Conclusion: Our study developed a prognostic classifier with robust prognostic performance and clarified the biological functions of LINC01138 in LUAD, aiding in making individual treatments for patients with LUAD and dissecting the mechanism of oncogenesis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| |
Collapse
|
993
|
Glycosphingolipids are mediators of cancer plasticity through independent signaling pathways. Cell Rep 2022; 40:111181. [PMID: 35977490 DOI: 10.1016/j.celrep.2022.111181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.
Collapse
|
994
|
Pulford CS, Uppalapati CK, Montgomery MR, Averitte RL, Hull EE, Leyva KJ. A Hybrid Epithelial to Mesenchymal Transition in Ex Vivo Cutaneous Squamous Cell Carcinoma Tissues. Int J Mol Sci 2022; 23:ijms23169183. [PMID: 36012449 PMCID: PMC9408944 DOI: 10.3390/ijms23169183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
While most cases of cutaneous squamous cell carcinoma (cSCC) are benign, invasive cSCC is associated with higher mortality and is often more difficult to treat. As such, understanding the factors that influence the progression of cSCC are important. Aggressive cancers metastasize through a series of evolutionary changes, collectively called the epithelial-to-mesenchymal transition (EMT). During EMT, epithelial cells transition to a highly mobile mesenchymal cell type with metastatic capacities. While changes in expression of TGF-β, ZEB1, SNAI1, MMPs, vimentin, and E-cadherin are hallmarks of an EMT process occurring within cancer cells, including cSCC cells, EMT within tissues is not an “all or none” process. Using patient-derived cSCC and adjacent normal tissues, we show that cells within individual cSCC tumors are undergoing a hybrid EMT process, where there is variation in expression of EMT markers by cells within a tumor mass that may be facilitating invasion. Interestingly, cells along the outer edges of a tumor mass exhibit a more mesenchymal phenotype, with reduced E-cadherin, β-catenin, and cytokeratin expression and increased vimentin expression. Conversely, cells in the center of a tumor mass retain a higher expression of the epithelial markers E-cadherin and cytokeratin and little to no expression of vimentin, a mesenchymal marker. We also detected inverse expression changes in the miR-200 family and the EMT-associated transcription factors ZEB1 and SNAI1, suggesting that cSCC EMT dynamics are regulated in a miRNA-dependent manner. These novel findings in cSCC tumors provide evidence of phenotypic plasticity of the EMT process occurring within patient tissues, and extend the characterization of a hybrid EMT program occurring within a tumor mass. This hybrid EMT program may be promoting both survival and invasiveness of the tumors. A better understanding of this hybrid EMT process may influence therapeutic strategies in more invasive disease.
Collapse
Affiliation(s)
- Christopher S. Pulford
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Chandana K. Uppalapati
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | | | - Richard L. Averitte
- Affiliated Dermatology & Affiliated Laboratories, 20401 N. 73rd Street #230, Scottsdale, AZ 85255, USA
| | - Elizabeth E. Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Kathryn J. Leyva
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Correspondence: ; Tel.: 1-623-572-3294
| |
Collapse
|
995
|
Zhang Y, Zhang HW, Zhu XD, Wang YQ, Wang XW, Zheng BS, Chen BC, Chen ZJ. Overexpression of Dermokine-α enhances the proliferation and epithelial-mesenchymal transition of pancreatic tumor cells. Cell Signal 2022; 99:110439. [PMID: 35981655 DOI: 10.1016/j.cellsig.2022.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Abstract
Pancreatic cancer is a prevalent malignancy of the digestive system and a major cause of cancer-associated deaths. Previous studies have shown that mutation in the dermokine-β (DMKN-β) gene causes pancreatic and colorectal cancer. The role of the carboxy-terminal domain of DMKN-β and dermokine-α (DMKN-α) genes in cancer tumorigenesis. Herein, the role of DMKN-α in pancreatic cancer (PC) tumorigenesis and the mechanisms underlying this process were investigated. Differentially expressed genes between PC and matched normal cells were identified through RNA-seq analysis, and the corresponding protein expression levels were verified using Western blot analysis. In vivo tumor formation experiment was also performed in nude mice. We found that the DMKN-α gene was overexpressed in cancerous pancreatic cell lines compared to normal pancreatic cell lines. CCK-8, colony formation, RTCA test, wound healing, as well as transwell test showed that the overexpression of DMKN-α enhanced the proliferation, migration, invasion, and EMT of PC cells. In vivo assays confirmed that DMKN-α promotes tumorigenesis. The findings of this study show that DMKN-α is a potential oncogene for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - He-Wei Zhang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xian-Dong Zhu
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Yong-Qiang Wang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiao-Wu Wang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Bei-Shi Zheng
- Department of Internal Medicine, Woodhull Medical and Mental Health Center, Brooklyn, NY 11221, USA
| | - Bi-Cheng Chen
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic diseases of Zhejiang Province, Zhejiang Provincial Top Key discipline in Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Zong-Jing Chen
- Department of Hepatobiliary Surgery, The First affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
996
|
Song X, Zhang Y, Zuo R, Zhang J, Lin M, Wang J, Hu S, Ji H, Peng L, Lv Y, Gao X, Jiang S, Guo D. Repurposing maduramicin as a novel anticancer and anti-metastasis agent for triple-negative breast cancer as enhanced by nanoemulsion. Int J Pharm 2022; 625:122091. [PMID: 35964826 DOI: 10.1016/j.ijpharm.2022.122091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is featured by aggression and metastasis and remains an unmet medical challenge due to high death rate. We aimed to repurpose maduramicin (MAD) as an effective drug against TNBC, and develop a nanoemulsion system to enhance anticancer efficacy of MAD. MDA-MB-231 and 4 T1 cells were used as in vitro model, and cell viability was determined by performing cell counting kit-8 and a colony-formation assay. Furthermore, MAD loaded nanoemulsion (MAD-NEs) was manufactured and characterized by a series of tests. The anticancer and anti-metastasis mechanism of MAD-NEs were assessed by performing cell cycle, apoptosis, wound-healing, transwell assay and Western blotting assays. Herein, MAD was firstly demonstrated to be an effective agent to suppress growth of TNBC cells. Subsequently, the optimized MAD-NEs were shown to have stability and high encapsulation efficiency, and could arrested cells in G0/G1 phase and induced apoptosis in TNBC cells. More importantly, MAD-NEs significantly impeded the metastasis of tumor cells, which was further demonstrated by the significant altered expression of epithelial-mesenchymal transition and extracellular matrix markers in vitro and in vivo. Moreover, compared to MAD, MAD-NEs exhibited higher efficacy in shrinking breast tumor size and repressing liver and lung metastasis in vivo, and showed excellent biocompatibility in tumor-bearing mice. The successfully prepared MAD-NEs are expected to be harnessed to suppress tumor growth, invasion and metastasis in the battle against malignant TNBC.
Collapse
Affiliation(s)
- Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Runan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jingjing Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mengjuan Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Junqi Wang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shiheng Hu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yingjun Lv
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
997
|
Liu J, Wang J, Tian W, Xu Y, Li R, Zhao K, You C, Zhu Y, Bartsch JW, Niu H, Zhang H, Shu K, Lei T. PDCD10 promotes the aggressive behaviors of pituitary adenomas by up-regulating CXCR2 and activating downstream AKT/ERK signaling. Aging (Albany NY) 2022; 14:6066-6080. [PMID: 35963638 PMCID: PMC9417224 DOI: 10.18632/aging.204206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
As the second most common primary intracranial neoplasms, about 40% of pituitary adenomas (PAs) exhibit aggressive behaviors and resulting in poor patient prognosis. The molecular mechanisms underlying the aggressive behaviors of PAs are not yet fully understood. Biochemical studies have reported that programmed cell death 10 (PDCD10) is a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex and plays a dual role in cancers in a tissue- or disease-specific manner. In the present study, we report for the first time that the role of PDCD10 in PAs. Cell proliferation, migration and invasion were either enhanced by overexpressing or inhibited by silencing PDCD10 in PA cells. Moreover, PDCD10 significantly promoted epithelial–mesenchymal transition (EMT) of pituitary adenoma cells. Mechanistically, we showed that the expression of CXCR2, together with phosphorylation levels of AKT and ERK1/2 were regulated by PDCD10. Activation of CXCR2 inversed inactivation of AKT/ERK signal pathways and the tumor-suppressive effects induced by PDCD10 silencing. Finally, the pro-oncogenic effect of PDCD10 was confirmed by in vivo tumor grafting. Taken together, we demonstrate for the first time that PDCD10 can induce aggressive behaviors of PAs by promoting cellular proliferation, migration, invasion and EMT through CXCR2-AKT/ERK signaling axis.
Collapse
Affiliation(s)
- Jingdian Liu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Tian
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | | - Hongquan Niu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
998
|
Deng G, Fu TJ, Liu CP. Increased expression of Myosin X contributes to the metastasis in patients with laryngeal squamous cell carcinoma. Mol Genet Genomics 2022; 297:1529-1536. [PMID: 35951144 PMCID: PMC9596522 DOI: 10.1007/s00438-022-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
Abstract
Laryngeal Squamous Cell Carcinoma (LSCC) is one of the most common malignancy in Head and neck cancer for which the mechanism underlying its metastasis is poorly understood. Myosin X, a molecular motor in cells has been demonstrated to play an important role in cell migration. However, whether Myosin X is involved in the metastasis of LSCC remains unclear. To investigate the expression of Myosin X and its implication in the metastasis of LSCC, we recruited 30 patients with LSCC and 6 patients with vocal cord polyp range from October 2016 to October 2018. Tissue samples were obtained during surgery and the expression of Myosin X, Cortactin, MMP2, MMP9, E-cadherin, and β-catenin in tissue samples were evaluated by RT-PCR, Western blot, immunohistochemistry or ELISA. Patients with LSCC were further followed-up 2 year after surgery for metastasis analysis. We found that the level of Myosin X, Cortactin, MMP2, and MMP9 was much higher in poorly differentiated LSCC compared to that in moderately and highly LSCC, as well as the control tissues. In contrast, the expression of epithelial-mesenchymal transition related marker, E-cadherin, and β-catenin, were much lower in poorly differentiated LSCC tissues compared to that in moderately and highly differentiated LSCC tissues, as well as the control tissues. Moreover, the expression of Myosin X was positively correlated with Cortactin, MMP2, and MMP9 levels. Increased expression of Myosin X in LSCC tissues was related to higher risk of metastasis. In conclusion, our findings showed that. Myosin X augments the expression of Cortactin, MMP2 and MMP9, which could upregulate the cell migration and the matrix degradation, and consequently reduce the expression of E-cadherin and β-catenin, thereby activating epithelial-mesenchymal transformation and promoting the metastasis of LSCC. Targeting Myosin X may have potential therapeutic effect in the metastasis of LSCC.
Collapse
Affiliation(s)
- Gang Deng
- Department of Otolaryngology-Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Tie-Jun Fu
- Department of Otolaryngology-Head and Neck Surgery, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, People's Republic of China
| | - Cui-Ping Liu
- Department of Otolaryngology-Head and Neck Surgery, Second People's Hospital of Gansu Province, No. 1 He Zheng West Street, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
999
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
1000
|
Zhang X, Li Y, Hu P, Xu L, Qiu H. Identification of molecular patterns and prognostic models of epithelial–mesenchymal transition- and immune-combined index in the gastric cancer. Front Pharmacol 2022; 13:958070. [PMID: 36016566 PMCID: PMC9397546 DOI: 10.3389/fphar.2022.958070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Epithelial–mesenchymal transition (EMT) and the immune microenvironment play important roles in the progression of gastric cancer (GC), but the joint role of both in GC is not clear. Methods: We identified EMT- and immune-related genes (EIRGs), and the molecular subtypes of EIRGs were identified by unsupervised cluster analysis. Then, we constructed an accurate EIRG_score model by using differential genes of molecular subtypes. The correlation of EIRG_score with prognosis, immune infiltration, gene mutation, chemotherapeutic drug sensitivity, and immunotherapy response was comprehensively analyzed. In addition, we investigated the biological function of EIRG_score via in vitro experiments. Results: A total of 808 GC patients were classified into two molecular subtypes, which were enriched in EMT and immune-related biological pathways and significantly correlated with prognosis and immune infiltration. The constructed EIRG_score had an important role in predicting prognosis and immunotherapeutic response. The higher EIRG_score was associated with worse prognosis, higher abundance of immunosuppressive cell infiltration, lower immune checkpoint genes expression, lower tumor mutation burden, microsatellite instability-high, lower chemotherapeutic drug sensitivity, and poorer immunotherapeutic response. Conclusion: EIRG_score may be used as a biomarker to assess prognosis and guide precise treatment.
Collapse
|