951
|
Harrison C. New genetics and diagnosis of childhood B-cell precursor acute lymphoblastic leukemia. Pediatr Rep 2011; 3 Suppl 2:e4. [PMID: 22053280 PMCID: PMC3206533 DOI: 10.4081/pr.2011.s2.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/04/2011] [Indexed: 11/23/2022] Open
Abstract
Over the last 50 years, while significant advances have been made in the successful treatment of childhood leukaemia, similar progress has been made in understanding the genetics of the disease. In childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), the incidences of individual chromosomal abnormalities are well established and cytogenetics provides a reliable tool for risk stratification for treatment. In spite of this role, a number of patients will relapse. Increasing numbers of additional genetic changes, including deletions and mutations, are being discovered. Their associations with established cytogenetic subgroups and with each other remain unclear. Whether they have a link to outcome is the most important factor in terms of refinement of risk factors in relation to clinical trials. For a number of newly identified abnormalities, appropriately modified therapy has significantly improved outcome. Alternatively, some of these aberrations are providing novel molecular markers for targeted therapy.
Collapse
Affiliation(s)
- Christine Harrison
- Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| |
Collapse
|
952
|
Hunger SP, Raetz EA, Loh ML, Mullighan CG. Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr Blood Cancer 2011; 56:984-93. [PMID: 21370430 DOI: 10.1002/pbc.22996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/01/2010] [Indexed: 12/22/2022]
Abstract
High-risk (HR) acute lymphoblastic leukemia (ALL) remains one of the greatest challenges in pediatric oncology. Relapsed ALL is a leading cause of death in young people, and further improvements in outcome will required the development of therapeutic approaches directed against rational therapeutic targets, as escalation of the intensity of existing therapies is limited by toxicity. This review summarizes advances in the biology and treatment of HR and relapsed ALL presented at a symposium at the 2010 American Society for Pediatric Hematology and Oncology Annual Meeting. Analysis of large patient cohorts has identified several factors associated with HR of relapse including older age, T-lineage disease, and persisting minimal residual disease (MRD) early in therapy. As the results of salvage therapy remain poor, new treatment approaches are needed. BCR-ABL1-positive (Ph+) ALL has historically had a very poor outcome, but recent studies have demonstrated the impressive improvements in treatment outcome with the use of tyrosine kinase inhibitors (TKIs). High-resolution genomic profiling of genetic alterations and gene expression has revolutionized our understanding of the genetic basis of ALL, and has identified several alterations associated with poor outcome, including mutations of the lymphoid transcription factor gene IKZF1 (IKAROS), activating mutations of Janus kinases, and rearrangement of the lymphoid cytokine receptor gene CRLF2. These data indicated that the genetic basis of HR-ALL is multifactorial, and have also provided a new potential therapeutic option directed at JAK inhibition.
Collapse
Affiliation(s)
- Stephen P Hunger
- Center for Cancer and Blood Disorders, The Children's Hospital and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
953
|
Mullighan CG, Willman CL. Advances in the Biology of Acute Lymphoblastic Leukemia-From Genomics to the Clinic. J Adolesc Young Adult Oncol 2011; 1:77-86. [PMID: 23610732 DOI: 10.1089/jayao.2011.0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite impressive advances in cure rates for childhood acute lymphoblastic leukemia (ALL), ALL remains the leading cause of disease-related death in young people and new therapeutic approaches directed against rational therapeutic targets are urgently required to improve treatment outcomes. This is particularly true for ALL in older children, adolescents, and adults, in whom treatment outcomes are markedly inferior to those of young children. A major goal of current leukemia research is to use comprehensive genomic analysis of the leukemic cell genome, transcriptome, and epigenome to identify critical new genomic alterations that drive leukemogenesis and influence responsiveness to therapy. Genomic analyses in childhood ALL have been remarkably informative and have identified a number of new structural genetic alterations that play important roles in the establishment of the leukemic clone and determine risk of relapse. Notably, many high-risk ALL cases harbor loss-of-function and dominant mutations of genes that encode transcriptional regulators of lymphoid development coupled with mutations that result in activation of cytokine receptor and kinase signaling pathways. These advances have resulted in new diagnostic approaches and therapeutic trials in ALL. This review will discuss these advances and outline challenges for future studies, including the potential role of genome-wide sequencing approaches and the need for detailed studies of the genetics of ALL in the adolescent and young adult population.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
954
|
Mullighan C, Petersdorf E, Davies SM, DiPersio J. From trees to the forest: genes to genomics. Biol Blood Marrow Transplant 2011; 17:S52-7. [PMID: 21195310 DOI: 10.1016/j.bbmt.2010.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crick, Watson, and colleagues revealed the genetic code in 1953, and since that time, remarkable progress has been made in understanding what makes each of us who we are. Identification of single genes important in disease, and the development of a mechanistic understanding of genetic elements that regulate gene function, have cast light on the pathophysiology of many heritable and acquired disorders. In 1990, the human genome project commenced, with the goal of sequencing the entire human genome, and a "first draft" was published with astonishing speed in 2001. The first draft, although an extraordinary achievement, reported essentially an imaginary haploid mix of alleles rather than a true diploid genome. In the years since 2001, technology has further improved, and efforts have been focused on filling in the gaps in the initial genome and starting the huge task of looking at normal variation in the human genome. This work is the beginning of understanding human genetics in the context of the structure of the genome as a complete entity, and as more than simply the sum of a series of genes. We present 3 studies in this review that apply genomic approaches to leukemia and to transplantation to improve and extend therapies.
Collapse
Affiliation(s)
- Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
955
|
Pulsipher MA, Peters C, Pui CH. High-risk pediatric acute lymphoblastic leukemia: to transplant or not to transplant? Biol Blood Marrow Transplant 2011; 17:S137-48. [PMID: 21195303 DOI: 10.1016/j.bbmt.2010.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 11/27/2022]
Abstract
Because survival with both chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT) approaches to high-risk pediatric acute lymphoblastic leukemia (ALL) generally improves through the years, regular comparisons of outcomes with either approach for a given indication are needed to decide when HSCT is indicated. Improvements in risk classification are allowing clinicians to identify patients at high risk for relapse early in their course of therapy. Whether patients defined as high risk by new methods will benefit from HSCT requires careful testing. Standardization and improvement of transplant approaches has led to equivalent survival outcomes with matched sibling and well-matched unrelated donors; however, survival using mismatched and haploidentical donors is generally worse. Trials comparing chemotherapy and HSCT must obtain sufficient data about therapy and stratify the analysis to assess the outcomes of best-chemotherapy with best-HSCT approaches.
Collapse
Affiliation(s)
- Michael A Pulsipher
- Primary Children's Medical Center, Division of Hematology/Blood and Marrow Transplantation, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
956
|
Loss of p19Arf in a Rag1(-/-) B-cell precursor population initiates acute B-lymphoblastic leukemia. Blood 2011; 118:544-53. [PMID: 21622646 DOI: 10.1182/blood-2010-09-305383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf(-/-)Rag1(-/-) mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1(+)CD19(+) precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34(+)CD19(+) population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans.
Collapse
|
957
|
Heltemes-Harris LM, Willette MJL, Ramsey LB, Qiu YH, Neeley ES, Zhang N, Thomas DA, Koeuth T, Baechler EC, Kornblau SM, Farrar MA. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2011; 208:1135-49. [PMID: 21606506 PMCID: PMC3173246 DOI: 10.1084/jem.20101947] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As STAT5 is critical for the differentiation, proliferation, and survival of progenitor B cells, this transcription factor may play a role in acute lymphoblastic leukemia (ALL). Here, we show increased expression of activated signal transducer and activator of transcription 5 (STAT5), which is correlated with poor prognosis, in ALL patient cells. Mutations in EBF1 and PAX5, genes critical for B cell development have also been identified in human ALL. To determine whether mutations in Ebf1 or Pax5 synergize with STAT5 activation to induce ALL, we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice heterozygous for Ebf1 or Pax5. Haploinsufficiency of either Pax5 or Ebf1 synergized with Stat5b-CA to rapidly induce ALL in 100% of the mice. The leukemic cells displayed reduced expression of both Pax5 and Ebf1, but this had little effect on most EBF1 or PAX5 target genes. Only a subset of target genes was deregulated; this subset included a large percentage of potential tumor suppressor genes and oncogenes. Further, most of these genes appear to be jointly regulated by both EBF1 and PAX5. Our findings suggest a model whereby small perturbations in a self-reinforcing network of transcription factors critical for B cell development, specifically PAX5 and EBF1, cooperate with STAT5 activation to initiate ALL.
Collapse
Affiliation(s)
- Lynn M Heltemes-Harris
- Department of Laboratory Medicine and Pathology, The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
958
|
Signaling proteins and transcription factors in normal and malignant early B cell development. BONE MARROW RESEARCH 2011; 2011:502751. [PMID: 22046564 PMCID: PMC3200079 DOI: 10.1155/2011/502751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
Abstract
B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.
Collapse
|
959
|
Hütter G, Kaiser M, Neumann M, Mossner M, Nowak D, Baldus CD, Gökbuget N, Hoelzer D, Thiel E, Hofmann WK. Epigenetic regulation of PAX5 expression in acute T-cell lymphoblastic leukemia. Leuk Res 2011; 35:614-9. [DOI: 10.1016/j.leukres.2010.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/11/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023]
|
960
|
Paolini S, Gazzola A, Sabattini E, Bacci F, Pileri S, Piccaluga PP. Pathobiology of acute lymphoblastic leukemia. Semin Diagn Pathol 2011; 28:124-134. [PMID: 21842698 DOI: 10.1053/j.semdp.2011.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present review, the authors described the pathobiological features of B- and T-ALL, which appear to be quite heterogeneous with regard to molecular pathogenesis. The last edition of the World Health Organization Classification considered this aspect by defining many entities based on genetic findings. This approach is not only important for prognostic stratification, but also in the near future will surely represent the basis for the definition of patient-specific therapeutic approaches. A striking example is Ph+ acute lymphoblastic leukemia (ALL), which until the advent of tyrosine kinase inhibitors (TKI) has been regarded as the most aggressive ALL. The use of imatinib, dasatinib, and possibly more recent inhibitors has dramatically changed the clinical scenario, offering new opportunities to patients, especially the elderly. Similarly, the use of FLT3 inhibitors in mixed lineage leukemia-positive cases, gamma-secretase inhibitors in T-ALL, novel TKI, and monoclonal antibodies may represent a successful approach in the future.
Collapse
Affiliation(s)
- Stefania Paolini
- Molecular Pathology Laboratory, Hematology Section, Department of Haematology and Oncology L. and A. Sernignoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
961
|
Dougherty MJ, Wilmoth DM, Tooke LS, Shaikh TH, Gai X, Hakonarson H, Biegel JA. Implementation of high resolution single nucleotide polymorphism array analysis as a clinical test for patients with hematologic malignancies. Cancer Genet 2011; 204:26-38. [PMID: 21356189 DOI: 10.1016/j.cancergencyto.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Single nucleotide polymorphism-based oligonucleotide arrays have been used as a research tool to detect genomic copy number changes and allelic imbalance in a variety of hematologic malignancies and solid tumors. The high resolution, genome-wide coverage, minimal DNA requirements, and relatively short turnaround time are advantageous for use in a clinical setting. We validated the Illumina HumanHap550 BeadChip array for clinical use by analyzing 127 pediatric leukemia and lymphoma samples that had previously been characterized by means of standard cytogenetic analysis and fluorescence in situ hybridization. A higher resolution Illumina HumanHap610 BeadChip array was ultimately used for clinical testing. To date, 180 samples from children with a suspected or confirmed hematologic malignancy have been analyzed. Of the 180 clinical samples, 130 (72%) bone marrow or lymphoma specimens had aberrations revealed by the array that were not seen in the karyotypes. These typically included deletions in genes associated with B- or T-cell malignancies, such as CDKN2A/B, PAX5, and IKZF1. There were also 75 regions of copy number neutral loss of heterozygosity (>5 Mb threshold) detected in 49 samples in this cohort, which could be categorized as constitutional or acquired abnormalities. On the basis of our experience in the last 2 years, we suggest that single nucleotide polymorphism arrays are a valuable addition to, but not a replacement for, standard cytogenetic approaches for hematologic malignancies.
Collapse
Affiliation(s)
- Margaret J Dougherty
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
962
|
Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood 2011; 118:192-204. [PMID: 21471527 DOI: 10.1182/blood-2010-12-324616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Host hematopoietically derived APCs play a vital role in the initiation of GVH responses. However, the APC autonomous molecular mechanisms that are critical for the induction of GVHD are not known. We report here that the Ikaros-Notch axis in host hematopoietically derived APCs regulates the severity of acute GVHD across multiple clinically relevant murine models of experimental bone marrow transplantation. In the present study, Ikaros deficiency (Ik(-/-)) limited to host hematopoietically derived APCs enhanced donor T-cell expansion and intensified acute GVHD, as determined by survival and other GVHD-specific parameters. The Ik(-/-) conventional CD8(+) and CD8(-)CD11c(+) dendritic cells (DCs), the most potent APCs, showed no increase in the expression of activation markers or in response to TLR stimulation compared with wild-type controls. However, Ik(-/-) DCs demonstrated an enhanced stimulation of allogeneic T cells. Deficiency of Ikaros in the conventional CD8(+) and CD8(-)CD11c(+) DCs was associated with an increase in Notch signaling, the blockade of which mitigated the enhanced in vitro and in vivo allostimulatory capacity. Therefore, the Ikaros-Notch axis is a novel pathway that modulates DC biology in general, and targeting this pathway in host hematopoietically derived APCs may reduce GVHD.
Collapse
|
963
|
Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J, Buetow KH, Pui CH, Baker SD, Brindle PK, Downing JR. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471:235-9. [PMID: 21390130 DOI: 10.1038/nature09727] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022]
Abstract
Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP, also known as CBP). The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the histone acetyltransferase domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
964
|
Tricoli JV, Seibel NL, Blair DG, Albritton K, Hayes-Lattin B. Unique characteristics of adolescent and young adult acute lymphoblastic leukemia, breast cancer, and colon cancer. J Natl Cancer Inst 2011; 103:628-35. [PMID: 21436065 DOI: 10.1093/jnci/djr094] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Each year in the United States, nearly 70 000 individuals between the ages of 15 and 40 years are diagnosed with cancer. Although overall cancer survival rates among pediatric and older adult patients have increased in recent decades, there has been little improvement in survival of adolescent and young adult (AYA) cancer patients since 1975 when collected data became adequate to evaluate this issue. In 2006, the AYA Oncology Progress Review Group made recommendations for addressing the needs of this population that were later implemented by the LIVESTRONG Young Adult Alliance. One of their overriding questions was whether the cancers seen in AYA patients were biologically different than the same cancers in adult and/or pediatric patients. On June 9-10, 2009, the National Cancer Institute (NCI) and the Lance Armstrong Foundation (LAF) convened a workshop in Bethesda, MD, entitled "Unique Characteristics of AYA Cancers: Focus on Acute Lymphocytic Leukemia (ALL), Breast Cancer and Colon Cancer" that aimed to examine the current state of basic and translational research on these cancers and to discuss the next steps to improve their prognosis and treatment.
Collapse
Affiliation(s)
- James V Tricoli
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 6130 Executive Blvd, Executive Plaza North, Rockville, MD 20852, USA.
| | | | | | | | | |
Collapse
|
965
|
ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood 2011; 117:2658-67. [DOI: 10.1182/blood-2010-03-275347] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Approximately 25% of childhood acute lymphoblastic leukemias carry the ETV6/RUNX1 fusion gene. Despite their excellent initial treatment response, up to 20% of patients relapse. To gain insight into the relapse mechanisms, we analyzed single nucleotide polymorphism arrays for DNA copy number aberrations (CNAs) in 18 matched diagnosis and relapse leukemias. CNAs were more abundant at relapse than at diagnosis (mean 12.5 vs 7.5 per case; P = .01) with 5.3 shared on average. Their patterns revealed a direct clonal relationship with exclusively new aberrations at relapse in only 21.4%, whereas 78.6% shared a common ancestor and subsequently acquired distinct CNA. Moreover, we identified recurrent, mainly nonoverlapping deletions associated with glucocorticoid-mediated apoptosis targeting the Bcl2 modifying factor (BMF) (n = 3), glucocorticoid receptor NR3C1 (n = 4), and components of the mismatch repair pathways (n = 3). Fluorescence in situ hybridization screening of additional 24 relapsed and 72 nonrelapsed ETV6/RUNX1-positive cases demonstrated that BMF deletions were significantly more common in relapse cases (16.6% vs 2.8%; P = .02). Unlike BMF deletions, which were always already present at diagnosis, NR3C1 and mismatch repair aberrations prevailed at relapse. They were all associated with leukemias, which poorly responded to treatment. These findings implicate glucocorticoid-associated drug resistance in ETV6/RUNX1-positive relapse pathogenesis and therefore might help to guide future therapies.
Collapse
|
966
|
Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 2011; 6:e17012. [PMID: 21386967 PMCID: PMC3046174 DOI: 10.1371/journal.pone.0017012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/18/2011] [Indexed: 02/08/2023] Open
Abstract
Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-2′-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p<0.001) rate being an independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL.
Collapse
|
967
|
Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469:362-7. [PMID: 21248843 DOI: 10.1038/nature09733] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/03/2010] [Indexed: 12/23/2022]
Abstract
Many tumours are composed of genetically diverse cells; however, little is known about how diversity evolves or the impact that diversity has on functional properties. Here, using xenografting and DNA copy number alteration (CNA) profiling of human BCR-ABL1 lymphoblastic leukaemia, we demonstrate that genetic diversity occurs in functionally defined leukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemia-initiating cell subclones. Reconstructing the subclonal genetic ancestry of several samples by CNA profiling demonstrated a branching multi-clonal evolution model of leukaemogenesis, rather than linear succession. For some patient samples, the predominant diagnostic clone repopulated xenografts, whereas in others it was outcompeted by minor subclones. Reconstitution with the predominant diagnosis clone was associated with more aggressive growth properties in xenografts, deletion of CDKN2A and CDKN2B, and a trend towards poorer patient outcome. Our findings link clonal diversity with leukaemia-initiating-cell function and underscore the importance of developing therapies that eradicate all intratumoral subclones.
Collapse
|
968
|
|
969
|
Schultz RA, Delioukina M, Gaal K, Bedell V, Smith DD, Forman SJ, McDaniel LD, Ballif BC, Shaffer LG, Slovak ML. Evaluation of chronic lymphocytic leukemia by BAC-based microarray analysis. Mol Cytogenet 2011; 4:4. [PMID: 21291569 PMCID: PMC3045370 DOI: 10.1186/1755-8166-4-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a highly variable disease with life expectancies ranging from months to decades. Cytogenetic findings play an integral role in defining the prognostic significance and treatment for individual patients. Results We have evaluated 25 clinical cases from a tertiary cancer center that have an established diagnosis of CLL and for which there was prior cytogenetic and/or fluorescence in situ hybridization (FISH) data. We performed microarray-based comparative genomic hybridization (aCGH) using a bacterial artificial chromosome (BAC)-based microarray designed for the detection of known constitutional genetic syndromes. In 15 of the 25 cases, aCGH detected all copy number imbalances identified by prior cytogenetic and/or FISH studies. For the majority of those not detected, the aberrations were present at low levels of mosaicism. Furthermore, for 15 of the 25 cases, additional abnormalities were detected. Four of those cases had deletions that mapped to intervals implicated in inherited predisposition to CLL. For most cases, aCGH was able to detect abnormalities present in as few as 10% of cells. Although changes in ploidy are not easily discernable by aCGH, results for two cases illustrate the detection of additional copy gains and losses present within a mosaic tetraploid cell population. Conclusions Our results illustrate the successful evaluation of CLL using a microarray optimized for the interrogation of inherited disorders and the identification of alterations with possible relevance to CLL susceptibility.
Collapse
Affiliation(s)
- Roger A Schultz
- Signature Genomics, 2820 N, Astor St,, Spokane, WA, 99207, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
970
|
Schwab CJ, Jones LR, Morrison H, Ryan SL, Yigittop H, Schouten JP, Harrison CJ. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2011; 49:1104-13. [PMID: 20815030 DOI: 10.1002/gcc.20818] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent genomic studies have shown that copy number abnormalities (CNA) of genes involved in lymphoid differentiation and cell cycle control are common in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We have evaluated Multiplex Ligation-dependent Probe Amplification (MLPA) on 43 BCP-ALL patients for the detection of the most common deletions among these genes and compared the results to those obtained by fluorescence in situ hybridization (FISH) and genomic quantitative PCR (qPCR). There was good correlation between methods for CDKN2A/B, IKZF1, and PAX5 deletions in the majority of cases and MLPA confirmed the presence of deletions within the PAR1 region in two of three cases identified by FISH. Small intragenic aberrations detected by MLPA, which were below the resolution of FISH for CDKN2A/B (n = 7), IKZF1 (n = 3), and PAX5 (n = 3) were confirmed by qPCR. MLPA and qPCR were unable to detect populations present at a low level (<20%) by FISH. In addition, although MLPA identified the presence of a deletion, it was unable to discern the presence of mixed cell populations which had been identified by FISH: CDKN2A/B (n = 3), IKZF1 (n = 1), PAX5 (n = 2), and PAR1 deletion (n = 1). Nevertheless, this study has demonstrated that MLPA is a robust technique for the reliable detection of CNA involving multiple targets in a single test and thus is ideal for rapid high throughput testing of large cohorts with a view to establishing incidence and prognostic significance.
Collapse
Affiliation(s)
- C J Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
971
|
How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Curr Opin Pediatr 2011; 23:34-40. [PMID: 21169835 DOI: 10.1097/mop.0b013e3283426260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review describes the recent advances in genomic profiling that have provided critical new insights into the biology of acute leukemia in children. RECENT FINDINGS Acute leukemia genomes commonly harbor submicroscopic gains and deletions of DNA which target key cellular pathways that influence leukemogenesis and the likelihood of treatment failure, particularly in acute lymphoblastic leukemia (ALL). Notably, genetic alterations targeting transcriptional regulators of lymphoid development are a hallmark of B-progenitor ALL, and alteration of specific genes in this pathway, such as IKZF1 (encoding IKAROS), are associated with high-risk ALL. Integrated genomic profiling has identified potential therapeutic targets in ALL, including aberrant cytokine receptor signaling mediated by rearrangements and mutation of CRLF2 and JAK2. Genome-wide association studies are also providing important insights into the role of inherited genetic variation and susceptibility to ALL. In contrast, genomic profiling of acute myeloid leukemia (AML) has thus far yielded fewer insights, but ongoing resequencing of leukemia genomes is uncovering novel mutations in both ALL and AML. SUMMARY Genomic profiling has identified important new genetic lesions that contribute to leukemogenesis. These findings will have important implications for the development of new diagnostic tests and treatment approaches in high-risk leukemia. Future studies will be increasingly reliant on comprehensive genomic sequencing to reveal the spectrum of genetic alterations in this disease, with the ultimate aim of improving the treatment outcome for leukemia patients.
Collapse
|
972
|
Pillozzi S, Masselli M, De Lorenzo E, Accordi B, Cilia E, Crociani O, Amedei A, Veltroni M, D'Amico M, Basso G, Becchetti A, Campana D, Arcangeli A. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood 2011; 117:902-914. [PMID: 21048156 DOI: 10.1182/blood-2010-01-262691] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone marrow mesenchymal cells (MSCs) can protect leukemic cells from chemotherapy, thus increasing their survival rate. We studied the potential molecular mechanisms underlying this effect in acute lymphoblastic leukemia (ALL) cells. Coculture of ALL cells with MSCs induced on the lymphoblast plasma membrane the expression of a signaling complex formed by hERG1 (human ether-à-go-go-related gene 1) channels, the β(1)-integrin subunit, and the chemokine receptor CXC chemokine receptor-4. The assembly of such a protein complex activated both the extracellular signal-related kinase 1/2 (ERK1/2) and the phosphoinositide 3-kinase (PI3K)/Akt prosurvival signaling pathways. At the same time, ALL cells became markedly resistant to chemotherapy-induced apoptosis. hERG1 channel function appeared to be important for both the initiation of prosurvival signals and the development of drug resistance, because specific channel blockers decreased the protective effect of MSCs. NOD/SCID mice engrafted with ALL cells and treated with channel blockers showed reduced leukemic infiltration and had higher survival rates. Moreover, hERG1 blockade enhanced the therapeutic effect produced by corticosteroids. Our findings provide a rationale for clinical testing of hERG1 blockers in the context of antileukemic therapy for patients with ALL.
Collapse
Affiliation(s)
- Serena Pillozzi
- Department of Experimental Pathology and Oncology, University of Firenze, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
973
|
Szczepanek J, Styczyński J, Haus O, Tretyn A, Wysocki M. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses. Arch Immunol Ther Exp (Warsz) 2011; 59:61-8. [PMID: 21246408 DOI: 10.1007/s00005-010-0110-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022]
Abstract
Over the last four decades the treatment of patients with newly diagnosed childhood acute lymphoblastic leukemia (ALL) has improved remarkably. However, still about 20% of children with ALL relapse despite risk-adapted polychemotherapy. The prognosis of relapsed ALL is relatively poor, even with modern aggressive chemotherapy. Identification of the biological and genetic mechanisms contributing to recurrence in patients with ALL is critical for the development of effective therapeutic strategies to treat refractory leukemic patients. Allogeneic hematopoietic stem-cell transplantation is the treatment of choice for many children with relapsed ALL. The gene expression profile obtained by microarray technology could provide important determinants of the drug response and clinical outcome in childhood ALL. Incorporation of the data on expression levels of newly identified genes into existing strategies of risk stratification might improve clinical management. Current microarray data show correlation of in vitro drug resistance with significant patterns of gene expression and explain clinical differences between early and late relapse. Genes involved in cell proliferation, self-renewal and differentiation, protein biosynthesis, carbohydrate metabolism, and DNA replication and repair are usually among those highly expressed in relapsed lymphoblasts. Current status and future perspectives of microarray data on gene expression and drug resistance profile in relapsed pediatric ALL are discussed in this review.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
974
|
Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29:551-65. [PMID: 21220611 DOI: 10.1200/jco.2010.30.7405] [Citation(s) in RCA: 623] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. METHODS A review of English literature on childhood acute leukemias from the past 5 years was performed. RESULTS Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targeted therapy, and immunotherapies promises to further advance the cure rates and improve quality of life of patients. CONCLUSION The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade.
Collapse
Affiliation(s)
- Ching-Hon Pui
- St Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
975
|
Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 2011; 109:777-87. [PMID: 21126650 DOI: 10.1016/s0929-6646(10)60123-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 01/26/2023] Open
Abstract
Recent progress in risk-adapted treatment for childhood acute lymphoblastic leukemia has secured 5-year event-free survival rates of approximately 80% and 5-year survival rates approaching 90%. With improved systemic and intrathecal chemotherapy, it is now feasible to omit safely in all patients prophylactic cranial irradiation, which was once a standard treatment. As high-resolution, genome-wide analyses of leukemic and normal host cells continue to identify novel subtypes of lymphoblastic leukemia and provide new insights into leukemogenesis, we can look forward to the time when all cases of this disease will be classified according to specific genetic abnormalities, some of which will yield "druggable" targets for more effective and less toxic treatments. Meanwhile, it is sobering to consider that a significant fraction of leukemia survivors will develop serious health problems within 30 years of their initial diagnosis. This underlines the need to introduce early countermeasures to reduce late therapy-related effects. The ultimate challenge is to gain a clear understanding of the factors that give rise to childhood leukemia in the first place, and enable preventive strategies to be devised and implemented.
Collapse
|
976
|
|
977
|
Katsura Y, Ohta I, Yoshida C, Ohtani H, Komeno T. Diffuse large B-cell lymphoma carrying both t(3 ; 7)(q27 ; p12) and t(8 ; 14)(q24 ; q32). Intern Med 2011; 50:905-8. [PMID: 21498940 DOI: 10.2169/internalmedicine.50.4860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a 60-year-old man with diffuse large B-cell lymphoma harboring both t(3 ; 7)(q27 ; p12) and t(8 ; 14)(q24 ; q32). Although he received six courses of conventional combination chemotherapy plus rituximab, early relapse occurred. Four courses of an intensive salvage regimen and high-dose chemotherapy with autologous peripheral blood stem cell transplantation were performed. The patient has remained in complete remission for over 24 months. This case is noteworthy because both genetic abnormalities are implicated in lymphomagenesis.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 8/genetics
- DNA-Binding Proteins/genetics
- Genes, myc
- Humans
- Ikaros Transcription Factor/genetics
- Karyotyping
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Middle Aged
- Oncogene Fusion
- Peripheral Blood Stem Cell Transplantation
- Proto-Oncogene Proteins c-bcl-6
- Remission Induction
- Rituximab
- Salvage Therapy
- Translocation, Genetic
- Transplantation, Autologous
Collapse
Affiliation(s)
- Yukitaka Katsura
- Department of Hematology, Mito Medical Center, National Hospital Organization, Japan
| | | | | | | | | |
Collapse
|
978
|
de Leeuw N, Hehir-Kwa JY, Simons A, Geurts van Kessel A, Smeets DF, Faas BHW, Pfundt R. SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control. Cytogenet Genome Res 2011; 135:212-21. [PMID: 21934286 DOI: 10.1159/000331273] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- N de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
979
|
Mullighan CG. Single nucleotide polymorphism microarray analysis of genetic alterations in cancer. Methods Mol Biol 2011; 730:235-58. [PMID: 21431646 DOI: 10.1007/978-1-61779-074-4_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The identification of structural genetic alterations, including DNA amplifications, deletions, and loss of heterozygosity (LOH), using single nucleotide polymorphism (SNP) microarrays has provided important insights into the pathogenesis of a number of hematologic malignancies. Currently available SNP arrays comprise over a million SNP and copy number oligonucleotide probes that interrogate the genome at sub-kilobase resolution. The accurate detection of DNA copy number abnormalities and LOH is critically dependent on the use of high-quality DNA, the use of matched reference samples wherever possible, optimal normalization of raw microarray data, and computational algorithms to detect copy number alterations sensitively and robustly. This chapter provides methods and guidelines for preparing samples, processing and analyzing data, and validation of novel lesions. Specific examples are provided for Affymetrix SNP arrays in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
980
|
Hunger SP. Tyrosine kinase inhibitor use in pediatric Philadelphia chromosome-positive acute lymphoblastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:361-365. [PMID: 22160058 DOI: 10.1182/asheducation-2011.1.361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Until recently, pediatric Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) was associated with an extremely poor outcome when treated with chemotherapy alone, and only modest survival benefits were obtained with the widespread use of hematopoietic stem cell transplantation (HSCT). The development of first-generation (imatinib) and second-generation (dasatinib and nilotinib) tyrosine kinase inhibitors (TKIs) that target the BCR-ABL1 fusion protein produced by the Ph chromosome revolutionized the treatment of chronic myelogenous leukemia (CML). The Children's Oncology Group (COG) AALL0031 trial showed that the addition of imatinib to intensive chemotherapy did not cause increased toxicity and resulted in 3-year event-free survival rates that were more than double those of historical control data from the pre-imatinib era. These findings create a new paradigm for integrating molecularly targeted agents with conventional chemotherapy and call for a reassessment of the routine use of HSCT for children and adolescents with Ph(+) ALL. Second-generation TKIs have theoretical advantages over imatinib, and are now being tested in Ph(+) ALL. The focus of contemporary trials is to define the optimal use of chemotherapy, HSCT, and TKI in Ph(+) ALL. In the coming years, it is anticipated that additional agents will become available to potentiate TKI therapy and/or circumvent TKI resistance in Ph(+) ALL. Recent genomic studies have identified a subtype of high-risk pediatric B-cell-precursor ALL with a gene-expression profile similar to that of Ph(+) ALL, suggestive of active kinase signaling. Many of these Ph-like ALL cases harbor chromosome rearrangements and mutations that dysregulate cytokine receptor and kinase signaling, and these leukemias may also be candidates for TKI therapy.
Collapse
Affiliation(s)
- Stephen P Hunger
- Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
981
|
Xie J, Cai TT, Maris J, Li H. Optimal False Discovery Rate Control for Dependent Data. STATISTICS AND ITS INTERFACE 2011; 4:417-430. [PMID: 23378870 PMCID: PMC3559028 DOI: 10.4310/sii.2011.v4.n4.a1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper considers the problem of optimal false discovery rate control when the test statistics are dependent. An optimal joint oracle procedure, which minimizes the false non-discovery rate subject to a constraint on the false discovery rate is developed. A data-driven marginal plug-in procedure is then proposed to approximate the optimal joint procedure for multivariate normal data. It is shown that the marginal procedure is asymptotically optimal for multivariate normal data with a short-range dependent covariance structure. Numerical results show that the marginal procedure controls false discovery rate and leads to a smaller false non-discovery rate than several commonly used p-value based false discovery rate controlling methods. The procedure is illustrated by an application to a genome-wide association study of neuroblastoma and it identifies a few more genetic variants that are potentially associated with neuroblastoma than several p-value-based false discovery rate controlling procedures.
Collapse
Affiliation(s)
- Jichun Xie
- Department of Statistics, The Fox School of Business and Management, Temple University,
| | | | | | | |
Collapse
|
982
|
Collins-Underwood JR, Mullighan CG. Genetic Alterations Targeting Lymphoid Development in Acute Lymphoblastic Leukemia. Curr Top Dev Biol 2011; 94:171-96. [DOI: 10.1016/b978-0-12-380916-2.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
983
|
Postrelapse survival in childhood acute lymphoblastic leukemia is independent of initial treatment intensity: a report from the Children's Oncology Group. Blood 2010; 117:3010-5. [PMID: 21193696 DOI: 10.1182/blood-2010-07-294678] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While intensification of therapy has improved event-free survival (EFS) and survival in newly diagnosed children with acute lymphoblastic leukemia (ALL), postrelapse outcomes remain poor. It might be expected that patients relapsing after inferior initial therapy would have a higher retrieval rate than after superior therapy. In the Children's Oncology Group Study CCG-1961, significantly superior EFS and survival were achieved with an augmented (stronger) versus standard intensity regimen of postinduction intensification (PII) for children with newly diagnosed high-risk ALL and rapid day 7 marrow response (EFS/survival 81.2%/88.7% vs 71.7%/83.4%, respectively). This provided an opportunity to evaluate postrelapse survival (PRS) in 272 relapsed patients who had received randomly allocated initial treatment with augmented or standard intensity PII. As expected, PRS was worse for early versus late relapse, marrow versus extramedullary site, adolescent versus younger age and T versus B lineage. However, no difference in 3-year PRS was detected for having received augmented versus standard intensity PII (36.4% ± 5.7% vs 39.2% ± 4.1%; log rank P = .72). Similar findings were noted within subanalyses by timing and site of relapse, age, and immunophenotype. These findings provide insight into mechanisms of relapse in ALL, and are consistent with emergence of a resistant subclone that has acquired spontaneous mutations largely independent of initial therapy. This study is registered at www.clinicaltrials.gov as NCT00002812.
Collapse
|
984
|
Mullighan CG. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice. Clin Cancer Res 2010; 17:396-400. [PMID: 21149616 DOI: 10.1158/1078-0432.ccr-10-1203] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood malignancy and remains a leading cause of death in children and young adults. Current therapeutic approaches involve intensive combination chemotherapy, which fails in up to one quarter of patients. New treatment approaches directed against rational therapeutic targets are required. Recent genomic profiling of ALL has identified several genetic alterations associated with a high risk of treatment failure. Deletion or sequence mutation of the lymphoid transcription factor gene IKZF1 (IKAROS) is associated with a high rate of leukemic relapse, and testing for IKZF1 alterations at diagnosis may aid risk stratification. A subset of B-ALL patients with IKZF1 alterations have a transcriptional profile similar to BCR-ABL1-positive ALL, and these patients commonly have novel rearrangements and mutations resulting in aberrant cytokine receptor signaling and activation of kinase signaling cascades, including rearrangement of CRLF2 and activating mutations of Janus kinases (JAK1 and JAK2). JAK inhibitor therapy is under investigation in children with relapsed and refractory malignancies, including leukemia.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
985
|
MacConaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol 2010; 28:5219-28. [PMID: 20975063 PMCID: PMC3020694 DOI: 10.1200/jco.2009.27.4944] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 08/11/2010] [Indexed: 01/06/2023] Open
Abstract
Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empowered, in large part, through disruptive technological innovations that render complete cancer genome characterization feasible on a large scale. This article highlights cardinal biologic and clinical insights gleaned from systematic cancer genome characterization. We also discuss how the convergence of cancer genome biology, technology, and targeted therapeutics articulates a cohesive framework for the advent of personalized cancer medicine.
Collapse
Affiliation(s)
- Laura E. MacConaill
- From the Center for Cancer Genome Discovery; Dana-Farber Cancer Institute and Harvard Medical School, Boston; and The Broad Institute, Cambridge, MA
| | - Levi A. Garraway
- From the Center for Cancer Genome Discovery; Dana-Farber Cancer Institute and Harvard Medical School, Boston; and The Broad Institute, Cambridge, MA
| |
Collapse
|
986
|
Abstract
Abstract
During the last decade, increasing attention has been paid to a unique group of patients with acute lymphoblastic leukemia (ALL) who lie at the crossroad of therapeutic care by pediatric and adult hematologists/oncologists. ALL is a disease that affects infants, children, adolescents, and adult patients. With current therapies, the vast majority of children with ALL are now long-term survivors; unfortunately, the same good results have not yet been obtained for adults with ALL. This review will describe current controversies surrounding the treatment of adolescents and young adults with ALL—a group who finds themselves in the transition from “pediatric” to “adult” treatment approaches. The review focuses on recent insights into disease biology, prognostic factors, and treatment outcomes that have led to a series of prospective clinical trials specifically designed for adolescents and younger adults (AYAs) with ALL. These trials have been designed to provide important new clinical, psychosocial, and biological insights, and to further improve the survival of this challenging and unique group of patients.
Collapse
|
987
|
Bacher U, Kohlmann A, Haferlach T. Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies. Cancer Treat Rev 2010; 36:637-46. [DOI: 10.1016/j.ctrv.2010.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/09/2010] [Accepted: 05/10/2010] [Indexed: 01/05/2023]
|
988
|
Waanders E, van der Velden VHJ, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V, Veerman AJ, van Kessel AG, Hoogerbrugge PM, Kuiper RP, van Dongen JJM. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2010; 25:254-8. [PMID: 21102428 DOI: 10.1038/leu.2010.275] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Response to therapy as determined by minimal residual disease (MRD) is currently used for stratification in treatment protocols for pediatric acute lymphoblastic leukemia (ALL). However, the large MRD-based medium risk group (MRD-M; 50-60% of the patients) harbors many relapses. We analyzed MRD in 131 uniformly treated precursor-B-ALL patients and evaluated whether combined MRD and IKZF1 (Ikaros zinc finger-1) alteration status can improve risk stratification. We confirmed the strong prognostic significance of MRD classification, which was independent of IKZF1 alterations. Notably, 8 of the 11 relapsed cases in the large MRD-M group (n=81; 62%) harbored an IKZF1 alteration. Integration of both MRD and IKZF1 status resulted in a favorable outcome group (n=104; 5 relapses) and a poor outcome group (n=27; 19 relapses), and showed a stronger prognostic value than each of the established risk factors alone (hazard ratio (95%CI): 24.98 (8.29-75.31)). Importantly, whereas MRD and IKZF1 status alone identified only 46 and 54% of the relapses, respectively, their integrated use allowed prediction of 79% of all the relapses with 93% specificity. Because of the unprecedented sensitivity in upfront relapse prediction, the combined parameters have high potential for future risk stratification, particularly for patients originally classified as non-high risk, such as the large group of MRD-M patients.
Collapse
Affiliation(s)
- E Waanders
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Radboud University Centre of Oncology and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
989
|
Abstract
AbstractThe Philadelphia chromosome is present in approximately 20% to 30% of adults with acute lymphoblastic leukemia (ALL). The poor prognosis of this relatively uncommon acute leukemia has led to the rapid adoption of treatment strategies such as unrelated donor hematopoietic stem cell transplant and tyrosine kinase inhibitors into clinical practice, despite a relative paucity of randomized clinical trials. Recently, there has been a surge of interest in the underlying biology of ALL. In combination with an accumulation of more mature clinical study data in Philadelphia-positive ALL, it is increasingly possible to make more rational and informed treatment choices for patients of all ages. In this article, I review available data and indicate how I personally interpret current evidence to make pragmatic treatment choices with my patients, outside of clinical trials. My strongest recommendation is that all physicians who are treating this rare disease actively seek appropriate clinical trials for their patients wherever possible.
Collapse
|
990
|
A pathway-based gene signature correlates with therapeutic response in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Mod Pathol 2010; 23:1524-34. [PMID: 20729815 DOI: 10.1038/modpathol.2010.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biomarkers to predict response to therapy in adults with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) are not yet established. In this study, we performed a meta-analysis of earlier genome-wide gene expression studies to identify pathway-based genes that are associated with therapeutic response. The predictive power of these genes was validated by transcript profiling in diagnostic bone marrow samples from Ph+ ALL patients using a quantitative real-time PCR array. Gene expression was correlated with cytogenetic and molecular characteristics, including presence of ABL1 mutations and IKZF1 deletion. A total of 43 de novo Ph+ ALL patients treated uniformly with tyrosine kinase inhibitors combined with chemotherapy were selected to validate 46 identified genes. A 9-gene signature was established to distinguish optimal responders from patients with persistent residual disease and early molecular recurrence. The signature was subsequently validated with 87% predictive accuracy in an independent validation set of patients. When initially optimal responders relapsed, their gene expression patterns also shifted. Optimal responders showed upregulation of genes involved in proliferation and apoptosis pathways, whereas poor responders had higher expression of genes that facilitate tumor cell survival in hypoxic conditions as well as development of drug resistance. This unique 9-gene signature may better enable stratification of patients to proper therapeutic regimens and provides new insights into mechanisms of Ph+ ALL response to therapy.
Collapse
|
991
|
Paietta E. Surrogate marker profiles for genetic lesions in acute leukemias. Best Pract Res Clin Haematol 2010; 23:359-68. [PMID: 21112035 DOI: 10.1016/j.beha.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basic hypothesis of surrogate marker profiles is that individual genetic lesions result in characteristic distortions of the cellular phenotype with some predictable consistency that can be exploited by sophisticated immunophenotyping. While cytogenetic and molecular aberrancies currently are accepted prognostic predictors in acute leukemias, single antigen expression and even antigenic profiles rarely impact on prognosis. However, increasingly, phenotypes are delineated which can serve as surrogates for underlying genetic aberrations of clinical importance. This development is of particular significance as antileukemic therapy becomes available that targets any component of the disturbed molecular pathways associated with these genetic lesions. This chapter will focus on established surrogate marker profiles, such as those for PML/RARα, AML1/ETO, FLT3-gene mutated acute lymphocytic leukemia (ALL), and BCR/ABL(POS) ALL. As the list of therapeutic targets grows, the role of surrogate antigen profiles will grow, as they can predict for the efficacy of targeted approaches in lieu of expensive, time-consuming and not always accessible genetic analyses.
Collapse
Affiliation(s)
- Elisabeth Paietta
- Montefiore Medical Center-North Division, Immunology Laboratory, Cancer Center, 600 East 233rd Street, Bronx, NY 10466, USA.
| |
Collapse
|
992
|
Immunologic minimal residual disease detection in acute lymphoblastic leukemia: a comparative approach to molecular testing. Best Pract Res Clin Haematol 2010; 23:347-58. [PMID: 21112034 DOI: 10.1016/j.beha.2010.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The generation of antisera directed against leukocyte differentiation antigens opened the possibility of studying minimal residual disease (MRD) in patients with acute lymphoblastic leukemia (ALL). During the three decades that followed the pioneering studies in this field, great progress has been made in the development of a wide array of monoclonal antibodies and of flow cytometric techniques for rare event detection. This advance was accompanied by an increasingly greater understanding of the immunophenotypic features of leukemic and normal lymphoid cells, and of the antigenic differences that make MRD studies possible. In parallel, molecular methods for MRD detection were established. The systematic application of immunologic and molecular techniques to study MRD in clinical samples has demonstrated the clinical significance of MRD in patients, leading to the use of MRD to regulate treatment intensity in many contemporary protocols. In this article, we discuss methodologic issues related to the immunologic monitoring of MRD and the evidence supporting its clinical significance, and compare the advantages and limitations of this approach to those of molecular monitoring of MRD.
Collapse
|
993
|
Abstract
T cell precursor malignancies may present as T-lymphoblastic lymphoma (T-LBL) with marked enlargement of lymph nodes or acute T-lymphoblastic leukemia (T-ALL) with little lymph node enlargement. In this issue of Cancer Cell, Feng et al. show that dysregulation of BCL2, AKT signaling, and cell adhesion pathways are hallmarks of T-LBL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
994
|
Merkenschlager M. Ikaros in immune receptor signaling, lymphocyte differentiation, and function. FEBS Lett 2010; 584:4910-4. [DOI: 10.1016/j.febslet.2010.09.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 12/18/2022]
|
995
|
Genetic variation and the risk of acute lymphoblastic leukemia. Leuk Res 2010; 34:1269-70. [DOI: 10.1016/j.leukres.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 11/18/2022]
|
996
|
Campana D. Progress of minimal residual disease studies in childhood acute leukemia. Curr Hematol Malig Rep 2010; 5:169-76. [PMID: 20467922 DOI: 10.1007/s11899-010-0056-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Submorphologic (ie, minimal) residual disease (MRD) can be monitored in virtually all children and adolescents with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) using methods such as flow cytometric detection of leukemic immunophenotypes or polymerase chain reaction amplification of fusion transcripts, gene mutations, and clonal rearrangements of antigen-receptor genes. Numerous studies have demonstrated the clinical importance of measuring MRD, spurring the design of clinical trials in which MRD is used for risk assignment and treatment selection. Emerging results from these trials suggest that the adverse prognostic impact of low levels of MRD during the early phases of therapy can be diminished by treatment intensification. This article discusses the methods used for detecting MRD in childhood AML and ALL, the data obtained in studies correlating MRD with treatment outcome, the results of the initial trials using MRD, and the practical aspects related to the design of MRD-based clinical studies.
Collapse
Affiliation(s)
- Dario Campana
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
997
|
Collins-Underwood JR, Mullighan CG. Genomic profiling of high-risk acute lymphoblastic leukemia. Leukemia 2010; 24:1676-85. [PMID: 20739952 DOI: 10.1038/leu.2010.177] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease comprising multiple subtypes with different genetic alterations and responses to therapy. Recent genome-wide profiling studies of ALL have identified a number of novel genetic alterations that target key cellular pathways in lymphoid growth and differentiation and are associated with treatment outcome. Notably, genetic alteration of the lymphoid transcription factor gene IKZF1 is a hallmark of multiple subtypes of ALL with poor prognosis, including BCR-ABL1-positive lymphoid leukemia and a subset of 'BCR-ABL1-like' ALL cases that, in addition to IKZF1 alteration, harbor genetic mutations resulting in aberrant lymphoid cytokine receptor signaling, including activating mutations of Janus kinases and rearrangement of cytokine receptor-like factor 2 (CRLF2). Recent insights from genome-wide profiling studies of B-progenitor ALL and the potential for new therapeutic approaches in high-risk disease are discussed.
Collapse
Affiliation(s)
- J R Collins-Underwood
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
998
|
Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 2010; 116:4874-84. [PMID: 20699438 DOI: 10.1182/blood-2009-08-239681] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To resolve the genetic heterogeneity within pediatric high-risk B-precursor acute lymphoblastic leukemia (ALL), a clinically defined poor-risk group with few known recurring cytogenetic abnormalities, we performed gene expression profiling in a cohort of 207 uniformly treated children with high-risk ALL. Expression profiles were correlated with genome-wide DNA copy number abnormalities and clinical and outcome features. Unsupervised clustering of gene expression profiling data revealed 8 unique cluster groups within these high-risk ALL patients, 2 of which were associated with known chromosomal translocations (t(1;19)(TCF3-PBX1) or MLL), and 6 of which lacked any previously known cytogenetic lesion. One unique cluster was characterized by high expression of distinct outlier genes AGAP1, CCNJ, CHST2/7, CLEC12A/B, and PTPRM; ERG DNA deletions; and 4-year relapse-free survival of 94.7% ± 5.1%, compared with 63.5% ± 3.7% for the cohort (P = .01). A second cluster, characterized by high expression of BMPR1B, CRLF2, GPR110, and MUC4; frequent deletion of EBF1, IKZF1, RAG1-2, and IL3RA-CSF2RA; JAK mutations and CRLF2 rearrangements (P < .0001); and Hispanic ethnicity (P < .001) had a very poor 4-year relapse-free survival (21.0% ± 9.5%; P < .001). These studies reveal striking clinical and genetic heterogeneity in high-risk ALL and point to novel genes that may serve as new targets for diagnosis, risk classification, and therapy.
Collapse
|
999
|
Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, Izraeli S. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfürt-Münster study group. Br J Haematol 2010; 151:132-42. [DOI: 10.1111/j.1365-2141.2010.08314.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1000
|
Izraeli S. Application of genomics for risk stratification of childhood acute lymphoblastic leukaemia: from bench to bedside? Br J Haematol 2010; 151:119-31. [DOI: 10.1111/j.1365-2141.2010.08312.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|