1051
|
Zhong R, Liu L, Tian Y, Wang Y, Tian J, Zhu BB, Chen W, Qian JM, Zou L, Xiao M, Shen N, Yang H, Lou J, Qiu Q, Ke JT, Lu XH, Wang ZL, Song W, Zhang T, Li H, Wang L, Miao XP. Genetic variant in SWI/SNF complexes influences hepatocellular carcinoma risk: a new clue for the contribution of chromatin remodeling in carcinogenesis. Sci Rep 2014; 4:4147. [PMID: 24556940 PMCID: PMC3930892 DOI: 10.1038/srep04147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodeling has been newly established as an important cancer genome characterization and recent exome and whole-genome sequencing studies of hepatocellular carcinoma (HCC) showed that recurrent inactivating mutations in SWI/SNF subunits involved in the molecular basis of hepatocarcinogenesis. To test the hypothesis that genetic variants in the key subunits of SWI/SNF complexes may contribute to HCC susceptibility, we systematically assessed associations of genetic variants in SWI/SNF complexes with HCC risk using a two-staged case-control study in Chinese population. A set of 24 single nucleotide polymorphisms (SNPs) in SWI/SNF complexes were examined in stage 1 with 502 HCC patients and 487 controls and three promising SNPs (SMARCA4 rs11879293, rs2072382 and SMARCB1 rs2267032) were further genotyped in stage 2 comprising 501 cases and 545 controls for validation. SMARCA4 rs11879293 presented consistently significant associations with the risk of HCC at both stages, with an OR of 0.73 (95% CI: 0.62-0.87) using additive model in combined analysis. Moreover, the decreased risk of HCC associated with SMARCA4 rs11879293 AG/AA was more evident among HBsAg positive individuals (OR = 0.47, 95% CI: 0.27-0.80) in combined analysis. The study highlighted the potential role of the SWI/SNF complexes in conferring susceptibility to HCC, especially modified HCC risk by HBV infection.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Liu
- Guangdong Key Lab of Molecular Epidemiology and Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Tian
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Jing Tian
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bei-bei Zhu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-ming Qian
- Division of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Peking Union Medical College, Beijing
| | - Li Zou
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Xiao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Na Shen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Yang
- Division of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Peking Union Medical College, Beijing
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Qiu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jun-tao Ke
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing-hua Lu
- Division of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Peking Union Medical College, Beijing
| | - Zhen-ling Wang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Song
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ti Zhang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao-ping Miao
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
1052
|
Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl Acad Sci U S A 2014; 111:3128-33. [PMID: 24520176 DOI: 10.1073/pnas.1316793111] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancer-selective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.
Collapse
|
1053
|
Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming. Cell Tissue Res 2014; 356:575-84. [PMID: 24496512 DOI: 10.1007/s00441-013-1791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
ATP-dependent BAF chromatin remodeling complexes play an essential role in the maintenance of the gene expression program by regulating the structure of chromatin. There is increasing evidence that BAF complexes based on the alternative ATPase subunits, Brg1 and Brm, control the differentiation of neural stem cells (NSCs) to generate distinct neural cell types and modulate trans-differentiation between cell types. The BAF complexes have dedicated functions at different stages of neural differentiation that appear to arise by combinatorial assembly of their subunits. Furthermore, the differentiation of NSCs is regulated by the tight interactions between the BAF chromatin remodeling complex and the transcriptional machinery. Here, we review recent insights into the functional interaction between BAF complexes and various transcription factors (TFs) in neural differentiation and cellular reprogramming.
Collapse
|
1054
|
Hu J, Tzeng JY. Integrative gene set analysis of multi-platform data with sample heterogeneity. ACTA ACUST UNITED AC 2014; 30:1501-7. [PMID: 24489370 DOI: 10.1093/bioinformatics/btu060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MOTIVATION Gene set analysis is a popular method for large-scale genomic studies. Because genes that have common biological features are analyzed jointly, gene set analysis often achieves better power and generates more biologically informative results. With the advancement of technologies, genomic studies with multi-platform data have become increasingly common. Several strategies have been proposed that integrate genomic data from multiple platforms to perform gene set analysis. To evaluate the performances of existing integrative gene set methods under various scenarios, we conduct a comparative simulation analysis based on The Cancer Genome Atlas breast cancer dataset. RESULTS We find that existing methods for gene set analysis are less effective when sample heterogeneity exists. To address this issue, we develop three methods for multi-platform genomic data with heterogeneity: two non-parametric methods, multi-platform Mann-Whitney statistics and multi-platform outlier robust T-statistics, and a parametric method, multi-platform likelihood ratio statistics. Using simulations, we show that the proposed multi-platform Mann-Whitney statistics method has higher power for heterogeneous samples and comparable performance for homogeneous samples when compared with the existing methods. Our real data applications to two datasets of The Cancer Genome Atlas also suggest that the proposed methods are able to identify novel pathways that are missed by other strategies. AVAILABILITY AND IMPLEMENTATION http://www4.stat.ncsu.edu/∼jytzeng/Software/Multiplatform_gene_set_analysis/
Collapse
Affiliation(s)
- Jun Hu
- Bioinformatics Research Center, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA, Division of Bioinformatics, Omicsoft Inc., 200 Cascade Pointe Lane, Suite 101, Cary, NC 27513, USA, Department of Statistics, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA and Department of Statistics, National Cheng-Kung University, No.1, University Road, Tainan 701, TaiwanBioinformatics Research Center, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA, Division of Bioinformatics, Omicsoft Inc., 200 Cascade Pointe Lane, Suite 101, Cary, NC 27513, USA, Department of Statistics, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA and Department of Statistics, National Cheng-Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA, Division of Bioinformatics, Omicsoft Inc., 200 Cascade Pointe Lane, Suite 101, Cary, NC 27513, USA, Department of Statistics, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA and Department of Statistics, National Cheng-Kung University, No.1, University Road, Tainan 701, TaiwanBioinformatics Research Center, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA, Division of Bioinformatics, Omicsoft Inc., 200 Cascade Pointe Lane, Suite 101, Cary, NC 27513, USA, Department of Statistics, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA and Department of Statistics, National Cheng-Kung University, No.1, University Road, Tainan 701, TaiwanBioinformatics Research Center, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA, Division of Bioinformatics, Omicsoft Inc., 200 Cascade Pointe Lane, Suite 101, Cary, NC 27513, USA, Department of Statistics, North Carolina State University, Ricks Hall, 1 Lampe Dr., Raleigh, NC 27607, USA and Department of Statistics, National Cheng-Kung University, No.1, University Road, Tainan 701, Taiwan
| |
Collapse
|
1055
|
Chen Y, Jacquemin T, Zhang S, Jiang R. Prioritizing protein complexes implicated in human diseases by network optimization. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 1:S2. [PMID: 24565064 PMCID: PMC4080363 DOI: 10.1186/1752-0509-8-s1-s2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The detection of associations between protein complexes and human inherited diseases is of great importance in understanding mechanisms of diseases. Dysfunctions of a protein complex are usually defined by its member disturbance and consequently result in certain diseases. Although individual disease proteins have been widely predicted, computational methods are still absent for systematically investigating disease-related protein complexes. Results We propose a method, MAXCOM, for the prioritization of candidate protein complexes. MAXCOM performs a maximum information flow algorithm to optimize relationships between a query disease and candidate protein complexes through a heterogeneous network that is constructed by combining protein-protein interactions and disease phenotypic similarities. Cross-validation experiments on 539 protein complexes show that MAXCOM can rank 382 (70.87%) protein complexes at the top against protein complexes constructed at random. Permutation experiments further confirm that MAXCOM is robust to the network structure and parameters involved. We further analyze protein complexes ranked among top ten for breast cancer and demonstrate that the SWI/SNF complex is potentially associated with breast cancer. Conclusions MAXCOM is an effective method for the discovery of disease-related protein complexes based on network optimization. The high performance and robustness of this approach can facilitate not only pathologic studies of diseases, but also the design of drugs targeting on multiple proteins.
Collapse
|
1056
|
Song S, Walter V, Karaca M, Li Y, Bartlett CS, Smiraglia DJ, Serber D, Sproul CD, Plass C, Zhang J, Hayes DN, Zheng Y, Weissman BE. Gene silencing associated with SWI/SNF complex loss during NSCLC development. Mol Cancer Res 2014; 12:560-70. [PMID: 24445599 DOI: 10.1158/1541-7786.mcr-13-0427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non-small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. IMPLICATIONS Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development.
Collapse
Affiliation(s)
- Shujie Song
- Lineberger Cancer Center, Room 32-048, University of North Carolina, Chapel Hill, NC 27599-7295.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1057
|
Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol 2014; 34:1136-44. [PMID: 24421395 DOI: 10.1128/mcb.01372-13] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4 mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4 mutant cell lines and plays essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4 mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the nonessential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.
Collapse
|
1058
|
Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A, Wisinski KB, Huang W, Cai W, Pike JW, Yuan M, Ahlquist P, Xu W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 2014; 25:21-36. [PMID: 24434208 PMCID: PMC4004525 DOI: 10.1016/j.ccr.2013.12.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/29/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a coactivator for various cancer-relevant transcription factors, is overexpressed in breast cancer. To elucidate the functions of CARM1 in tumorigenesis, we knocked out CARM1 from several breast cancer cell lines using Zinc-Finger Nuclease technology, which resulted in drastic phenotypic and biochemical changes. The CARM1 KO cell lines enabled identification of CARM1 substrates, notably the SWI/SNF core subunit BAF155. Methylation of BAF155 at R1064 was found to be an independent prognostic biomarker for cancer recurrence and to regulate breast cancer cell migration and metastasis. Furthermore, CARM1-mediated BAF155 methylation affects gene expression by directing methylated BAF155 to unique chromatin regions (e.g., c-Myc pathway genes). Collectively, our studies uncover a mechanism by which BAF155 acquires tumorigenic functions via arginine methylation.
Collapse
Affiliation(s)
- Lu Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zibo Zhao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sandeep Saha
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Huang
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
1059
|
Abstract
In this issue of Cancer Cell, Wang and colleagues report that CARM1, a protein arginine methyltransferase, specifically methylates BAF155/SMARCC1, a core subunit of the SWI/SNF chromatin remodeling/tumor suppressor complex. This modification facilitates the targeting of BAF155 to genes of the c-Myc pathway and enhances breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Charles W M Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
1060
|
Cajuso T, Hänninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pitkänen E, Ristolainen H, Kaasinen E, Taipale M, Taipale J, Böhm J, Renkonen-Sinisalo L, Mecklin JP, Järvinen H, Tuupanen S, Kilpivaara O, Vahteristo P. Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer 2014; 135:611-23. [PMID: 24382590 DOI: 10.1002/ijc.28705] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
ARID1A has been identified as a novel tumor suppressor gene in ovarian cancer and subsequently in various other tumor types. ARID1A belongs to the ARID domain containing gene family, which comprises of 15 genes involved, for example, in transcriptional regulation, proliferation and chromatin remodeling. In this study, we used exome sequencing data to analyze the mutation frequency of all the ARID domain containing genes in 25 microsatellite unstable (MSI) colorectal cancers (CRCs) as a first systematic effort to characterize the mutation pattern of the whole ARID gene family. Genes which fulfilled the selection criteria in this discovery set (mutations in at least 4/25 [16%] samples, including at least one nonsense or splice site mutation) were chosen for further analysis in an independent validation set of 21 MSI CRCs. We found that in addition to ARID1A, which was mutated in 39% of the tumors (18/46), also ARID1B (13%, 6/46), ARID2 (13%, 6/46) and ARID4A (20%, 9/46) were frequently mutated. In all these genes, the mutations were distributed along the entire length of the gene, thus distinguishing them from typical MSI target genes previously described. Our results indicate that in addition to ARID1A, other members of the ARID gene family may play a role in MSI CRC.
Collapse
Affiliation(s)
- Tatiana Cajuso
- Department of Medical Genetics Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1061
|
Abstract
Genes encoding subunits of the SWI/SNF chromatin-remodeling complex constitute, collectively, one of the most frequently mutated targets in cancer. Although mutations in SWI/SNF genes are uncommon in prostate cancer, a new study shows that SChLAP1, a long noncoding RNA frequently expressed in aggressive prostate tumors, drives cancer by directly disrupting SNF5, a core subunit of the SWI/SNF complex.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, the Division of Hematology-Oncology, Boston Children's Hospital and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
1062
|
Guetzoyan L, Ingham RJ, Nikbin N, Rossignol J, Wolling M, Baumert M, Burgess-Brown NA, Strain-Damerell CM, Shrestha L, Brennan PE, Fedorov O, Knapp S, Ley SV. Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00007b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel technologies were developed and used for the synthesis and evaluation of new triazolopyridazine BRD9 inhibitors.
Collapse
Affiliation(s)
- Lucie Guetzoyan
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| | - Richard J. Ingham
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| | - Nikzad Nikbin
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| | - Julien Rossignol
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| | - Michael Wolling
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| | | | - Nicola A. Burgess-Brown
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Claire M. Strain-Damerell
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Leela Shrestha
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Paul E. Brennan
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Oleg Fedorov
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute
- Nuffield Department of Medicine
- University of Oxford
- Oxford, UK
| | - Steven V. Ley
- Innovative Technology Centre
- Department of Chemistry
- University of Cambridge
- , UK
| |
Collapse
|
1063
|
Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, Minder JL, Mercan F, Wang E, Eckersley-Maslin MA, Campbell AE, Kawaoka S, Shareef S, Zhu Z, Kendall J, Muhar M, Haslinger C, Yu M, Roeder RG, Wigler MH, Blobel GA, Zuber J, Spector DL, Young RA, Vakoc CR. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 2013; 27:2648-62. [PMID: 24285714 PMCID: PMC3877755 DOI: 10.1101/gad.232710.113] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells frequently depend on chromatin regulators to maintain their malignant phenotype. Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types. Vakoc and colleagues now show that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as a key target. Brg1 is critical to sustain transcription factor occupancy and enable long-range looping interactions with the Myc promoter. These findings thus implicate enhancer-mediated Myc regulation in leukemia pathogenesis. Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ∼3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs.
Collapse
Affiliation(s)
- Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1064
|
Chandler RL, Zhang Y, Magnuson T, Bultman SJ. Characterization of a Brg1 hypomorphic allele demonstrates that genetic and biochemical activity are tightly correlated. Epigenetics 2013; 9:249-56. [PMID: 24172864 DOI: 10.4161/epi.26879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian SWI/SNF-related complexes are recruited to the promoters of numerous target genes, and the BRG1 catalytic subunit confers ATPase activity necessary to slide or evict nucleosomes and to regulate transcription. Based on gene-targeting experiments in mice, BRG1 is essential for early embryonic development. However, Brg1 null mutants have provided limited insight into gene-dosage considerations and structure-function relationships. To extend our knowledge of BRG1 function, we describe the genetic and biochemical characteristics of an ENU-induced hypomorphic mutation that encodes a protein with a single amino-acid substitution (E1083G) within the bilobal ATPase/chromatin-remodeling domain. Brg1(ENU1/ENU1) mice have ~50% genetic activity and survive embryogenesis but exhibit a postnatal developmental phenotype associated with runting and incompletely penetrant lethality. The E1083G mutant protein is stable, and experiments with recombinant FLAG-tagged BRG1 proteins demonstrated that it retains full ATPase activity. Yet the biochemical activity of the mutant protein is diminished to ~50% of normal in chromatin-remodeling assays. Consistent with these findings, the E1083G substitution is predicted to disrupt a structurally conserved α-helix within the lobe that participates in DNA translocation but does not contain the ATPase catalytic site. We propose that this α-helix participates in the DNA translocation cycle by mechanistically linking DNA interaction surfaces at the DNA entry/anchor point to those within the Helicase C domain of lobe 2 of the bilobal ATPase motor. Taken together, these results demonstrate that BRG1 genetic and biochemical activities are tightly correlated. They also indicate that BRG1 ATPase activity is necessary but not sufficient for chromatin remodeling.
Collapse
Affiliation(s)
- Ronald L Chandler
- Department of Genetics; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| | - Ying Zhang
- Department of Genetics; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| | - Terry Magnuson
- Department of Genetics; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| | - Scott J Bultman
- Department of Genetics; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
1065
|
Narlikar G, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013; 154:490-503. [PMID: 23911317 PMCID: PMC3781322 DOI: 10.1016/j.cell.2013.07.011] [Citation(s) in RCA: 486] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Indexed: 12/28/2022]
Abstract
Chromatin provides both a means to accommodate a large amount of genetic material in a small space and a means to package the same genetic material in different chromatin states. Transitions between chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of structural transformations. Biochemical evidence over the last two decades suggests that chromatin-remodeling activities may have emerged by adaptation of ancient DNA translocases to respond to specific features of chromatin. Here, we discuss such evidence and also relate mechanistic insights to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.
Collapse
Affiliation(s)
- Geeta J. Narlikar
- Biochemistry and Biophysics, Genentech Hall 600, 16th Street, University of California, San Francisco, San Francisco, CA 94158, USA
- Corresponding author
| | | | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Corresponding author
| |
Collapse
|
1066
|
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502:462-71. [PMID: 24153299 PMCID: PMC4216318 DOI: 10.1038/nature12749] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Effie Apostolou
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
1067
|
Dreveny I, Deeves SE, Fulton J, Yue B, Messmer M, Bhattacharya A, Collins HM, Heery DM. The double PHD finger domain of MOZ/MYST3 induces α-helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and modification. Nucleic Acids Res 2013; 42:822-35. [PMID: 24150941 PMCID: PMC3902925 DOI: 10.1093/nar/gkt931] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone tail modifications control many nuclear processes by dictating the dynamic exchange of regulatory proteins on chromatin. Here we report novel insights into histone H3 tail structure in complex with the double PHD finger (DPF) of the lysine acetyltransferase MOZ/MYST3/KAT6A. In addition to sampling H3 and H4 modification status, we show that the DPF cooperates with the MYST domain to promote H3K9 and H3K14 acetylation, although not if H3K4 is trimethylated. Four crystal structures of an extended DPF alone and in complex with unmodified or acetylated forms of the H3 tail reveal the molecular basis of crosstalk between H3K4me3 and H3K14ac. We show for the first time that MOZ DPF induces α-helical conformation of H3K4-T11, revealing a unique mode of H3 recognition. The helical structure facilitates sampling of H3K4 methylation status, and proffers H3K9 and other residues for modification. Additionally, we show that a conserved double glycine hinge flanking the H3 tail helix is required for a conformational change enabling docking of H3K14ac with the DPF. In summary, our data provide the first observations of extensive helical structure in a histone tail, revealing the inherent ability of the H3 tail to adopt alternate conformations in complex with chromatin regulators.
Collapse
Affiliation(s)
- Ingrid Dreveny
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
1068
|
Vogel-Ciernia A, Wood MA. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders. Neuropharmacology 2013; 80:18-27. [PMID: 24140580 DOI: 10.1016/j.neuropharm.2013.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023]
Abstract
Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders.
Collapse
Affiliation(s)
- Annie Vogel-Ciernia
- University of California, Irvine, Department of Neurobiology & Behavior, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, Irvine, CA, USA
| | - Marcelo A Wood
- University of California, Irvine, Department of Neurobiology & Behavior, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, Irvine, CA, USA.
| |
Collapse
|
1069
|
Wang X, Haswell JR, Roberts CWM. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer--mechanisms and potential therapeutic insights. Clin Cancer Res 2013; 20:21-7. [PMID: 24122795 DOI: 10.1158/1078-0432.ccr-13-0280] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SWI/SNF chromatin remodeling complexes are pleomorphic multisubunit cellular machines that utilize the energy of ATP hydrolysis to modulate chromatin structure. The complexes interact with transcription factors at promoters and enhancers to modulate gene expression and contribute to lineage specification, differentiation, and development. Initial clues to a role in tumor suppression for SWI/SNF complexes came over a decade ago when the gene encoding the SMARCB1/SNF5 core subunit was found specifically inactivated in nearly all pediatric rhabdoid tumors. In the last three years, cancer-genome sequencing efforts have revealed an unexpectedly high mutation rate of SWI/SNF subunit genes, which are collectively mutated in 20% of all human cancers and approach the frequency of p53 mutations. Here, we provide a background on these newly recognized tumor suppressor complexes, discuss mechanisms implicated in the tumor suppressor activity, and highlight findings that may lead to potential therapeutic targets for SWI/SNF-mutant cancers.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Authors' Affiliations: Department of Pediatric Oncology, Dana-Farber Cancer Institute; Division of Hematology/Oncology, Children's Hospital Boston; and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
1070
|
Lu P, Roberts CWM. The SWI/SNF tumor suppressor complex: Regulation of promoter nucleosomes and beyond. Nucleus 2013; 4:374-8. [PMID: 24145903 DOI: 10.4161/nucl.26654] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleosomes, octamers of histones wrapped in 147 bp of DNA, are the basic unit of chromatin. In eukaryotic cells, the placement of nucleosomes along the genome is highly organized, and modulation of this ordered arrangement contributes to regulation of gene expression. The SWI/SNF complex utilizes the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin structure. Recently, the complex has also been implicated in oncogenesis as genes encoding multiple SWI/SNF subunits have been found mutated at high frequency across a wide spectrum of cancers. Given that epigenetic aberrations are now characterized as a hallmark of human cancer, hypotheses have been put forth that the SWI/SNF complex inhibits tumor formation by regulating key chromatin functions. To understand how the SWI/SNF complex contributes to nucleosome organization in vivo we performed a genome-wide study in mammalian cells. We found that inactivation of SWI/SNF subunits leads to disruptions of specific nucleosome patterning and a loss of nucleosome occupancy at a large number of promoters. These findings define a direct relationship between the SWI/SNF complex, chromatin structure, and transcriptional regulation. In this extra view, we discuss our findings, their relevance to gene regulation, and possible links to the tumor suppression activities of the SWI/SNF complex.
Collapse
Affiliation(s)
- Ping Lu
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Boston, MA USA; Division of Hematology/Oncology; Boston Children's Hospital; Boston, MA USA; Department of Pediatrics; Harvard Medical School; Boston, MA USA
| | | |
Collapse
|
1071
|
Oike T, Ogiwara H, Nakano T, Yokota J, Kohno T. Inactivating Mutations in SWI/SNF Chromatin Remodeling Genes in Human Cancer. Jpn J Clin Oncol 2013; 43:849-55. [DOI: 10.1093/jjco/hyt101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1072
|
Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 2013; 45:860-7. [DOI: 10.1038/ng.2699] [Citation(s) in RCA: 923] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
|
1073
|
Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K, Crabtree GR. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 2013; 497:624-7. [PMID: 23698369 PMCID: PMC3668793 DOI: 10.1038/nature12146] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 04/03/2013] [Indexed: 12/19/2022]
Abstract
Recent exon-sequencing studies of human tumours have revealed that subunits of BAF (mammalian SWI/SNF) complexes are mutated in more than 20% of all human malignancies, but the mechanisms involved in tumour suppression are unclear. BAF chromatin-remodelling complexes are polymorphic assemblies that use energy provided by ATP hydrolysis to regulate transcription through the control of chromatin structure and the placement of Polycomb repressive complex 2 (PRC2) across the genome. Several proteins dedicated to this multisubunit complex, including BRG1 (also known as SMARCA4) and BAF250a (also known as ARID1A), are mutated at frequencies similar to those of recognized tumour suppressors. In particular, the core ATPase BRG1 is mutated in 5-10% of childhood medulloblastomas and more than 15% of Burkitt's lymphomas. Here we show a previously unknown function of BAF complexes in decatenating newly replicated sister chromatids, a requirement for proper chromosome segregation during mitosis. We find that deletion of Brg1 in mouse cells, as well as the expression of BRG1 point mutants identified in human tumours, leads to anaphase bridge formation (in which sister chromatids are linked by catenated strands of DNA) and a G2/M-phase block characteristic of the decatenation checkpoint. Endogenous BAF complexes interact directly with endogenous topoisomerase IIα (TOP2A) through BAF250a and are required for the binding of TOP2A to approximately 12,000 sites across the genome. Our results demonstrate that TOP2A chromatin binding is dependent on the ATPase activity of BRG1, which is compromised in oncogenic BRG1 mutants. These studies indicate that the ability of TOP2A to prevent DNA entanglement at mitosis requires BAF complexes and suggest that this activity contributes to the role of BAF subunits as tumour suppressors.
Collapse
Affiliation(s)
- Emily C Dykhuizen
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|