1251
|
Abstract
Genetic studies have provided increasing evidence that proteins involved in all aspects of RNA metabolism, such as RNA processing, transport, stability, and translation, are required for plant development and for plants' responses to the environment. Such proteins act in floral transition, floral patterning, and signaling by abscisic acid, low temperature and circadian rhythms. Although some of these proteins belong to core RNA metabolic machineries, others may have more specialized cellular functions. Despite the limited knowledge of the underlying molecular mechanisms, posttranscriptional regulation is known to play a key role in the control of plant development.
Collapse
Affiliation(s)
- Yulan Cheng
- Developmental Genetics Program and Howard Hughes Medical Institute (HHMI), Skirball Institute of Biomolecular Medicine, 540 First Avenue, 4th Floor, New York, New York 10016, USA
| | - Xuemei Chen
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA,
| |
Collapse
|
1252
|
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA (NEW YORK, N.Y.) 2004; 10:185-91. [PMID: 14730017 PMCID: PMC1370530 DOI: 10.1261/rna.5167604] [Citation(s) in RCA: 987] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
microRNAs (miRNAs) are widespread among eukaryotes, and studies in several systems have revealed that miRNAs can regulate expression of specific genes. Primary miRNA transcripts are initially processed to approximately 70-nucleotide (nt) stem-loop structures (pre-miRNAs), exported to the cytoplasm, further processed to yield approximately 22-nt dsRNAs, and finally incorporated into ribonucleoprotein particles, which are thought to be the active species. Here we study nuclear export of pre-miRNAs and show that the process is saturable and thus carrier-mediated. Export is sensitive to depletion of nuclear RanGTP and, according to this criterion, mediated by a RanGTP-dependent exportin. An unbiased affinity chromatography approach with immobilized pre-miRNAs identified exportin 5 as the pre-miRNA-specific export carrier. We have cloned exportin 5 from Xenopus and demonstrate that antibodies raised against the Xenopus receptor specifically block pre-miRNA export from nuclei of Xenopus oocytes. We further show that exportin 5 interacts with double-stranded RNA in a sequence-independent manner.
Collapse
|
1253
|
Abstract
Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication. Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance. Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.
Collapse
Affiliation(s)
- Wolfgang Hennig
- German Academic Exchange Service (DAAD) Laboratory, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
1254
|
Abstract
MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III-like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate-dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro. Thus, Exp5 is key to miRNA biogenesis and may help coordinate nuclear and cytoplasmic processing steps.
Collapse
Affiliation(s)
- Elsebet Lund
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
1255
|
Hartig JS, Grüne I, Najafi-Shoushtari SH, Famulok M. Sequence-Specific Detection of MicroRNAs by Signal-Amplifying Ribozymes. J Am Chem Soc 2004; 126:722-3. [PMID: 14733539 DOI: 10.1021/ja038822u] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rational and straightforward design of hairpin ribozymes that can be sequence-specifically induced by external oligonucleotides is described. Due to intrinsic signal amplification, their sensitivity is at least an order of magnitude increased compared to standard molecular beacons. We applied this system to the detection of microRNAs, a recently discovered class of small endogenous RNA molecules that are involved in gene regulation. We show that the cognate microRNA can reliably and sensitively be detected at low concentrations in a mix of other microRNA sequences. These probes may be useful in applications that require direct detection of minute amounts of small DNAs or RNAs.
Collapse
Affiliation(s)
- Jörg S Hartig
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | |
Collapse
|
1256
|
Abstract
Small non-messenger RNAs (snmRNAs) are a heterogeneous group of non-coding RNAs with a variety of regulatory functions including regulation of protein expression and guidance in RNA modifications. They are actively being investigated in Archaebacteria, yeast, invertebrates and mammals. Brain-specific snmRNAs have been identified in mammals and they seem to contribute to neuronal differentiation during development and to brain functions subserving learning and memory. Here we review the current knowledge of the properties, expression and functions of three groups of brain-specific snmRNAs: small nucleolar RNAs, BC1/BC200 RNAs and microRNAs.
Collapse
Affiliation(s)
- Boris Rogelj
- Department of Neuroscience, Institute of Psychiatry, King's College London, UK.
| | | |
Collapse
|
1257
|
Stinton LM, Eystathioy T, Selak S, Chan EKL, Fritzler MJ. Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes, and GW bodies. Clin Immunol 2004; 110:30-44. [PMID: 14962794 DOI: 10.1016/j.clim.2003.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 10/16/2003] [Accepted: 10/20/2003] [Indexed: 02/03/2023]
Abstract
Over 50 years ago the lupus erythematosus (LE) cell phenomenon was described and this was quickly followed by the introduction of the LE cell test and indirect immunofluorescence (IIF) to detect antinuclear antibodies (ANA) in clinical laboratories. Recently, attention has turned to the identification of the autoantigens that bind to cytoplasmic organelles such as the Golgi complex, endosomes and other "cytoplasmic somes". Three endosome autoantigens include early endosome antigen 1 (EEA1, 160 kDa), cytoplasmic linker protein-170 (CLIP-170, 170 kDa), and lysobisphosphatidic acid (LBPA). Antibodies to EEA1 were seen in a variety of conditions but approximately 40% of the patients had a neurological disease. Despite the prominence of lysosomes in cells and tissues, reports of autoantibodies are limited to the lysosomal antigen h-LAMP-2 and the cytoplasmic antineutrophil antibodies (cANCA). Autoantigens in the Golgi complex include giantin/macrogolgin, golgin-245, golgin 160, golgin-97, golgin 95/gm130, and golgin-67. More recently, there has been an interest in autoantibodies that bind components of the "SMN complex" or the "assemblyosome". Arginine/glycine (RG)-rich domains in components of the SMN complex interact with Sm, like-Sm (LSm), fibrillarin, RNA helicase A (Gu), and coilin proteins, all of which are antigen targets in a variety of diseases. More recently, components of a novel cytoplasmic structure named GW bodies (GWBs) have been identified as targets of human autoantibodies. Components of GWBs include GW182, a unique mRNA-binding protein, like Sm proteins (LSms), and decapping (hDcp1) and exonuclease (Xrn) enzymes. Current evidence suggests that GWBs are involved in the cytoplasmic processing of mRNAs. Autoantibodies to the "cytoplasmic somes" are relatively uncommon and serological tests to detect most of them are not widely available.
Collapse
Affiliation(s)
- Laura M Stinton
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
1258
|
Abstract
Small interfering RNA (siRNA) molecules are short sequences of double-stranded RNA 19-27 bp in length, which suppress expression of target genes by inducing the breakdown of the cognate mRNA through mechanisms that are still being elucidated. siRNA molecules can be chemically synthesized or prepared through digestion of larger double-stranded RNA molecules using recombinant dicer or RNAase III enzyme. siRNA molecules can also be encoded by plasmid or virus vectors or expressed in transgenic animals. Design of siRNA sequences that efficiently suppress target genes can sometimes be challenging, although digestion of large double-stranded RNA species with recombinant dicer or RNAase III may remove the necessity for testing multiple candidate siRNA. Exogenous siRNA can suppress translation for varying amounts of time depending on the half-life of the protein targeted. Vector-mediated approaches may improve duration but their use can be limited by the permanency and efficiency of transduction. Potential therapeutic targets for siRNA include viral and non-viral pathogens, cancer, neurodegenerative diseases, septic shock and macular degeneration. Suppression of expression via siRNA is also an extremely useful research tool for ascertaining gene function. Looking ahead to clinical applications, it will be important to know the consequences of inadvertent suppression of non-targeted sequences. If safety can be established, siRNA has the potential to significantly impact the field of molecular medicine.
Collapse
Affiliation(s)
- Joseph M Alisky
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA
| | | |
Collapse
|
1259
|
Abstract
The way we quantify the human genome has changed markedly. The estimated percentage of the genome derived from retrotransposition has increased (now 45%; refs. 1,2), as have the estimates for alternative splicing (now 41-60% of multiexon genes), antisense transcription (now 10-20% of genes) and non-protein coding RNA (now approximately 7% of full-length cDNAs). Concomitantly, the estimated number of protein-coding genes (now approximately 24,500) has decreased. These numbers support an RNA-centric view of evolution in which phenotypic diversity arises through extensive RNA processing and widespread RNA-directed rewriting of DNA enables dissemination of 'selfish' RNAs associated with successful outcomes. The numbers also indicate important roles for sense-antisense transcription units (SATs) and coregulatory RNAs (coRNAs) in directing the read-out of genetic information, in reconciling different regulatory inputs and in transmitting epigenetic information to progeny. Together, the actions of reading, 'riting, 'rithmetic and replication constitute the four Rs of RNA-directed evolution.
Collapse
Affiliation(s)
- Alan Herbert
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA.
| |
Collapse
|
1260
|
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol 2003; 5:R1. [PMID: 14709173 PMCID: PMC395733 DOI: 10.1186/gb-2003-5-1-r1] [Citation(s) in RCA: 2642] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 11/14/2003] [Accepted: 11/21/2003] [Indexed: 12/15/2022] Open
Abstract
A computational method for whole-genome prediction of microRNA target genes is presented. Application of this method to the Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known microRNAs. Background The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method is validated using known examples. For each miRNA, target genes are selected on the basis of three properties: sequence complementarity using a position-weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Application to the D. melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known miRNAs. Results These potential targets are rich in genes that are expressed at specific developmental stages and that are involved in cell fate specification, morphogenesis and the coordination of developmental processes, as well as genes that are active in the mature nervous system. High-ranking target genes are enriched in transcription factors two-fold and include genes already known to be under translational regulation. Our results reaffirm the thesis that miRNAs have an important role in establishing the complex spatial and temporal patterns of gene activity necessary for the orderly progression of development and suggest additional roles in the function of the mature organism. In addition the results point the way to directed experiments to determine miRNA functions. Conclusions The emerging combinatorics of miRNA target sites in the 3' untranslated regions of messenger RNAs are reminiscent of transcriptional regulation in promoter regions of DNA, with both one-to-many and many-to-one relationships between regulator and target. Typically, more than one miRNA regulates one message, indicative of cooperative translational control. Conversely, one miRNA may have several target genes, reflecting target multiplicity. As a guide to focused experiments, we provide detailed online information about likely target genes and binding sites in their untranslated regions, organized by miRNA or by gene and ranked by likelihood of match. The target prediction algorithm is freely available and can be applied to whole genome sequences using identified miRNA sequences.
Collapse
Affiliation(s)
- Anton J Enright
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Bino John
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Ulrike Gaul
- Laboratory of Developmental Neurogenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Debora S Marks
- Columbia Genome Center, Russ Berrie Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
1261
|
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67:657-85. [PMID: 14665679 PMCID: PMC309050 DOI: 10.1128/mmbr.67.4.657-685.2003] [Citation(s) in RCA: 782] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.
Collapse
Affiliation(s)
- Neema Agrawal
- International Center for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
1262
|
Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Mol Biol 2003; 10:1026-32. [PMID: 14625589 DOI: 10.1038/nsb1016] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 10/24/2003] [Indexed: 11/08/2022]
Abstract
RISC, the RNA-induced silencing complex, uses short interfering RNAs (siRNAs) or micro RNAs (miRNAs) to select its targets in a sequence-dependent manner. Key RISC components are Argonaute proteins, which contain two characteristic domains, PAZ and PIWI. PAZ is highly conserved and is found only in Argonaute proteins and Dicer. We have solved the crystal structure of the PAZ domain of Drosophila Argonaute2. The PAZ domain contains a variant of the OB fold, a module that often binds single-stranded nucleic acids. PAZ domains show low-affinity nucleic acid binding, probably interacting with the 3' ends of single-stranded regions of RNA. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.
Collapse
Affiliation(s)
- Ji-Joon Song
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
1263
|
Affiliation(s)
- Marjori Matzke
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria.
| | | |
Collapse
|