1351
|
Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 2018; 7:26496-515. [PMID: 27034163 PMCID: PMC5041995 DOI: 10.18632/oncotarget.8420] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.
Collapse
|
1352
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2643] [Impact Index Per Article: 377.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
1353
|
Zhdanov VP. mRNA function after intracellular delivery and release. Biosystems 2018; 165:52-56. [PMID: 29331630 DOI: 10.1016/j.biosystems.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Nanocarrier-mediated mRNA delivery and release into the cells with subsequent translation to protein is of interest in the context of the development of a new generation of drugs. In particular, this protein can play a role of a transcription factor and be used as a tool to regulate temporarily the genetic networks. The corresponding transient kinetics of gene expression are expected to depend on the mechanism and duration of mRNA release. Assuming the release to be rapid on the time scale of other steps, the author shows theoretically the mRNA-related transient features of gene expression occurring in stable, bistable, and oscillatory regimes in a single cell. Qualitatively, the results obtained are found to be fairly similar to those reported earlier for the situation when the release is slow. Thus, the features of the transient kinetics under consideration appear to be less sensitive to the duration of mRNA release compared to what one might expect.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
1354
|
Men K, Zhang R, Zhang X, Huang R, Zhu G, Tong R, Yang L, Wei Y, Duan X. Delivery of modified mRNA encoding vesicular stomatitis virus matrix protein for colon cancer gene therapy. RSC Adv 2018; 8:12104-12115. [PMID: 35539419 PMCID: PMC9079296 DOI: 10.1039/c7ra13656k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Plasmid DNA based gene delivery has been widely utilized among both pre-clinical and clinical gene therapy studies. However, therapeutic efficiency is usually limited by the size and potential immune-stimulation issue of plasmid backbone. As an alternative form of genetic material, chemically modified messenger RNA (mRNA) provides a promising alternative to plasmid DNA. In this work, an in vitro transcription mRNA encoding vesicular stomatitis virus matrix protein (VSVMP) was delivered by a cationic liposome–protamine complex, resulting in high mRNA transporting and expression efficiency. The liposome–protamine complex delivered VSVMP mRNA strongly inhibits the growth of C26 tumor cells through inducing apoptosis, while obvious tumor regressions were achieved on both abdominal cavity metastatic and subcutaneous xenograft models in vivo with high safety. Our results also demonstrated that the liposome–protamine–mRNA complex was as potent as its plasmid DNA counterpart, showing strong potential in further colon cancer therapy. Liposome–protamine complex delivered VSVMP mRNA efficiently inhibits C26 colon carcinoma with safety, providing an alternative strategy for non-viral gene therapy.![]()
Collapse
Affiliation(s)
- Ke Men
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rong Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Guonian Zhu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rongsheng Tong
- Individualized Medication Key Laboratory of Sichuan Province
- Department of Pharmacy
- Sichuan Provincial People's Hospital
- Chengdu
- People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xingmei Duan
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| |
Collapse
|
1355
|
|
1356
|
Hirschberger K, Jarzebinska A, Kessel E, Kretzschmann V, Aneja MK, Dohmen C, Herrmann-Janson A, Wagner E, Plank C, Rudolph C. Exploring Cytotoxic mRNAs as a Novel Class of Anti-cancer Biotherapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:141-151. [PMID: 29687033 PMCID: PMC5908148 DOI: 10.1016/j.omtm.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
Abstract
New treatments to overcome the obstacles of conventional anti-cancer therapy are a permanent subject of investigation. One promising approach is the application of toxins linked to cell-specific ligands, so-called immunotoxins. Another attractive option is the employment of toxin-encoding plasmids. However, immunotoxins cause hepatoxicity, and DNA therapeutics, among other disadvantages, bear the risk of insertional mutagenesis. As an alternative, this study examined chemically modified mRNAs coding for diphtheria toxin, subtilase cytotoxin, and abrin-a for their ability to reduce cancer cell growth both in vitro and in vivo. The plant toxin abrin-a was the most promising candidate among the three tested toxins and was further investigated. Its expression was demonstrated by western blot. Experiments with firefly luciferase in reticulocyte lysates and co-transfection experiments with EGFP demonstrated the capability of abrin-a to inhibit protein synthesis. Its cytotoxic effect was quantified employing viability assays and propidium iodide staining. By studying caspase-3/7 activation, Annexin V-binding, and chromatin condensation with Hoechst33258 staining, apoptotic cell death could be confirmed. In mice, repeated intratumoral injections of complexed abrin-a mRNA resulted in a significant reduction (89%) of KB tumor size compared to a non-translatable control mRNA.
Collapse
Affiliation(s)
| | - Anita Jarzebinska
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | | | | | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Christian Plank
- Ethris GmbH, Planegg 82152, Germany
- Institute of Molecular Immunology-Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Carsten Rudolph
- Ethris GmbH, Planegg 82152, Germany
- Department of Pediatrics, Ludwig-Maximilians University, Munich 80337, Germany
- Corresponding author: Carsten Rudolph, Ethris GmbH, Planegg 82152, Germany.
| |
Collapse
|
1357
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
1358
|
Bachtarzi H. Ex vivo and in vivo genome editing: a regulatory scientific framework from early development to clinical implementation. Regen Med 2017; 12:1015-1030. [PMID: 29243558 DOI: 10.2217/rme-2017-0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in human genome science have paved the way to a new class of human gene therapies based on gene editing, with the potential to provide a long-lasting curative strategy for many debilitating and complex disorders, for which there is an unmet medical need. Therapeutic genome editing encompasses both ex vivo and in vivo gene correction modalities, for which similar and also application-specific considerations apply, which dictate the overall strategy to be followed from a scientific, clinical and regulatory perspective. Here, the major regulatory barriers to successful clinical implementation are discussed, together with the key issues to be considered for generating safe (minimizing risks of tumorigenesis and off-target effects) and effective gene editing-based medicines for application in regenerative medicine.
Collapse
|
1359
|
Paul P, Malakar AK, Chakraborty S. Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes. Food Sci Biotechnol 2017; 27:725-733. [PMID: 30263798 DOI: 10.1007/s10068-017-0285-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
The plant Brassica campestris includes the vegetables turnip and Chinese cabbage, important plants of economic importance. Here, we have analysed the codon usage bias of B. campestris for 116 protein coding genes. Neutrality analysis showed that B. campestris had a wide range of GC3s, and a significant correlation was observed between GC12 and GC3. Nc versus GC3s plot showed a few genes on or proximate to the expected curve, but the majority of points were found to be scattered distantly from the expected curve. Correspondence analysis on codon usage revealed that the position preference of codons on multidimensional space totally depends on the presence of A and T at synonymous third codon position. These results altogether suggest that composition bias along with selection (major) and mutation pressure (minor) affects the codon usage pattern of the protein coding genes in Brassica campestris.
Collapse
Affiliation(s)
- Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | - Arup Kumar Malakar
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | | |
Collapse
|
1360
|
Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Wicke L, Perkovic M, Beissert T, Haas H, Reece ST, Sahin U, Tregoning JS. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol Ther 2017; 26:446-455. [PMID: 29275847 PMCID: PMC5835025 DOI: 10.1016/j.ymthe.2017.11.017] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
New vaccine platforms are needed to address the time gap between pathogen emergence and vaccine licensure. RNA-based vaccines are an attractive candidate for this role: they are safe, are produced cell free, and can be rapidly generated in response to pathogen emergence. Two RNA vaccine platforms are available: synthetic mRNA molecules encoding only the antigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is virally derived and encodes both the antigen of interest and proteins enabling RNA vaccine replication. Both platforms have been shown to induce an immune response, but it is not clear which approach is optimal. In the current studies, we compared synthetic mRNA and sa-RNA expressing influenza virus hemagglutinin. Both platforms were protective, but equivalent levels of protection were achieved using 1.25 μg sa-RNA compared to 80 μg mRNA (64-fold less material). Having determined that sa-RNA was more effective than mRNA, we tested hemagglutinin from three strains of influenza H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines, and all protected against challenge infection. When sa-RNA was combined in a trivalent formulation, it protected against sequential H1N1 and H3N2 challenges. From this we conclude that sa-RNA is a promising platform for vaccines against viral diseases.
Collapse
Affiliation(s)
- Annette B Vogel
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany.
| | - Laura Lambert
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London W2 1PG, UK
| | - Ekaterina Kinnear
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London W2 1PG, UK
| | - David Busse
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London W2 1PG, UK
| | - Stephanie Erbar
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Lena Wicke
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Tim Beissert
- TRON GmbH, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Heinrich Haas
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | - Stephen T Reece
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech AG, An der Goldgrube 12, 55131 Mainz, Germany
| | - John S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London W2 1PG, UK.
| |
Collapse
|
1361
|
Antigen-specific oncolytic MV-based tumor vaccines through presentation of selected tumor-associated antigens on infected cells or virus-like particles. Sci Rep 2017; 7:16892. [PMID: 29203786 PMCID: PMC5715114 DOI: 10.1038/s41598-017-16928-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
Recombinant vaccine strain-derived measles virus (MV) is clinically tested both as vaccine platform to protect against other pathogens and as oncolytic virus for tumor treatment. To investigate the potential synergism in anti-tumoral efficacy of oncolytic and vaccine properties, we chose Ovalbumin and an ideal tumor antigen, claudin-6, for pre-clinical proof of concept. To enhance immunogenicity, both antigens were presented by retroviral virus-like particle produced in situ during MV-infection. All recombinant MV revealed normal growths, genetic stability, and proper expression and presentation of both antigens. Potent antigen-specific humoral and cellular immunity were found in immunized MV-susceptible IFNAR-/--CD46Ge mice. These immune responses significantly inhibited metastasis formation or increased therapeutic efficacy compared to control MV in respective novel in vivo tumor models using syngeneic B16-hCD46/mCLDN6 murine melanoma cells. These data indicate the potential of MV to trigger selected tumor antigen-specific immune responses on top of direct tumor lysis for enhanced efficacy.
Collapse
|
1362
|
Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Rep 2017; 21:3548-3558. [PMID: 29262333 PMCID: PMC9667413 DOI: 10.1016/j.celrep.2017.11.081] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023] Open
Abstract
Isolated methylmalonic acidemia/aciduria (MMA) is a devastating metabolic disorder with poor outcomes despite current medical treatments. Like other mitochondrial enzymopathies, enzyme replacement therapy (ERT) is not available, and although promising, AAV gene therapy can be limited by pre-existing immunity and has been associated with genotoxicity in mice. To develop a new class of therapy for MMA, we generated a 5-methoxyU-modified codon-optimized mRNA encoding human methylmalonyl-CoA mutase (hMUT), the enzyme most frequently mutated in MMA, and encapsulated it into biodegradable lipid nanoparticles (LNPs). Intravenous (i.v.) administration of hMUT mRNA in two different mouse models of MMA resulted in a 75%–85% reduction in plasma methylmalonic acid and was associated with increased hMUT protein expression and activity in liver. Repeat dosing of hMUT mRNA reduced circulating metabolites and dramatically improved survival and weight gain. Additionally, repeat i.v. dosing did not increase markers of liver toxicity or inflammation in heterozygote MMA mice. An et al. find that systemically delivered LNP-encapsulated mRNA results in hepatic protein expression. hMUT mRNA expresses functional mitochondrial MUT enzyme, and MMA mouse models show a metabolic and clinical response after mRNA therapy.
Collapse
|
1363
|
Shen H, Sun T, Hoang HH, Burchfield JS, Hamilton GF, Mittendorf EA, Ferrari M. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin Immunol 2017; 34:114-122. [PMID: 28947107 PMCID: PMC5705528 DOI: 10.1016/j.smim.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies.
Collapse
Affiliation(s)
- Haifa Shen
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tong Sun
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Hanh H Hoang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Jana S Burchfield
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Gillian F Hamilton
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mauro Ferrari
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
1364
|
Sedic M, Senn JJ, Lynn A, Laska M, Smith M, Platz SJ, Bolen J, Hoge S, Bulychev A, Jacquinet E, Bartlett V, Smith PF. Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey. Vet Pathol 2017; 55:341-354. [PMID: 29191134 DOI: 10.1177/0300985817738095] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The pharmacology, pharmacokinetics, and safety of modified mRNA formulated in lipid nanoparticles (LNPs) were evaluated after repeat intravenous infusion to rats and monkeys. In both species, modified mRNA encoding the protein for human erythropoietin (hEPO) had predictable and consistent pharmacologic and toxicologic effects. Pharmacokinetic analysis conducted following the first dose showed that measured hEPO levels were maximal at 6 hours after the end of intravenous infusion and in excess of 100-fold the anticipated efficacious exposure (17.6 ng/ml) at the highest dose tested.24 hEPO was pharmacologically active in both the rat and the monkey, as indicated by a significant increase in red blood cell mass parameters. The primary safety-related findings were caused by the exaggerated pharmacology of hEPO and included increased hematopoiesis in the liver, spleen, and bone marrow (rats) and minimal hemorrhage in the heart (monkeys). Additional primary safety-related findings in the rat included mildly increased white blood cell counts, changes in the coagulation parameters at all doses, as well as liver injury and release of interferon γ-inducible protein 10 in high-dose groups only. In the monkey, as seen with the parenteral administration of cationic LNPs, splenic necrosis and lymphocyte depletion were observed, accompanied with mild and reversible complement activation. These findings defined a well-tolerated dose level above the anticipated efficacious dose. Overall, these combined studies indicate that LNP-formulated modified mRNA can be administered by intravenous infusion in 2 toxicologically relevant test species and generate supratherapeutic levels of protein (hEPO) in vivo.
Collapse
Affiliation(s)
| | | | - Andy Lynn
- 1 Moderna Therapeutics, Cambridge, MA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1365
|
Yan Y, Xiong H, Zhang X, Cheng Q, Siegwart DJ. Systemic mRNA Delivery to the Lungs by Functional Polyester-based Carriers. Biomacromolecules 2017; 18:4307-4315. [DOI: 10.1021/acs.biomac.7b01356] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunfeng Yan
- College
of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hu Xiong
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xinyi Zhang
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qiang Cheng
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Daniel J. Siegwart
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
1366
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
1367
|
Kauffman KJ, Oberli MA, Dorkin JR, Hurtado JE, Kaczmarek JC, Bhadani S, Wyckoff J, Langer R, Jaklenec A, Anderson DG. Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection In Vivo with a loxP-Flanked tdTomato Reporter Mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:55-63. [PMID: 29499956 PMCID: PMC5734870 DOI: 10.1016/j.omtn.2017.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
Abstract
mRNA therapeutics hold promise for the treatment of diseases requiring intracellular protein expression and for use in genome editing systems, but mRNA must transfect the desired tissue and cell type to be efficacious. Nanoparticle vectors that deliver the mRNA are often evaluated using mRNA encoding for reporter genes such as firefly luciferase (FLuc); however, single-cell resolution of mRNA expression cannot generally be achieved with FLuc, and, thus, the transfected cell populations cannot be determined without additional steps or experiments. To more rapidly identify which types of cells an mRNA formulation transfects in vivo, we describe a Cre recombinase (Cre)-based system that permanently expresses fluorescent tdTomato protein in transfected cells of genetically modified mice. Following in vivo application of vectored Cre mRNA, it is possible to visualize successfully transfected cells via Cre-mediated tdTomato expression in bulk tissues and with single-cell resolution. Using this system, we identify previously unknown transfected cell types of an existing mRNA delivery vehicle in vivo and also develop a new mRNA formulation capable of transfecting lung endothelial cells. Importantly, the same formulations with mRNA encoding for fluorescent protein delivered to wild-type mice did not produce sufficient signal for any visualization in vivo, demonstrating the significantly improved sensitivity of our Cre-based system. We believe that the system described here may facilitate the identification and characterization of mRNA delivery vectors to new tissues and cell types.
Collapse
Affiliation(s)
- Kevin J Kauffman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthias A Oberli
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Robert Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan E Hurtado
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shivani Bhadani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeff Wyckoff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139.
| |
Collapse
|
1368
|
Abstract
Nucleic acid therapeutics are an established class of drugs that enable specific targeting of a gene of interest. This diverse family of drugs includes antisense oligonucleotides, siRNAs, and mRNA replacement therapies, which can elicit both gene repression and activation, primarily at the RNA level. Recent advances in medicinal chemistry have increased drug potency and enhanced delivery and distribution to a broad array of tissue and cell types. A key advantage of nucleic acid therapeutics is in their application to monogenic diseases. Cystic fibrosis (CF) is one such disease that affects ∼70,000 people globally. This severe disease is an excellent candidate for nucleic acid therapies, as it is due to a genetic defect in a single epithelial chloride channel. Although CF affects many tissues, the primary cause of patient mortality is lung disease. Here we review the various nucleic acid therapeutic modalities and their mechanisms of action, the opportunities and challenges associated with application of nucleic acid drugs to the lung pathology of CF, and the current state and prospects for nucleic acid drugs for the treatment of CF.
Collapse
Affiliation(s)
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| |
Collapse
|
1369
|
Lindgren G, Ols S, Liang F, Thompson EA, Lin A, Hellgren F, Bahl K, John S, Yuzhakov O, Hassett KJ, Brito LA, Salter H, Ciaramella G, Loré K. Induction of Robust B Cell Responses after Influenza mRNA Vaccination Is Accompanied by Circulating Hemagglutinin-Specific ICOS+ PD-1+ CXCR3+ T Follicular Helper Cells. Front Immunol 2017; 8:1539. [PMID: 29181005 PMCID: PMC5693886 DOI: 10.3389/fimmu.2017.01539] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Modified mRNA vaccines have developed into an effective and well-tolerated vaccine platform that offers scalable and precise antigen production. Nevertheless, the immunological events leading to strong antibody responses elicited by mRNA vaccines are largely unknown. In this study, we demonstrate that protective levels of antibodies to hemagglutinin were induced after two immunizations of modified non-replicating mRNA encoding influenza H10 encapsulated in lipid nanoparticles (LNP) in non-human primates. While both intradermal (ID) and intramuscular (IM) administration induced protective titers, ID delivery generated this response more rapidly. Circulating H10-specific memory B cells expanded after each immunization, along with a transient appearance of plasmablasts. The memory B cell pool waned over time but remained detectable throughout the 25-week study. Following prime immunization, H10-specific plasma cells were found in the bone marrow and persisted over time. Germinal centers were formed in vaccine-draining lymph nodes along with an increase in circulating H10-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells, a population shown to correlate with high avidity antibody responses after seasonal influenza vaccination in humans. Collectively, this study demonstrates that mRNA/LNP vaccines potently induce an immunological repertoire associated with the generation of high magnitude and quality antibodies.
Collapse
Affiliation(s)
- Gustaf Lindgren
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frank Liang
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Thompson
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ang Lin
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kapil Bahl
- Valera LLC, Cambridge, MA, United States
| | - Shinu John
- Valera LLC, Cambridge, MA, United States
| | | | | | - Luis A Brito
- Moderna Therapeutics, Cambridge, MA, United States
| | - Hugh Salter
- Moderna Therapeutics, Cambridge, MA, United States.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Karin Loré
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
1370
|
Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res 2017; 45:8661-8675. [PMID: 28666355 PMCID: PMC5587727 DOI: 10.1093/nar/gkx569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Analogues of the mRNA 5'-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
1371
|
Mamot A, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Azido-Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Adam Mamot
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
- University of Warsaw; Faculty of Chemistry; Pasteura 1 02-093 Warsaw Poland
| | - Pawel J. Sikorski
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
| | - Marcin Warminski
- University of Warsaw; Faculty of Physics; Institute of Experimental Physics, Division of Biophysics; Pasteura 5 02-093 Warsaw Poland
| | - Joanna Kowalska
- University of Warsaw; Faculty of Physics; Institute of Experimental Physics, Division of Biophysics; Pasteura 5 02-093 Warsaw Poland
| | - Jacek Jemielity
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
| |
Collapse
|
1372
|
Mamot A, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Azido-Functionalized 5' Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Angew Chem Int Ed Engl 2017; 56:15628-15632. [PMID: 29048718 DOI: 10.1002/anie.201709052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The 7-methylguanosine (m7 G) cap structure is a unique feature present at the 5' ends of messenger RNAs (mRNAs), and it can be subjected to extensive modifications, resulting in alterations to mRNA properties (e.g. translatability, susceptibility to degradation). It also can provide molecular tools to study mRNA metabolism. We developed new mRNA 5' cap analogues that enable the site-specific labeling of RNA at the 5' end using strain-promoted azide-alkyne cycloaddition (SPAAC) without disrupting the basic function of mRNA in protein biosynthesis. Some of these azide-functionalized compounds are equipped with additional modifications to augment mRNA properties. The application of these tools was demonstrated by labeling translationally active mRNAs in living cells.
Collapse
Affiliation(s)
- Adam Mamot
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland.,University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland
| | - Marcin Warminski
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Division of Biophysics, Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Division of Biophysics, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
1373
|
Li J, He Y, Wang W, Wu C, Hong C, Hammond PT. Polyamine-Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angew Chem Int Ed Engl 2017; 56:13709-13712. [PMID: 28925033 PMCID: PMC5647255 DOI: 10.1002/anie.201707466] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/31/2022]
Abstract
Messenger RNA (mRNA) represents a promising class of nucleic acid drugs. Although numerous carriers have been developed for mRNA delivery, the inefficient mRNA expression inside cells remains a major challenge. Inspired by the dependence of mRNA on 3'-terminal polyadenosine nucleotides (poly A) and poly A binding proteins (PABPs) for optimal expression, we complexed synthetic mRNA containing a poly A tail with PABPs in a stoichiometric manner and stabilized the ribonucleoproteins (RNPs) with a family of polypeptides bearing different arrangements of cationic side groups. We found that the molecular structure of these polypeptides modulates the degree of PABP-mediated enhancement of mRNA expression. This strategy elicits an up to 20-fold increase in mRNA expression in vitro and an approximately fourfold increase in mice. These findings suggest a set of new design principles for gene delivery by the synergistic co-assembly of mRNA with helper proteins.
Collapse
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Wade Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Connie Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Celestine Hong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
1374
|
Affiliation(s)
- Tanja Weil
- Max Planck Institute for Polymer Research, Synthesis of Macromolecules Department, Ackermannweg 10, 55128, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
1375
|
Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res 2017; 45:6023-6036. [PMID: 28334758 PMCID: PMC5449617 DOI: 10.1093/nar/gkx135] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Certain chemical modifications confer increased stability and low immunogenicity to in vitro transcribed mRNAs, thereby facilitating expression of therapeutically important proteins. Here, we demonstrate that N1-methyl-pseudouridine (N1mΨ) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. Through extensive analysis of various modified transcripts in cell-free translation systems, we deconvolute the different components of the effect on protein expression independent of mRNA stability mechanisms. We show that in addition to turning off the immune/eIF2α phosphorylation-dependent inhibition of translation, the incorporated N1mΨ nucleotides dramatically alter the dynamics of the translation process by increasing ribosome pausing and density on the mRNA. Our results indicate that the increased ribosome loading of modified mRNAs renders them more permissive for initiation by favoring either ribosome recycling on the same mRNA or de novo ribosome recruitment.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
1376
|
Uchida S, Yoshinaga N, Yanagihara K, Yuba E, Kataoka K, Itaka K. Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials 2017; 150:162-170. [PMID: 29031816 DOI: 10.1016/j.biomaterials.2017.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Messenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells. In this strategy, design of dsRNA is important. Indeed, hybridization using full-length antisense (as)RNA drastically reduced translational efficiency. In contrast, by limiting the hybridized portion to the mRNA poly A region, efficient translation and intense immunostimulation was simultaneously obtained. The immune response to the poly U-hybridized mRNAs (mRNA:pU) was mediated through Toll-like receptor (TLR)-3 and retinoic acid-inducible gene (RIG)-I. We also demonstrated that mRNA:pU activation of mouse and human dendritic cells was significantly more effective than activation using single stranded mRNA. In vivo mouse immunization experiments using ovalbumin showed that mRNA:pU significantly enhanced the intensity of specific cellular and humoral immune responses, compared to single stranded mRNA. Our novel mRNA:pU formulation can be delivered using a variety of mRNA carriers depending on the purpose and delivery route, providing a versatile platform for improving mRNA vaccine efficiency.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kayoko Yanagihara
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
1377
|
Andrews CD, Luo Y, Sun M, Yu J, Goff AJ, Glass PJ, Padte NN, Huang Y, Ho DD. In Vivo Production of Monoclonal Antibodies by Gene Transfer via Electroporation Protects against Lethal Influenza and Ebola Infections. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:74-82. [PMID: 29034261 PMCID: PMC5633264 DOI: 10.1016/j.omtm.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022]
Abstract
Monoclonal antibodies (mAbs) have wide clinical utility, but global access is limited by high costs and impracticalities associated with repeated passive administration. Here, we describe an optimized electroporation-based DNA gene transfer platform technology that can be utilized for production of functional mAbs in vivo, with the potential to reduce costs and administration burdens. We demonstrate that multiple mAbs can be simultaneously expressed at protective concentrations for a protracted period of time using DNA doses and electroporation conditions that are feasible clinically. The expressed mAbs could also protect mice against lethal influenza or Ebola virus challenges. Our findings suggest that this DNA gene transfer platform technology could be a game-changing advance that expands access to effective mAb therapeutics globally.
Collapse
Affiliation(s)
- Chasity D. Andrews
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Ming Sun
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Arthur J. Goff
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Pamela J. Glass
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Neal N. Padte
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
- Corresponding author: David D. Ho, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
1378
|
Li J, He Y, Wang W, Wu C, Hong C, Hammond PT. Polyamine‐Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Yanpu He
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Wade Wang
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Connie Wu
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Celestine Hong
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
1379
|
Patel S, Ashwanikumar N, Robinson E, DuRoss A, Sun C, Murphy-Benenato KE, Mihai C, Almarsson Ö, Sahay G. Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA. NANO LETTERS 2017; 17:5711-5718. [PMID: 28836442 PMCID: PMC5623340 DOI: 10.1021/acs.nanolett.7b02664] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intracellular delivery of mRNA holds great potential for vaccine1-3 and therapeutic4 discovery and development. Despite increasing recognition of the utility of lipid-based nanoparticles (LNPs) for intracellular delivery of mRNA, particle engineering is hindered by insufficient understanding of endosomal escape, which is believed to be a main limiter of cytosolic availability and activity of the nucleic acid inside the cell. Using a series of CRISPR-based genetic perturbations of the lysosomal pathway, we have identified that late endosome/lysosome (LE/Ly) formation is essential for functional delivery of exogenously presented mRNA. Lysosomes provide a spatiotemporal hub to orchestrate mTOR signaling and are known to control cell proliferation, nutrient sensing, ribosomal biogenesis, and mRNA translation. Through modulation of the mTOR pathway we were able to enhance or inhibit LNP-mediated mRNA delivery. To further boost intracellular delivery of mRNA, we screened 212 bioactive lipid-like molecules that are either enriched in vesicular compartments or modulate cell signaling. Surprisingly, we have discovered that leukotriene-antagonists, clinically approved for treatment of asthma and other lung diseases, enhance intracellular mRNA delivery in vitro (over 3-fold, p < 0.005) and in vivo (over 2-fold, p < 0.005). Understanding LNP-mediated intracellular delivery will inspire the next generation of RNA therapeutics that have high potency and limited toxicity.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - N Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Emily Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Allison DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
- Department of Radiation Medicine, School of Medicine, 3181 S.W. Sam Jackson Park Road, Oregon Health Science University, Portland, OR, 97239
| | | | - Cosmin Mihai
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139
| | - Örn Almarsson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
- Department of Biomedical Engineering, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon Health Science University, Portland, OR, 97201
| |
Collapse
|
1380
|
Granot Y, Peer D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin Immunol 2017; 34:68-77. [PMID: 28890238 DOI: 10.1016/j.smim.2017.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
mRNA molecules hold tremendous potential as a tool for gene therapy of a wide range of diseases. However, the main hurdle in implementation of mRNA for therapeutics, the systemic delivery of mRNA molecules to target cells, remains a challenge. A feasible solution for this challenge relies in the rapidly evolving field of nucleic acid-loaded nanocarriers and specifically in the established family of lipid-based nanoparticles (LNPs). Herein, we will discuss the main factors, which determine the fate of modified mRNA (mmRNA)-loaded LNPs in-vivo, and will focus on their interactions with the innate immune system as a main consideration in the design of lipid-based mmRNA delivery platforms.
Collapse
Affiliation(s)
- Yasmin Granot
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
1381
|
Abstract
Monoclonal antibodies have a variety of applications in research and medicine. Here, we report development of a new method for production of monoclonal antibodies. Our method relies on in vivo RNA transfection rather than peptide vaccination. We took advantage of RNA transcripts complexed with DOTMA and DOPE lipids to transfect mice. Intravenous administration of our RNA vaccine to mice resulted in expression of the antigenic peptides by splenic dendritic cells and detection of the antigens in the serum. The RNA vaccine stimulated production of specific antibodies against the RNA-encoded peptides. We produced monoclonal antibodies against viral, bacterial, and human antigens. In addition, we showed that our RNA vaccine stimulated humoral immunity and rescued mice infected with influenza A virus. Our method could be used as an efficient tool to generate monoclonal antibodies and to stimulate humoral immunity for research and medical purposes.
Collapse
|
1382
|
|
1383
|
Fenton OS, Kauffman KJ, Kaczmarek JC, McClellan RL, Jhunjhunwala S, Tibbitt MW, Zeng MD, Appel EA, Dorkin JR, Mir FF, Yang JH, Oberli MA, Heartlein MW, DeRosa F, Langer R, Anderson DG. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28681930 DOI: 10.1002/adma.201606944] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Indexed: 04/14/2023]
Abstract
B lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T-cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non-Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose-dependent and time-controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells. Here, the design, synthesis, and biological evaluation of a lipid nanoparticle (LNP) system that can encapsulate mRNA, navigate to the spleen, transfect B lymphocytes, and induce more than 60 pg of protein expression per million B cells within the spleen is described. Importantly, this LNP induces more than 85% of total protein production in the spleen, despite LNPs being observed transiently in the liver and other organs. These results demonstrate that LNP composition alone can be used to modulate the site of protein induction in vivo, highlighting the critical importance of designing and synthesizing new nanomaterials for nucleic acid delivery.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Kauffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - James C Kaczmarek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca L McClellan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Siddharth Jhunjhunwala
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Mark W Tibbitt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Manhao D Zeng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Eric A Appel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Joseph R Dorkin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Faryal F Mir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jung H Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Matthias A Oberli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | | | - Frank DeRosa
- Shire Pharmaceuticals, Lexington, MA, 02421, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
1384
|
Leontovyc I, Habart D, Loukotova S, Kosinova L, Kriz J, Saudek F, Koblas T. Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain. PLoS One 2017; 12:e0182497. [PMID: 28806415 PMCID: PMC5555570 DOI: 10.1371/journal.pone.0182497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cell reprogramming requires efficient delivery of reprogramming transcription factors into the cell nucleus. Here, we compared the robustness and workload of two protein delivery methods that avoid the risk of genomic integration. The first method is based on fusion of the protein of interest to a protein transduction domain (PTD) for delivery across the membranes of target cells. The second method relies on de novo synthesis of the protein of interest inside the target cells utilizing synthetic mRNA (syn-mRNA) as a template. We established a Cre/lox reporter system in three different cell types derived from human (PANC-1, HEK293) and rat (BRIN-BD11) tissues and used Cre recombinase to model a protein of interest. The system allowed constitutive expression of red fluorescence protein (RFP), while green fluorescence protein (GFP) was expressed only after the genomic action of Cre recombinase. The efficiency of protein delivery into cell nuclei was quantified as the frequency of GFP+ cells in the total cell number. The PTD method showed good efficiency only in BRIN-BD11 cells (68%), whereas it failed in PANC-1 and HEK293 cells. By contrast, the syn-mRNA method was highly effective in all three cell types (29-71%). We conclude that using synthetic mRNA is a more robust and less labor-intensive approach than using the PTD-fusion alternative.
Collapse
Affiliation(s)
- Ivan Leontovyc
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sarka Loukotova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lucie Kosinova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kriz
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
1385
|
Suppression of mRNA Nanoparticle Transfection in Human Fibroblasts by Selected Interferon Inhibiting Small Molecule Compounds. Biomolecules 2017; 7:biom7030056. [PMID: 28758979 PMCID: PMC5618237 DOI: 10.3390/biom7030056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022] Open
Abstract
In vitro transcribed (IVT) mRNA is increasingly applied in lieu of DNA to deliver reprogramming genes to fibroblasts for stem cell derivation. However, IVT mRNA induces interferon (IFN) responses from mammalian cells that reduces transfection efficiency. It has been previously suggested that small molecule inhibitors of IFN are a viable strategy to enhance mRNA transfection efficiency. Herein, we screen a list of commercially available small molecules, including published IFN inhibitors, for their potential to enhance mRNA transfection in BJ fibroblasts. Transfection enhancement is quantified by relative mean fluorescence intensity of translated green fluorescent protein (GFP) in treated cells compared to dimethyl sulfoxide treated controls. Within toxicological constrains, all tested small molecules did not enhance mRNA transfection in BJ fibroblasts while a third of the tested compounds unexpectedly inhibited GFP expression even though IFN-β production is inhibited. Based on the results of our study, we conclude that small molecule inhibitors, including IFN inhibitors, tested in this study do not enhance in vitro mRNA transfection efficiency in human fibroblasts.
Collapse
|
1386
|
Iavarone C, O'hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 2017; 16:871-881. [PMID: 28701102 DOI: 10.1080/14760584.2017.1355245] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The present review summarizes the growing body of work defining the mechanisms of action of this exciting new vaccine technology that should allow rational approaches in the design of next generation mRNA vaccines. Areas covered: Bio-distribution of mRNA, localization of antigen production, role of the innate immunity, priming of the adaptive immune response, route of administration and effects of mRNA delivery systems. Expert commentary: In the last few years, the development of RNA vaccines had a fast growth, the rising number of proof will enable rational approaches to improving the effectiveness and safety of this modern class of medicine.
Collapse
Affiliation(s)
| | | | - Dong Yu
- a GSK Vaccines , Rockville , MD , USA
| | | | | |
Collapse
|
1387
|
Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines 2017; 16:883-894. [PMID: 28724343 DOI: 10.1080/14760584.2017.1357471] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Collapse
Affiliation(s)
| | | | - Doris Snow
- a Nanotherapeutics Inc. , Alachua , FL , USA
| | | | | |
Collapse
|
1388
|
Michel T, Luft D, Abraham MK, Reinhardt S, Salinas Medina ML, Kurz J, Schaller M, Avci-Adali M, Schlensak C, Peter K, Wendel HP, Wang X, Krajewski S. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:459-468. [PMID: 28918045 PMCID: PMC5545769 DOI: 10.1016/j.omtn.2017.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Synthetically modified mRNA is a unique bioactive agent, ideal for use in therapeutic applications, such as cancer vaccination or treatment of single-gene disorders. In order to facilitate mRNA transfections for future therapeutic applications, there is a need for the delivery system to achieve optimal transfection efficacy, perform with durable stability, and provide drug safety. The objective of our study was to comprehensively analyze the use of 3β-[N-(N',N'-dimethylaminoethane) carbamoyl](DC-Cholesterol)/dioleoylphosphatidylethanolamine (DOPE) liposomes as a potential transfection agent for modified mRNAs. Our cationic liposomes facilitated a high degree of mRNA encapsulation and successful cell transfection efficiencies. More importantly, no negative effects on cell viability or immune reactions were detected posttransfection. Notably, the liposomes had a long-acting transfection effect on cells, resulting in a prolonged protein production of alpha-1-antitrypsin (AAT). In addition, the stability of these mRNA-loaded liposomes allowed storage for 80 days, without the loss of transfection efficacy. Finally, comprehensive analysis showed that these liposomes are fully hemocompatible with fresh human whole blood. In summary, we present an extensive analysis on the use of DC-cholesterol/DOPE liposomes as mRNA delivery vehicles. This approach provides the basis of a safe and efficient therapeutic strategy in the development of successful mRNA-based drugs.
Collapse
Affiliation(s)
- Tatjana Michel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Daniel Luft
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Meike-Kristin Abraham
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany; Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sabrina Reinhardt
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martha L Salinas Medina
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Julia Kurz
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Stefanie Krajewski
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany.
| |
Collapse
|
1389
|
Guillard S, Kolasinska-Zwierz P, Debreczeni J, Breed J, Zhang J, Bery N, Marwood R, Tart J, Overman R, Stocki P, Mistry B, Phillips C, Rabbitts T, Jackson R, Minter R. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nat Commun 2017; 8:16111. [PMID: 28706291 PMCID: PMC5519984 DOI: 10.1038/ncomms16111] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Ras mutations are the oncogenic drivers of many human cancers and yet there are still no approved Ras-targeted cancer therapies. Inhibition of Ras nucleotide exchange is a promising new approach but better understanding of this mechanism of action is needed. Here we describe an antibody mimetic, DARPin K27, which inhibits nucleotide exchange of Ras. K27 binds preferentially to the inactive Ras GDP form with a Kd of 4 nM and structural studies support its selectivity for inactive Ras. Intracellular expression of K27 significantly reduces the amount of active Ras, inhibits downstream signalling, in particular the levels of phosphorylated ERK, and slows the growth in soft agar of HCT116 cells. K27 is a potent, non-covalent inhibitor of nucleotide exchange, showing consistent effects across different isoforms of Ras, including wild-type and oncogenic mutant forms. Ras is mutated in many cancers, but so far no drug targeting Ras is in clinical use despite great efforts. Here the authors structurally and functionally characterize a DARPin that potently inhibits the nucleotide exchange of Ras, which might facilitate the development of Ras-targeted therapies.
Collapse
Affiliation(s)
- Sandrine Guillard
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Paulina Kolasinska-Zwierz
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Jason Breed
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Jing Zhang
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Jon Tart
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Pawel Stocki
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Bina Mistry
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Christopher Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Terence Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ronald Jackson
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
1390
|
Lönnberg H. Synthesis of oligonucleotides on a soluble support. Beilstein J Org Chem 2017; 13:1368-1387. [PMID: 28781703 PMCID: PMC5530625 DOI: 10.3762/bjoc.13.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, H-phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and H-phosphonate chemistries are almost exclusively used on a solid support, the "outdated" P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
1391
|
Udhayakumar VK, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, Van Hoecke L, Roose K, Deswarte K, De Geest BG, Lienenklaus S, Santangelo PJ, Grooten J, McCarthy HO, De Koker S. Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide. Adv Healthc Mater 2017; 6. [PMID: 28436620 DOI: 10.1002/adhm.201601412] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/02/2017] [Indexed: 12/31/2022]
Abstract
To date, the mRNA delivery field has been heavily dominated by lipid-based systems. Reports on the use of nonlipid carriers for mRNA delivery in contrast are rare in the context of mRNA vaccination. This paper describes the potential of a cell-penetrating peptide containing the amphipathic RALA motif to deliver antigen-encoding mRNA to the immune system. RALA condenses mRNA into nanocomplexes that display acidic pH-dependent membrane disruptive properties. RALA mRNA nanocomplexes enable mRNA escape from endosomes and thereby allow expression of mRNA inside the dendritic cell cytosol. Strikingly, RALA mRNA nanocomplexes containing pseudouridine and 5-methylcytidine modified mRNA elicit potent cytolytic T cell responses against the antigenic mRNA cargo and show superior efficacy in doing so when compared to RALA mRNA nanocomplexes containing unmodified mRNA. RALA's unique sequence and structural organization are vital to act as mRNA vaccine vehicle, as arginine-rich peptide variants that lack the RALA motif show reduced mRNA complexation, impaired cellular uptake and lose the ability to transfect dendritic cells in vitro and to evoke T cell immunity in vivo.
Collapse
Affiliation(s)
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology Ghent University 9052 Ghent Belgium
| | - Joanne McCaffrey
- School of Pharmacy Queen's University Belfast BT7 1NN Belfast Northern Ireland
| | - Cian M. McCrudden
- School of Pharmacy Queen's University Belfast BT7 1NN Belfast Northern Ireland
| | - Jonathan L. Kirschman
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University Georgia Institute of Technology GA 30332 Atlanta USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University Georgia Institute of Technology GA 30332 Atlanta USA
| | - Lien Van Hoecke
- Department of Biomedical Molecular Biology Ghent University 9052 Ghent Belgium
- Medical Biotechnology Center VIB Ghent University 9052 Ghent Belgium
| | - Kenny Roose
- Department of Biomedical Molecular Biology Ghent University 9052 Ghent Belgium
- Medical Biotechnology Center VIB Ghent University 9052 Ghent Belgium
| | - Kim Deswarte
- Inflammation Research Center VIB Ghent University 9052 Ghent Belgium
- Department of Respiratory Medicine University Hospital Ghent 9052 Ghent Belgium
| | - Bruno G. De Geest
- Biopharmaceutical Technology Unit Ghent University 9052 Ghent Belgium
| | - Stefan Lienenklaus
- Department of Molecular Immunology Helmholtz Centre for Infection Research 38124 Braunschweig Germany
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University Georgia Institute of Technology GA 30332 Atlanta USA
| | - Johan Grooten
- Department of Biomedical Molecular Biology Ghent University 9052 Ghent Belgium
| | - Helen O. McCarthy
- School of Pharmacy Queen's University Belfast BT7 1NN Belfast Northern Ireland
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology Ghent University 9052 Ghent Belgium
- Medical Biotechnology Center VIB Ghent University 9052 Ghent Belgium
| |
Collapse
|
1392
|
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017; 9:60. [PMID: 28655327 PMCID: PMC5485616 DOI: 10.1186/s13073-017-0450-0] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.
Collapse
Affiliation(s)
- James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
1393
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein E, Nagy N. cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle 2017; 15:1267-75. [PMID: 26985633 DOI: 10.1080/15384101.2016.1160975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation and proliferation of T cells are tightly regulated during the immune response. We show here that kinetics of proliferation of PHA activated T cells follows the expression of cMyc. Expression of p53 is also elevated and remains high several days after activation. To investigate the role of p53 in activated T cells, its expression was further elevated with nultin-3 treatment, a small molecule that dissociates the E3 ubiquitin protein ligase MDM2 from p53. Concomitantly, cMyc expression and proliferation decreased. At the other end of the cMyc-p53 axis, inhibition of cMyc with 10058-F4 led to down regulation of p53, likely through the lower level of cMyc induced p14ARF, which is also known to dissociate the p53-MDM2 complex. Both compounds induced cell cycle arrest and apoptosis. We conclude that the feedback regulation between cMyc and p53 is important for the T cell homeostasis. We also show that the two compounds modulating p53 and cMyc levels inhibited proliferation without abolishing the cytotoxic function, thus demonstrating the dichotomy between proliferation and cytotoxicity in activated T cells.
Collapse
Affiliation(s)
- Harsha S Madapura
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden.,b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Daniel Salamon
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Klas G Wiman
- b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Sonia Lain
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Eva Klein
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Noémi Nagy
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
1394
|
Schrom E, Huber M, Aneja M, Dohmen C, Emrich D, Geiger J, Hasenpusch G, Herrmann-Janson A, Kretzschmann V, Mykhailyk O, Pasewald T, Oak P, Hilgendorff A, Wohlleber D, Hoymann HG, Schaudien D, Plank C, Rudolph C, Kubisch-Dohmen R. Translation of Angiotensin-Converting Enzyme 2 upon Liver- and Lung-Targeted Delivery of Optimized Chemically Modified mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:350-365. [PMID: 28624211 PMCID: PMC5423349 DOI: 10.1016/j.omtn.2017.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Changes in lifestyle and environmental conditions give rise to an increasing prevalence of liver and lung fibrosis, and both have a poor prognosis. Promising results have been reported for recombinant angiotensin-converting enzyme 2 (ACE2) protein administration in experimental liver and lung fibrosis. However, the full potential of ACE2 may be achieved by localized translation of a membrane-anchored form. For this purpose, we advanced the latest RNA technology for liver- and lung-targeted ACE2 translation. We demonstrated in vitro that transfection with ACE2 chemically modified messenger RNA (cmRNA) leads to robust translation of fully matured, membrane-anchored ACE2 protein. In a second step, we designed eight modified ACE2 cmRNA sequences and identified a lead sequence for in vivo application. Finally, formulation of this ACE2 cmRNA in tailor-made lipidoid nanoparticles and in lipid nanoparticles led to liver- and lung-targeted translation of significant amounts of ACE2 protein, respectively. In summary, we provide evidence that RNA transcript therapy (RTT) is a promising approach for ACE2-based treatment of liver and lung fibrosis to be tested in fibrotic disease models.
Collapse
Affiliation(s)
- Eva Schrom
- Department of Pediatrics, LMU Munich, 80802 Munich, Germany; Ethris GmbH, 82152 Planegg, Germany
| | | | | | | | | | | | | | | | | | | | | | - Prajakta Oak
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, 81377 Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, 81377 Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TU Munich, 81675 Munich, Germany
| | - Heinz-Gerd Hoymann
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Christian Plank
- Ethris GmbH, 82152 Planegg, Germany; Institute of Molecular Immunology and Experimental Oncology, TU Munich, 81675 Munich, Germany
| | - Carsten Rudolph
- Department of Pediatrics, LMU Munich, 80802 Munich, Germany; Ethris GmbH, 82152 Planegg, Germany.
| | | |
Collapse
|
1395
|
Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med 2017; 23:815-817. [PMID: 28604701 DOI: 10.1038/nm.4356] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/16/2017] [Indexed: 12/30/2022]
Abstract
The potential of bispecific T cell-engaging antibodies is hindered by manufacturing challenges and short serum half-life. We circumvented these limitations by treating mice with in vitro-transcribed pharmacologically optimized, nucleoside-modified mRNA encoding the antibody. We achieved sustained endogenous synthesis of the antibody, which eliminated advanced tumors as effectively as the corresponding purified bispecific antibody. Because manufacturing of pharmaceutical mRNA is fast, this approach could accelerate the clinical development of novel bispecific antibodies.
Collapse
|
1396
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
1397
|
Escribá PV. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1493-1506. [PMID: 28577973 DOI: 10.1016/j.bbamem.2017.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
1398
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
1399
|
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. NATURE REVIEWS. MATERIALS 2017; 2:17024. [PMID: 29075517 PMCID: PMC5654564 DOI: 10.1038/natrevmats.2017.24] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.
Collapse
Affiliation(s)
- Hongmin Chen
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
1400
|
Escribá PV. WITHDRAWN: Membrane-lipid therapy: A historical perspective of membrane-targeted therapies-From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017:S0005-2736(17)30139-6. [PMID: 28476630 DOI: 10.1016/j.bbamem.2017.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bbamem.2017.05.017. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|