101
|
Cui X, Zhao Q, Huang Z, Xiao Y, Wan Y, Li S, Lee CS. Water-Splitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004551. [PMID: 33125185 DOI: 10.1002/smll.202004551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Water-splitting has been extensively studied especially for energy applications. It is often not paid with enough attention for biomedical applications. In fact, several innovative breakthroughs have been achieved in the past few years by employing water-splitting for treating cancer and other diseases. Interestingly, among these important works, only two reports have mentioned the term "water-splitting." For this reason, the importance of water-splitting for biomedical applications is significantly underestimated. This progress work is written with the aims to explain and summarize how the principle of water-splitting is employed to achieve therapeutic results not offered by conventional approaches. It is expected that this progress report will not only explain the importance of water-splitting to scientists in the biomedical fields, it should also draw attention from scientists working on energy applications of water-splitting.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qi Zhao
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhongming Huang
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yafang Xiao
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yingpeng Wan
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
102
|
O'Brien C, Ignaszak A. Advances in the Electrochemical Treatment of Cancers and Tumors: Exploring the Current Trends, Advancements, and Mechanisms of Electrolytic Tumor Ablation. ChemElectroChem 2020. [DOI: 10.1002/celc.202000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Connor O'Brien
- Connor O'Brien Department of Chemistry University of New Brunswick 30 Dineen Drive Fredericton NB E3B 5A3
| | - Anna Ignaszak
- Department of Chemistry University of New Brunswick 30 Dineen Drive Fredericton NB E3B 5A3
| |
Collapse
|
103
|
Hao Y, Chen Y, He X, Yu Y, Han R, Li Y, Yang C, Hu D, Qian Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001853. [PMID: 33101874 PMCID: PMC7578901 DOI: 10.1002/advs.202001853] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Indexed: 02/05/2023]
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) has promising potential in the synergistic treatment of cancer. However, chemotherapy and photodynamic synergistic therapy are impeded by uncontrolled chemotherapeutics release behavior, targeting deficiencies, and hypoxia-associated poor PDT efficacy in solid tumors. Here, a platinum nanozyme (PtNP) loaded reactive oxygen species (ROS)-responsive prodrug nanoparticle (CPT-TK-HPPH/Pt NP) is created to overcome these limitations. The ROS-responsive prodrug consists of a thioketal bond linked with camptothecin (CPT) and photosensitizer-2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH). The PtNP in CPT-TK-HPPH/Pt NP can efficiently catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen to relieve hypoxia. The production of oxygen can satisfy the consumption of HPPH under 660 nm laser irradiation to attain the on-demand release of CPT and ensure enhanced photodynamic therapy. As a tumor diagnosis agent, the results of photoacoustic imaging and fluorescence imaging for CPT-TK-HPPH/Pt NP exhibit desirable long circulation and enhanced in vivo targeting. CPT-TK-HPPH/Pt NPs effectively inhibit tumor proliferation and growth in vitro and in vivo. CPT-TK-HPPH/Pt NP, with its excellent ROS-responsive drug release behavior and enhanced PDT efficiency can serve as a new cancer theranostic agent, and will further promote the research of chemophotodynamic synergistic cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yongyang Yu
- Department of Gastrointestinal SurgeryWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| |
Collapse
|
104
|
Alavi M, Webster TJ. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine (Lond) 2020; 15:2399-2410. [PMID: 32945246 DOI: 10.2217/nnm-2020-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nephrotoxicity, neurotoxicity and multidrug resistance in tumor cells can result from platinum-based anticancer (PBA) agents which can be reduced by nano formulations. Recently, novel formulations based on liposomes and cubosomes have been described as efficient strategies to overcome nephrotoxicity, ototoxicity, neurotoxicity, cardiotoxicity, hematological toxicities, hepatotoxicity and gastrointestinal toxicity as well as multidrug resistance. The co-delivery of anticancer agents concomitant with PBAs via biocompatible and biodegradable smart liposomes and cubosomes can augment therapeutic results of chemotherapy as well as radiotherapy owing to their high accessibility of surface and internal modification. For this purpose, surface, bilayer or core sections of these formulations can be functionalized by pure PBAs or modified PBAs. In this review, recent significant advances and challenges related to various liposomal and cubosomal formulations of PBA are presented in order to emphasize suitable formulations for anticancer applications with critical thoughts provided on how the field can progress.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
105
|
Lu Z, Gao J, Fang C, Zhou Y, Li X, Han G. Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen-Inductive Starvation/Electrodynamic Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001223. [PMID: 32995127 PMCID: PMC7507307 DOI: 10.1002/advs.202001223] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Indexed: 05/04/2023]
Abstract
Glucose-oxidase (GOx)-mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on-site oxygen content, and thus starvation therapy often suffers unexpected anticancer outcomes due to the intrinsic tumorous hypoxia. Herein, porous platinum nanospheres (pPts), incorporated with GOx molecules (PtGs), are synthesized to enable synergistic cancer therapy. In this system, GOx can effectively catalyze the oxidation of glucose to generate H2O2, while pPt triggers the decomposition of both endogenous and exogenous H2O2 to produce considerable content of O2 to facilitate the glucose consumption by GOx. Meanwhile, pPt induces remarkable content of intracellular reactive oxygen species (ROS) under an alternating electric field, leading to cellular oxidative stress injury and promotes apoptosis following the mechanism of electrodynamic therapy (EDT). In consequence, the PtG nanocomposite exhibits significant anticancer effect both in vitro and in vivo. This study has therefore demonstrated a fascinating therapeutic platform enabling oxygen-inductive starvation/EDT synergistic strategy for effective tumor treatment.
Collapse
Affiliation(s)
- Zijie Lu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - JiaYu Gao
- The Affiliated Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhouZhejiang310027P. R. China
| | - Chao Fang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yi Zhou
- The Affiliated Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhouZhejiang310027P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| |
Collapse
|
106
|
Zhu P, Chen Y, Shi J. Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO 3 -Mediated Piezoelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001976. [PMID: 32537778 DOI: 10.1002/adma.202001976] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound theranostics features non-invasiveness, minor energy attenuation, and high tissue-penetrating capability, and is playing ever-important roles in the diagnosis and therapy of diseases in clinics. Herein, ultrasound is employed as a microscopic pressure resource to generate reactive oxygen species (ROS) for piezocatalytic tumor therapy under catalytic mediation by piezoelectric tetragonal BaTiO3 (T-BTO). Under the ultrasonic vibration, the electrons and holes are unpaired and they are separated by the piezoelectricity, resulting in the establishment of a strong built-in electric field, which subsequently catalyzes the generation of ROS such as toxic hydroxyl (• OH) and superoxide radicals (• O2 - ) in situ for tumor eradication. This modality shows intriguing advantages over typical sonoluminescence-activated sonodynamic therapy, such as more stable sensitizers and dynamical control of redox reaction outcomes. Furthermore, according to the finite element modeling simulation, the built-in electric field is capable of modulating the band alignment to make the toxic ROS generation energetically favorable. Both detailed in vitro cellular level evaluation and in vivo tumor xenograft assessment have demonstrated that an injectable T-BTO-nanoparticles-embedded thermosensitive hydrogel will substantially induce ultrasound irradiation-triggered cytotoxicity and piezocatalytic tumor eradication, accompanied by high therapeutic biosafety in vivo.
Collapse
Affiliation(s)
- Piao Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
107
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
108
|
Berber MR, Elkhenany H, Hafez IH, El-Badawy A, Essawy M, El-Badri N. Efficient tailoring of platinum nanoparticles supported on multiwalled carbon nanotubes for cancer therapy. Nanomedicine (Lond) 2020; 15:793-808. [PMID: 32207376 DOI: 10.2217/nnm-2019-0445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Therapeutically targeting cancer stem cells (CSCs), which play a role in tumor initiation and relapse, remains challenging. Materials & methods: Novel-formulated platinum nanoparticles (Pt-NPs) supported on polybenzimidazole (PBI)-functionalized polymers and multiwalled carbon nanotubes (MWCNT) were prepared and their effect on CSCs was evaluated. Results: Pt-NPs showed homogenous distribution on the surface of MWCNT/PBI composites, with very narrow particle size. MWCNT/PBI/Pt-NPs resulted in a dramatic decrease in the proliferation rate of CSCs but not bone marrow mesenchymal stem cells (BM-MSCs). Quantitative gene expression analysis revealed that MWCNT/PBI/Pt had a significant inhibitory effect on the epithelial-mesenchymal transition and cell cycle markers of CSCs. Conclusion: MWCNT/PBI/Pt exhibited a specific cytotoxic effect on breast CSCs but not on adult stem cells.
Collapse
Affiliation(s)
- Mohamed R Berber
- Center for Nanotechnology (CNT), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.,Department of Chemistry, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Hoda Elkhenany
- Center of Excellence for Stem Cells & Regenerative Medicine (CESC), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt.,Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Inas H Hafez
- Center for Nanotechnology (CNT), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt.,Department of Natural Resources & Agricultural Engineering, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed El-Badawy
- Center of Excellence for Stem Cells & Regenerative Medicine (CESC), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells & Regenerative Medicine (CESC), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells & Regenerative Medicine (CESC), Zewail City of Science & Technology, 6th October City, Giza, 12578, Egypt
| |
Collapse
|
109
|
Wang X, Guo Z, Zhang C, Zhu S, Li L, Gu Z, Zhao Y. Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902561. [PMID: 32195085 PMCID: PMC7080545 DOI: 10.1002/advs.201902561] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Indexed: 05/15/2023]
Abstract
Emerging strategies involving nanomaterials with high-atomic-number elements have been widely developed for radiotherapy in recent years. However, the concern regarding their potential toxicity caused by long-term body retention still limits their further application. In this regard, rapidly clearable radiosensitizers are highly desired for practical cancer treatment. Thus, in this work, ultrasmall BiOI quantum dots (QDs) with efficient renal clearance characteristic and strong permeability inside solid tumor are designed to address this issue. Additionally, considering that injection methods have great influence on the biodistribution and radiotherapeutic efficacy of radiosensitizers, two common injection methods including intratumoral injection and intravenous injection are evaluated. The results exhibit that intratumoral injection can maximize the accumulation of radiosensitizers within a tumor compared to intravenous injection and further enhance radiotherapeutic efficacy. Furthermore, the radiosensitizing effect of BiOI QDs is revealed, which is not only attributed to the radiation enhancement of high-Z elements but also is owed to the •OH production via catalyzing overexpressed H2O2 within a tumor by BiOI QDs under X-ray irradiation. As a result, this work proposes a treatment paradigm to employ ultrasmall radiosensitizers integrated with local intratumoral injection to realize rapid clearance and high-efficiency radiosensitization for cancer therapy.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lele Li
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
| |
Collapse
|
110
|
Wang R, Yan C, Zhang H, Guo Z, Zhu WH. In vivo real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chem Sci 2020; 11:3371-3377. [PMID: 34122845 PMCID: PMC8157340 DOI: 10.1039/d0sc00290a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Glucose oxidase (GOD)-based synergistic cancer therapy has aroused great research interest in the context of cancer treatment due to the inherent biocompatibility and biodegradability. However, this emerging therapeutic system still lacks a strategy to predict and regulate the in vivo biocatalytic behavior of GOD in real time to minimize the side effects on normal tissues. Herein, we developed a tumor-specific cascade nanotheranostic system (BNG) that combines GOD-catalyzed oxidative stress and dual-channel fluorescent sensing, significantly improving the synergistic therapeutic efficacy with real-time feedback information. The nanotheranostic system remains completely silent in the blood circulatory system and selectively releases GOD enzymes in the tumor site, with enhanced near-infrared (NIR) fluorescence at 825 nm. Subsequently, GOD catalyzes H2O2 production, triggering cascade reactions with NIR fluorescence at 650 nm as an optical output, along with GSH depletion, enabling synergistic cancer treatment. The designed nanotheranostic system, integrated with tumor-activated cascade reactions and triggering a dual-channel output at each step, represents an insightful paradigm for precise cooperative cancer therapy.
Collapse
Affiliation(s)
- Ruofei Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Hehe Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
111
|
Li Z, Zhang T, Fan F, Gao F, Ji H, Yang L. Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. J Phys Chem Lett 2020; 11:1228-1238. [PMID: 31990196 DOI: 10.1021/acs.jpclett.9b03769] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sonodynamic therapy eliminates cancer cells with reactive oxygen species (ROS) triggered by ultrasound whose energy is spatiotemporally controllable, is safe to human tissues and organs, and penetrates deeply through tissues. Its application, however, is hindered by the scarcity of sonodynamic sensitizers. We herein demonstrate piezoelectric materials as a new source of sonodynamic sensitizers, using few-layer black phosphorus (BP) nanosheet as a model. BP nanosheet exhibited ultrasound-excited cytotoxicity to cancer cells via ROS generation, thereby suppressing tumor growth and metastasis without causing off-target toxicity in tumor-bearing mouse models. The ultrasonic wave introduces mechanical strain to the BP nanosheet, leading to piezoelectric polarization which shifts the conduction band of BP more negative than O2/·O2- while its valence band more positive than H2O/·OH, thereby accelerating the ROS production. This work identifies a new mechanism for discovering sonodynamic sensitizers and suggests BP nanosheet as an excellent sensitizer for tumor sonodynamic therapy.
Collapse
|
112
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
113
|
Wu M, Ding Y, Li L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. NANOSCALE 2019; 11:19658-19683. [PMID: 31612164 DOI: 10.1039/c9nr06651a] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive species (RS), mainly including reactive oxygen species (ROS) and reactive nitrogen species (RNS), are indispensable in a wide variety of biological processes. RS often have elevated levels in cancer cells and tumor microenvironments. They also have a dual effect on cancer: on the one hand, they promote pro-tumorigenic signaling to facilitate tumor survival and on the other hand, they promote antitumorigenic pathways to induce cell death. Excessive RS would disrupt the cellular redox homeostasis balance and show partiality as oxidants, which would cause irreversible damage to the adjacent biomolecules such as lipids, proteins and nucleic acids. The altered redox environment and the corresponding increased antioxidant capacity in cancer cells render the cells susceptible to RS-manipulated therapies, especially the augmentation of RS. With the rapid development of nanotechnology and nanomedicine, a large number of cancer therapeutic nanoplatforms have been developed to trigger RS overproduction by exogenous and/or endogenous stimulation. In this review, we highlighted the latest progress in the nanoplatforms designed for the augmentation of RS in cancer therapy. Nanoplatforms based on strategies including disabling the antioxidant defense system, photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT) were introduced. The crucial obstacles involved in these strategies, such as the light penetration limitation of PDT, relatively low RS release by SDT, and strict conditions of Fenton reaction-mediated CDT, were also discussed, and feasible solutions for improvement were proposed. Furthermore, synergistic therapies among individual therapeutic modalities such as chemotherapy, photothermal therapy, and RS-based dynamic therapies were overviewed, which contributed to achieving more optimal anticancer efficacy than linear addition. This review sheds light on the development of non-invasive cancer therapy based on RS manipulation and provides guidance for establishing promising cancer therapeutic platforms in clinical settings.
Collapse
Affiliation(s)
- Mengqi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China. and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Ding
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China and Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China. and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China and Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
114
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|