101
|
Xu X, Luo C, Zhao H, Pan Y, Zhang X, Li J, Xu L, Lei M, Walsh PJ. Rhodium(III)-Catalyzed C-H Bond Functionalization of 2-Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation. Chemistry 2021; 27:8811-8821. [PMID: 33871117 DOI: 10.1002/chem.202101074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Cp*Rh(III)-catalyzed chelation-assisted direct C-H bond functionalization of 1-(2-pyridyl)-2-pyridones with internal alkynes that can be controlled to give three different products in good yields has been realized. Depending on the reaction conditions, solvents and additives, the reaction pathway can be switched between alkenylation, alkenylation/directing group migration and rollover annulation. These reaction manifolds allow divergent access to a variety of valuable C6-alkenylated 1-(2-pyridyl)-2-pyridones, (Z)-6-(1,2-diaryl-2-(pyridin-2-yl)vinyl)pyridin-2(1H)-ones and 10H-pyrido[1,2-a][1,8]naphthyridin-10-ones from the same starting materials. These protocols exhibit excellent regio- and stereoselectivity, broad substrate scope, and good tolerance of functional groups. A combination of experimental and computational approaches have been employed to uncover the key mechanistic features of these reactions.
Collapse
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenguang Luo
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xin Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Jiajie Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
102
|
Wang L, Jiang K, Zhang N, Zhang Z. Rhodium‐Catalyzed Synthesis of Isoquinolino[1,2‐
b
]Quinazolines
via
C−H Annulation in Biomass‐Derived
γ
‐Valerolactone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Wang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Kuan‐chang Jiang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| | - Nana Zhang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Zhi‐hui Zhang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| |
Collapse
|
103
|
Ochiai S, Sakai A, Usuki Y, Kang B, Shinada T, Satoh T. Synthesis of Indenones through Rhodium(III)-catalyzed [3+2] Annulation Utilizing a Recyclable Carbazolyl Leaving Group. CHEM LETT 2021. [DOI: 10.1246/cl.200884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiho Ochiai
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Asumi Sakai
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuro Shinada
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
104
|
Michikita R, Usuki Y, Satoh T. Synthesis of 7‐Phenylindole Derivatives through Rhodium‐Catalyzed Dehydrogenative Coupling of 2‐(Acetylamino)‐1,1’‐biphenyls with Alkynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryudai Michikita
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yoshinosuke Usuki
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Tetsuya Satoh
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
105
|
Liu Z, Guo S, Wang P, Yan Z, Mu T. Oxidative annulations via double CH bond cleavages: Approach to quinoline derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering Taizhou University Taizhou China
| | - Shien Guo
- State‐Province Joint Engineering Laboratory of Zeolite Membrane Materials Institute of Advanced Materials (IAM) Nanchang China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang China
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering Taizhou University Taizhou China
| | - Tiancheng Mu
- Department of Chemistry Renmin University of China Beijing China
| |
Collapse
|
106
|
Zhou J, Li ZH, Pan JL, Chen C, Ma XF, He Y, Ding TM, Zhang SY. DFT and experimental studies on Rh(III)-catalyzed dual directing-groups-assisted [3+2] annulation and ring-opening of N‑aryloxyacetamides with 1-(phenylethynyl)cycloalkanol. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
107
|
Shankar M, Saha A, Sau S, Ghosh A, Gandon V, Sahoo AK. Harnessing sulfur and nitrogen in the cobalt(iii)-catalyzed unsymmetrical double annulation of thioamides: probing the origin of chemo- and regio-selectivity. Chem Sci 2021; 12:6393-6405. [PMID: 34084439 PMCID: PMC8115082 DOI: 10.1039/d1sc00765c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
An unconventional cobalt(iii)-catalyzed one-pot domino double annulation of aryl thioamides with unactivated alkynes is presented. Sulfur (S), nitrogen (N), and o,o'-C-H bonds of aryl thioamides are involved in this reaction, enabling access to rare 6,6-fused thiopyrano-isoquinoline derivatives. A reverse 'S' coordination over a more conventional 'N' coordination of thioamides to the Co-catalyst specifically regulates the formation of four [C-C and C-S at first and then C-N and C-C] bonds in a single operation, a concept which is uncovered for the first time. The power of the N-masked methyl phenyl sulfoximine (MPS) directing group in this annulation sequence is established. The transformation is successfully developed, building a novel chemical space of structural diversity (56 examples). In addition, the late-stage annulation of biologically relevant motifs and drug candidates is disclosed (17 examples). The preliminary photophysical properties of thiopyrano-isoquinoline derivatives are discussed. Density functional theory (DFT) studies authenticate the participation of a unique 6π-electrocyclization of a 7-membered S-chelated cobaltacycle in the annulation process.
Collapse
Affiliation(s)
- Majji Shankar
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Arijit Saha
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Somratan Sau
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Arghadip Ghosh
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad Hyderabad India
| |
Collapse
|
108
|
Kumon T, Wu J, Shimada M, Yamada S, Agou T, Fukumoto H, Kubota T, Hammond GB, Konno T. Cobalt-Catalyzed C-H Activation/Annulation of Benzamides with Fluorine-Containing Alkynes: A Route to 3- and 4-Fluoroalkylated Isoquinolinones. J Org Chem 2021; 86:5183-5196. [PMID: 33725448 DOI: 10.1021/acs.joc.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The C-H activation/annulation reaction of various benzamides with fluoroalkylated alkynes in the presence of a Co(acac)2·2H2O catalyst proceeded very smoothly to give the corresponding 3- and 4-fluoroalkylated isoquinolinones in excellent yields with approximately 70% regioselectivities. These regioisomers could be successfully separated and obtained in pure form. Major or minor regioisomers were determined as 4- or 3-fluoroalkylated isoquinolinones, respectively, based on X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Tatsuya Kumon
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jianyan Wu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Miroku Shimada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomohiro Agou
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Hiroki Fukumoto
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Toshio Kubota
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
109
|
Jiang L, Wang Z, Armstrong M, Suero MG. β-Diazocarbonyl Compounds: Synthesis and their Rh(II)-Catalyzed 1,3 C-H Insertions. Angew Chem Int Ed Engl 2021; 60:6177-6184. [PMID: 33275325 DOI: 10.1002/anie.202015077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Herein, we describe the first electrophilic diazomethylation of ketone silyl enol ethers with diazomethyl-substituted hypervalent iodine reagents that gives access to unusual β-diazocarbonyl compounds. The potential of this unexplored class of diazo compounds for the development of new reactions was demonstrated by the discovery of a rare Rh-catalyzed intramolecular 1,3 C-H carbene insertion that led to complex cyclopropanes with excellent stereocontrol.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
110
|
Da Concepción E, Fernández I, Mascareñas JL, López F. Highly Enantioselective Cobalt-Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angew Chem Int Ed Engl 2021; 60:8182-8188. [PMID: 33464693 DOI: 10.1002/anie.202015202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Indexed: 11/10/2022]
Abstract
Low-valent cobalt complexes equipped with chiral ligands can efficiently promote highly enantioselective (3+2) cycloadditions of alkyne-tethered alkylidenecyclopropanes. The annulation allows to assemble bicyclic systems containing five-membered rings in good yields and with excellent enantiomeric ratios. We also present a mechanistic discussion based on experimental and computational data, which support the involvement of CoI /CoIII catalytic cycles.
Collapse
Affiliation(s)
- Eduardo Da Concepción
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), 36080, Pontevedra, Spain
| |
Collapse
|
111
|
Dana S, Sureshbabu P, Giri CK, Baidya M. Ruthenium(II)‐Catalyzed C−H Activation/Annulation of Aromatic Hydroxamic Acid Esters with Enamides Leading to Aminal Motifs. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Suman Dana
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Popuri Sureshbabu
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Chandan Kumar Giri
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
112
|
Zhang X, Zhang B, Li X. Rhodium-Catalyzed Redox-Neutral Olefination of Aryldiazenes with Acrylate Esters via C-H Activation and Transfer Hydrogenation. Org Lett 2021; 23:1687-1691. [PMID: 33591194 DOI: 10.1021/acs.orglett.1c00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rh(III)-catalyzed redox-neutral C-H olefination of aryldiazenecarboxylates has been realized using arylate esters as the olefinating reagents. This reaction proceeds under mild and redox-neutral conditions, resulting in integration of C-H activation and transfer hydrogenation. The chemoselectivity complements that of previously reported rhodium-catalyzed coupling of the same substrates.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
113
|
Da Concepción E, Fernández I, Mascareñas JL, López F. Highly Enantioselective Cobalt‐Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eduardo Da Concepción
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
114
|
González JM, Cendón B, Mascareñas JL, Gulías M. Kinetic Resolution of Allyltriflamides through a Pd-Catalyzed C-H Functionalization with Allenes: Asymmetric Assembly of Tetrahydropyridines. J Am Chem Soc 2021; 143:3747-3752. [PMID: 33651598 PMCID: PMC8459456 DOI: 10.1021/jacs.1c01929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioenriched, six-membered azacycles are essential structural motifs in many products of pharmaceutical or agrochemical interest. Here we report a simple and practical method for enantioselective assembly of tetrahydropyridines, which is paired to a kinetic resolution of α-branched allyltriflamides. The reaction consists of a formal (4+2) cycloaddition between the allylamine derivatives and allenes and is initiated by a palladium(II)-catalyzed C-H activation process. Both the chiral allylamide precursors and the tetrahydropyridine adducts were successfully obtained in high yields, with excellent enantioselectivity (up to 99% ee) and selectivity values of up to 127.
Collapse
Affiliation(s)
- José Manuel González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Borja Cendón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
115
|
Hazra S, Hirano K, Miura M. Rhodium-Catalyzed C4-Selective C-H Alkenylation of 2-Pyridones by Traceless Directing Group Strategy. Org Lett 2021; 23:1388-1393. [PMID: 33555184 DOI: 10.1021/acs.orglett.1c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A rhodium-catalyzed C4-selective C-H alkenylation of 3-carboxy-2-pyridones with styrenes has been developed. The carboxylic group at the C3 position works as the traceless directing group, and the corresponding C4-alkenylated 2-pyridones are obtained exclusively with concomitant decarboxylation. Unlike the reported procedures, the exclusive C4 selectivity is uniformly observed even in the presence of potentially more reactive C-H bonds at the C5 and C6 positions. By using this strategy, the multiply substituted 2-pyridone can be prepared via sequential C-H functionalization reactions.
Collapse
Affiliation(s)
- Sunit Hazra
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
116
|
Huang T, Wang T, Shi Y, Chen J, Guo X, Lai R, Liu X, Wu Z, Peng D, Wang L, Li H, Hai L, Wu Y. Rh(III)-Catalyzed C-H Olefination Cascades to Divergently Construct Diverse Polyheterocycles by Tuning Manipulations of Directing Groups. Org Lett 2021; 23:1548-1553. [PMID: 33606549 DOI: 10.1021/acs.orglett.0c04155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the diversity created by nature, organic chemists have been using a divergent strategy to improve the synthetic efficiency of diverse molecules. Transition-metal-catalyzed C-H functionalization has become one of the most straightforward, powerful, and atom-economical methods to construct complex scaffolds. However, C-H activation initiated divergent transformation to prepare diverse molecules is still limited. To address this challenge, we herein developed Rh(III)-catalyzed C-H olefination/annulation reaction cascades to divergently construct diverse polyheterocycles by tuning manipulations of directing groups (DGs). Up to 9 distinct scaffolds were creatively synthesized under simple conditions with good functional group tolerance, chemo-, and regioselectivity. Such a versatile strategy and its extension may encourage researchers to discover more promising manipulations of DGs for transition-metal-catalyzed C-H bond activation, making diverse available targets and materials that would have been previously out of range.
Collapse
Affiliation(s)
- Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuexin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhouping Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongxue Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Longyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
117
|
Gogoi K, Bora BR, Borah G, Sarma B, Gogoi S. Synthesis of quaternary carbon-centered indolo[1,2- a]quinazolinones and indazolo[1,2- a]indazolones via C-H functionalization. Chem Commun (Camb) 2021; 57:1388-1391. [PMID: 33438711 DOI: 10.1039/d0cc07419e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented Ru(ii)-catalyzed Csp2-H bond activation and annulation reaction of phenylindazolones with diaryl-substituted alkynes and dialkyl-substituted alkynes provided efficient routes for the construction of all-carbon quaternary-centered indolo[1,2-a]quinazolinones and quaternary carbon-centered indazolo[1,2-a]indazolones, respectively. The indolo[1,2-a]quinazolinones were fomed via Csp2-H activation, alkyne insertion and a 1,2-phenyl shift. Indazolo[1,2-a]indazolones were formed through a cascade reaction via the formation of exocyclic double bonds containing indolo[1,2-a]quinazolinones.
Collapse
Affiliation(s)
- Kongkona Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Bidisha R Bora
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| | - Geetika Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India
| |
Collapse
|
118
|
Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Divergent rhodium-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes. Nat Commun 2021; 12:930. [PMID: 33568643 PMCID: PMC7876044 DOI: 10.1038/s41467-021-21190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
α-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C-H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C-H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.
Collapse
Affiliation(s)
- Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
119
|
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rafia Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
120
|
|
121
|
Jiang L, Wang Z, Armstrong M, Suero MG. β‐Diazocarbonyl Compounds: Synthesis and their Rh(II)‐Catalyzed 1,3 C−H Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marcos G. Suero
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
122
|
Shinde VN, Rangan K, Kumar D, Kumar A. Rhodium(III)-Catalyzed Dehydrogenative Annulation and Spirocyclization of 2-Arylindoles and 2-(1H-Pyrazol-1-yl)-1H-indoles with Maleimides: A Facile Access to Isogranulatimide Alkaloid Analogues. J Org Chem 2021; 86:2328-2338. [DOI: 10.1021/acs.joc.0c02467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vikki N. Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
123
|
Zhao F, Gong X, Lu Y, Qiao J, Jia X, Ni H, Wu X, Zhang X. Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3H-Pyrrolo[1,2-a]indol-3-ones via Rhodium Catalysis. Org Lett 2021; 23:727-733. [DOI: 10.1021/acs.orglett.0c03950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hangcheng Ni
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
124
|
Lyu H, Quan Y, Cheng B, Xie Z. Rhodium catalyzed multicomponent dehydrogenative annulation: one-step construction of isoindole derivatives. Chem Commun (Camb) 2021; 57:7930-7933. [PMID: 34286747 DOI: 10.1039/d1cc03424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A strategy for one-pot synthesis of isoindoles is described via a catalytic multicomponent dehydrogenative annulation of diarylimines, vinyl ketones and simple amines. In the presence of a rhodium catalyst and Cu oxidant, four C-H and two N-H bonds are activated along with the formation of one new C-C and two new C-N bonds, leading to a series of isoindole derivatives in good to very high isolated yields.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Biao Cheng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
125
|
Zhou J, Yin C, Zhong T, Zheng X, Yi X, Chen J, Yu C. A direct synthesis method towards spirocyclic indazole derivatives via Rh( iii)-catalyzed C–H activation and spiroannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00805f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(iii)-catalyzed [4 + 1] spiroannulation of N-aryl phthalazine-diones (pyridazine-diones) with diazo compounds to construct spirocyclic indazole derivatives with diverse structures is described.
Collapse
Affiliation(s)
- Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| |
Collapse
|
126
|
Li SY, Zhang X, Teng F, Li Y, Li JH. Rh(iii)-Catalyzed [3 + 2]/[4 + 2] annulation of acetophenone oxime ethers with 3-acetoxy-1,4-enynes involving C–H activation. Org Chem Front 2021. [DOI: 10.1039/d1qo00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel, synthetically simple, selective rhodium(iii)-catalyzed [3 + 2]/[4 + 2] annulation cascade reaction to construct complex azafluorenone frameworks has been developed.
Collapse
Affiliation(s)
- Sun-Yong Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
127
|
Wang NX, Xing Y, Zhang LY, Wu YH. C(sp3)–H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert-Butyl Hydroperoxide as a Radical Initiator. Synlett 2021. [DOI: 10.1055/s-0040-1706406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The C(sp3)–H bond is found widely in organic molecules. Recently, the functionalization of C(sp3)–H bonds has developed into a powerful tool for augmenting highly functionalized frameworks in organic synthesis. Based on the results obtained in our group, the present account mainly summarizes recent progress on the functionalization of C(sp3)–H bonds of aliphatic alcohols, ketones, alkyl nitriles, and ethers with styrene or cinnamic acid using tert-butyl hydroperoxide (TBHP) as a radical initiator.1 Introduction2 Oxidative Coupling of Styrenes with C(sp3)–H Bonds3 Decarboxylative Cross-Couplings of α,β-Unsaturated Carboxylic Acids with C(sp3)–H Bonds4 Conclusions
Collapse
Affiliation(s)
- Nai-Xing Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
| |
Collapse
|
128
|
Zhang J, Xu Q, Fan J, Zhou L, Liu N, Zhu L, Wu J, Xie M. Pd(ii)-Catalyzed enantioconvergent twofold C–H annulation to access atropisomeric aldehydes: a platform for diversity-oriented-synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00183c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first Pd(ii)-catalyzed atroposelective dual C–H annulative strategy for diverse synthesis of functionalized axially chiral biaryls was developed.
Collapse
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Qiaoqiao Xu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Lan Zhou
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Nannan Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Li Zhu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
129
|
Zhao Q, Choy PY, Li L, Kwong FY. Recent explorations of palladium-catalyzed regioselective aromatic extension processes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
130
|
Chen J, Zhong T, Zheng X, Yin C, Zhang L, Zhou J, Jiang X, Yu C. Selective Synthesis of Fused Tricyclic [1,3]oxazino[3,4‐
a
]indolone and Dihydropyrimido [1,6‐a]indolone
via
Rh(III)‐catalyzed [3+3] or [4+2] C−H Annulation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junyu Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lei Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jian Zhou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
131
|
Chen X, Yan L, Liu Y, Yang Y, You J. Switchable cascade C-H annulation to polycyclic pyryliums and pyridiniums: discovering mitochondria-targeting fluorescent probes. Chem Commun (Camb) 2020; 56:15080-15083. [PMID: 33206731 DOI: 10.1039/d0cc06997c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disclosed herein is a counterion additive-switched rhodium-catalyzed cascade triple C-H annulation of 4-hydroxy-1-naphthaldehydes with alkynes, in which six chemical bonds are formed in one-pot. This reaction enables the rapid assembly of diverse polycyclic pyrylium and pyridinium fluorophores, which leads to two specific mitochondria-labeling reagents with low cytotoxicity and superior photostability.
Collapse
Affiliation(s)
- Xingyu Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | | | | | | | | |
Collapse
|
132
|
Yoshimoto R, Morisaka H, Usuki Y, Shibata Y, Tanaka K, Satoh T. Synthesis of CF3-Containing Isoindolinone Derivatives through Rhodium-catalyzed Oxidative Coupling of Benzamides with 2-Trifluoromethylacrylate. CHEM LETT 2020. [DOI: 10.1246/cl.200609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Risa Yoshimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideaki Morisaka
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yu Shibata
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
133
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
134
|
Wu X, Lu Y, Qiao J, Dai W, Jia X, Ni H, Zhang X, Liu H, Zhao F. Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes. Org Lett 2020; 22:9163-9168. [DOI: 10.1021/acs.orglett.0c03077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| |
Collapse
|
135
|
Shinde VN, Kanchan Roy T, Jaspal S, Nipate DS, Meena N, Rangan K, Kumar D, Kumar A. Rhodium(III)‐Catalyzed Annulation of 2‐Arylimidazo[1,2‐
a
]pyridines with Maleimides: Synthesis of 1
H
‐Benzo[
e
]pyrido[1′,2′:1,2]imidazo[4,5‐
g
]isoindole‐1,3(2
H
)‐Diones and their Photophysical Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vikki N. Shinde
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya Suchani J&K 181143 India
| | - Sonam Jaspal
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Dhananjay S. Nipate
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Neha Meena
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Krishnan Rangan
- Department of Chemistry Birla Institute of Technology and Science Pilani, Hyderbad Campus Hyderabad Telangana 500078 India
| | - Dalip Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| |
Collapse
|
136
|
Xu S, Hirano K, Miura M. Pd-Catalyzed Regioselective C–H Alkenylation and Alkynylation of Allylic Alcohols with the Assistance of a Bidentate Phenanthroline Auxiliary. Org Lett 2020; 22:9059-9064. [DOI: 10.1021/acs.orglett.0c03444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shibo Xu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
137
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
138
|
Song L, Van der Eycken EV. Transition Metal-Catalyzed Intermolecular Cascade C-H Activation/Annulation Processes for the Synthesis of Polycycles. Chemistry 2020; 27:121-144. [PMID: 32530508 DOI: 10.1002/chem.202002110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Polycycles are abundantly present in numerous advanced chemicals, functional materials, bioactive molecules and natural products. However, the strategies for the synthesis of polycycles are limited to classical reactions and transition metal-catalyzed cross-coupling reactions, requiring pre-functionalized starting materials and lengthy synthetic operations. The emergence of novel approaches shows great promise for the fields of organic/medicinal/materials chemistry. Among them, transition metal-catalyzed C-H activation followed by intermolecular annulation reactions prevail, due to their straightforward manner with high atom- and step-economy, providing rapid, concise and efficient methods for the construction of diverse polycycles. Several strategies have been developed for the synthesis of polycycles, relying on sequential multiple C-H activation/annulation, or combination of C-H activation/annulation and further interaction with a proximal group, or merger of C-H activation with a cycloaddition reaction, or in situ formation of the directing group. These are attractive, efficient, step- and atom-economic methods starting from commercially available materials. This Minireview will provide an introduction to transition metal-catalyzed C-H activation for the synthesis of polycycles, helping researchers to discover indirect connections and reveal hidden opportunities. It will also promote the discovery of novel synthetic strategies relying on C-H activation.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| |
Collapse
|
139
|
Velasco‐Rubio Á, Varela JA, Saá C. Recent Advances in Transition‐Metal‐Catalyzed Oxidative Annulations to Benzazepines and Benzodiazepines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Álvaro Velasco‐Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jesús A. Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
140
|
Shu Z, Zhou J, Li J, Cheng Y, Liu H, Wang D, Zhou Y. Rh(III)-Catalyzed Dual C-H Functionalization/Cyclization Cascade by a Removable Directing Group: A Method for Synthesis of Polycyclic Fused Pyrano[ de]Isochromenes. J Org Chem 2020; 85:12097-12107. [PMID: 32894019 DOI: 10.1021/acs.joc.0c01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An interesting Rh(III)-catalyzed dual C-H functionalization/cyclization cascade of azomethine imine with diazophosphonate by a removable directing group for the synthesis of highly fused pyrano[de]isochromene has been achieved. The transformation shows that the desired pyrano[de]isochromenes with two oxygen atoms on its core scaffold could be constructed with good to excellent yields (up to 86%) via a facile one-pot, multiple-step cascade reaction, along with broad generality and versatility.
Collapse
Affiliation(s)
- Zhihao Shu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.,State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Junyou Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilang Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.,State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
141
|
Song L, Zhang X, Tang X, Van Meervelt L, Van der Eycken J, Harvey JN, Van der Eycken EV. Ruthenium-catalyzed cascade C-H activation/annulation of N-alkoxybenzamides: reaction development and mechanistic insight. Chem Sci 2020; 11:11562-11569. [PMID: 34094402 PMCID: PMC8162874 DOI: 10.1039/d0sc04434b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation. A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.![]()
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiaoyong Zhang
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiao Tang
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology Gardens Point Campus Brisbane QLD 4001 Australia
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Jeremy N Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium .,Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
142
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
143
|
Li S, Liu L, Wang R, Yang Y, Li J, Wei J. Palladium-Catalyzed Oxidative Annulation of Sulfoximines and Arynes by C–H Functionalization as an Approach to Dibenzothiazines. Org Lett 2020; 22:7470-7474. [DOI: 10.1021/acs.orglett.0c02615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Liansheng Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rong Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yihui Yang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
144
|
Dey A, Volla CMR. Traceless Bidentate Directing Group Assisted Cobalt-Catalyzed sp2-C–H Activation and [4 + 2]-Annulation Reaction with 1,3-Diynes. Org Lett 2020; 22:7480-7485. [DOI: 10.1021/acs.orglett.0c02664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
145
|
Jiang KC, Wang L, Chen Q, He MY, Shen MG, Zhang ZH. Rh(III)−catalyzed synthesis of isoquinolines from N-hydroxyoximes and alkynes in γ-valerolactone. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1819326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kuan-Chang Jiang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Liang Wang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Qun Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Ming-Yang He
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Ming-Gui Shen
- National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, China
| | - Zhi-Hui Zhang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| |
Collapse
|
146
|
Zhou J, Zhang L, Chen J, Chen J, Yin C, Yu C. Rh(III)-catalyzed [4+1] annulation and ring opening for the synthesis of pyrazolo[1,2-a] indazole bearing a quaternary carbon. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
147
|
Chen Z, Jin S, Jiang W, Zhu F, Chen Y, Zhao Y. Multicomponent Synthesis of Iminocoumarins via Rhodium-Catalyzed C-H Bond Activation. J Org Chem 2020; 85:11006-11013. [PMID: 32672469 DOI: 10.1021/acs.joc.0c01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We herein establish a multicomponent annulation method for the synthesis of valuable iminocoumarins using aryl thiocarbamates, internal alkynes, and sulfonamides as starting materials, which are safe and readily available. The key step is a Rh-catalyzed and sulfur-directed C-H bond activation. Preliminary mechanistic investigations suggested that the nucleophilic attack of the sulfonamide on an active iminium cation finally completes the imine segment.
Collapse
Affiliation(s)
- Zhan Chen
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| | - Shengnan Jin
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| | - Wenyao Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| | - Feimin Zhu
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| | - Yuqi Chen
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| | - Yingwei Zhao
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, P. R. China
| |
Collapse
|
148
|
Ghosh K, Rit RK, Shankar M, Mukherjee K, Sahoo AK. Directing Group Assisted Unsymmetrical Multiple Functionalization of Arene C-H Bonds. CHEM REC 2020; 20:1017-1042. [PMID: 32779389 DOI: 10.1002/tcr.202000063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Multiple C-H bond functionalizations promptly install diverse groups on the molecular framework and consequently fabricate complex molecular entities. This review briefly surveys the conceptual development of directing group assisted unsymmetrical multiple functionalization of arene C(sp2 )-H bonds, which is exceedingly appealing and highly important.
Collapse
Affiliation(s)
- Koushik Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Raja K Rit
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Majji Shankar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
149
|
Kanchupalli V, Shukla RK, Singh A, Volla CMR. Rh(III)-Catalyzed Redox-Neutral Cascade Annulation of Benzamides with p
-Quinone Methides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vinaykumar Kanchupalli
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Rahul K. Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Anurag Singh
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Chandra M. R. Volla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
150
|
Zhu X, Guo R, Zhang X, Gao Y, Jia Q, Wang Y. Iron‐Promoted Domino Dehydrogenative Annulation of Deoxybenzoins and Alkynes Leading to β‐Aryl‐α‐Naphthols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue‐Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| | - Rui‐Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| | - Xing‐Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| | - Ya‐Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| | - Yong‐Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationSchool of Foreign LanguagesCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 People's Republic of China
| |
Collapse
|