101
|
Kang SW, Madkour M, Kuenzel WJ. Tissue-Specific Expression of DNA Methyltransferases Involved in Early-Life Nutritional Stress of Chicken, Gallus gallus. Front Genet 2017; 8:204. [PMID: 29270191 PMCID: PMC5723639 DOI: 10.3389/fgene.2017.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
DNA methylation was reported as a possible stress-adaptation mechanism involved in the transcriptional regulation of stress responsive genes. Limited data are available on effects of psychological stress and early-life nutritional stress on DNA methylation regulators [DNMTs: DNA (cytosine-5)-methyltransferase 1 (DNMT1), DNMT1 associated protein (DMAP1), DNMT 3 alpha (DNMT3A) and beta (DNMT3B)] in avian species. The objectives of this study were to: (1) investigate changes in expression of DNMT1, DMAP1, DNMT3A, and DNMT3B following acute (AS) or chronic immobilization stress (CS); (2) test immediate effect of early-life nutritional stress [food deprivation (FD) for 12 h (12hFD) or 36 h (36hFD) at the post-hatching period] on expression of DNA methylation regulators and glucocorticoid receptor (GR), and the long-term effect of early-life nutritional stress at 6 weeks of age. Expression of DNMTs and plasma corticosterone (CORT) concentration decreased by CS compared to AS (p < 0.05), indicating differential roles of DNA methylation regulators in the stress response. Plasma CORT at 12hFD and 36hFD birds increased compared to control birds (12hF and 36hF), but there were no significant differences in plasma CORT of 12hFD and 36hFD birds at 6 weeks of age compared to 6 week controls. DNMT1, DMAP1, and DNMT3B expression in the anterior pituitary increased by 12hFD, but decreased at 36hFD compared to their controls (P < 0.05). In liver, DNMT1, DNMT3A, and DNMT3B expression decreased by 12hFD, however, no significant changes occurred at 36hFD. Expression of DMAP1, DNMT3A, and DNMT3B in anterior pituitary and DMAP1 and DNMT3A expression in liver at 6 weeks of age were higher in 36hFD stressed birds compared to controls as well as 12hFD stressed birds. Hepatic GR expression decreased by 12hFD and increased by 36hFD (p < 0.05). Expression patterns of GR in the liver of FD stress-induced birds persisted until 6 weeks of age, suggesting the possible lifelong involvement of liver GR in early-life nutritional stress response of birds. Taken together, results suggest that DNA methylation regulator genes are tissue-specifically responsive to acute and chronic stress, and hepatic GR may play a critical role in regulating the early-life nutritional stress response of birds. In addition, the downregulation of DNMT1 and DMAP1 may be one of the adaptive mechanisms to chronic early-life nutritional stress via passive demethylation.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| | - Mahmoud Madkour
- Department of Animal Production, National Research CenterGiza, Egypt
| | - Wayne J. Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| |
Collapse
|
102
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
103
|
Periyasamy M, Singh AK, Gemma C, Kranjec C, Farzan R, Leach DA, Navaratnam N, Pálinkás HL, Vértessy BG, Fenton TR, Doorbar J, Fuller-Pace F, Meek DW, Coombes RC, Buluwela L, Ali S. p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res 2017; 45:11056-11069. [PMID: 28977491 PMCID: PMC5737468 DOI: 10.1093/nar/gkx721] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/30/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022] Open
Abstract
Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis.
Collapse
Affiliation(s)
- Manikandan Periyasamy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Anup K. Singh
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Carolina Gemma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Christian Kranjec
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Raed Farzan
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Damien A. Leach
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Naveenan Navaratnam
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Hajnalka L. Pálinkás
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
- Laboratory of Genome Metabolism and Repair, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Beata G. Vértessy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
- Laboratory of Genome Metabolism and Repair, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Tim R. Fenton
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Frances Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - David W. Meek
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - R. Charles Coombes
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Laki Buluwela
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
104
|
Slyvka A, Mierzejewska K, Bochtler M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Sci Rep 2017; 7:9001. [PMID: 28827588 PMCID: PMC5566547 DOI: 10.1038/s41598-017-07458-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023] Open
Abstract
Thymine DNA glycosylase (TDG) and Nei-like 1 (NEIL1) have both been implicated in the base excision repair step of active DNA demethylation. The robust glycosylase activity of TDG on DNA substrates containing 5-formylcytosine (5fC) or 5-carboxylcytosine (5caC) is universally accepted, but the mode of action of NEIL1 is still debated. Based on genetic experiments, it has been suggested that NEIL1 acts redundantly with TDG and excises 5fC and 5caC directly. However, this result has been disputed, and it was suggested instead that NEIL1 is recruited by the monofunctional TDG for the 2′-deoxyribose excision step. Using purified human NEIL1 and its catalytically impaired P2T and E3Q variants as controls, we detect NEIL1 activity on 5caC, but not a 5fC containing dsDNA substrate. We confirm direct NEIL1 TDG binding and NEIL1 mediated 2′-deoxyribose excision downstream of TDG glycosylase activity. NEIL1 acts not only downstream of TDG, but also enhances TDG activity on 5fC or 5caC containing DNA. NEIL1 mediated enhancement of the TDG glycosylase activity is substrate specific and does not occur for dsDNA with a T/G mismatch.
Collapse
Affiliation(s)
- Anton Slyvka
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Karolina Mierzejewska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland. .,Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
105
|
Gatta E, Auta J, Gavin DP, Bhaumik DK, Grayson DR, Pandey SC, Guidotti A. Emerging Role of One-Carbon Metabolism and DNA Methylation Enrichment on δ-Containing GABAA Receptor Expression in the Cerebellum of Subjects with Alcohol Use Disorders (AUD). Int J Neuropsychopharmacol 2017; 20:1013-1026. [PMID: 29020412 PMCID: PMC5716183 DOI: 10.1093/ijnp/pyx075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cerebellum is an area of the brain particularly sensitive to the effects of acute and chronic alcohol consumption. Alcohol exposure decreases cerebellar Purkinje cell output by increasing GABA release from Golgi cells onto extrasynaptic α6/δ-containing GABAA receptors located on glutamatergic granule cells. Here, we studied whether chronic alcohol consumption induces changes in GABAA receptor subunit expression and whether these changes are associated with alterations in epigenetic mechanisms via DNA methylation. METHODS We used a cohort of postmortem cerebellum from control and chronic alcoholics, here defined as alcohol use disorders subjects (n=25/group). S-adenosyl-methionine/S-adenosyl-homocysteine were measured by high-performance liquid chromatography. mRNA levels of various genes were assessed by reverse transcriptase-quantitative polymerase chain reaction. Promoter methylation enrichment was assessed using methylated DNA immunoprecipitation and hydroxy-methylated DNA immunoprecipitation assays. RESULTS mRNAs encoding key enzymes of 1-carbon metabolism that determine the S-adenosyl-methionine/S-adenosyl-homocysteine ratio were increased, indicating higher "methylation index" in alcohol use disorder subjects. We found that increased methylation of the promoter of the δ subunit GABAA receptor was associated with reduced mRNA and protein levels in the cerebellum of alcohol use disorder subjects. No changes were observed in α1- or α6-containing GABAA receptor subunits. The expression of DNA-methyltransferases (1, 3A, and 3B) was unaltered, whereas the mRNA level of TET1, which participates in the DNA demethylation pathway, was decreased. Hence, increased methylation of the δ subunit GABAA receptor promoter may result from alcohol-induced reduction of DNA demethylation. CONCLUSION Together, these results support the hypothesis that aberrant DNA methylation pathways may be involved in cerebellar pathophysiology of alcoholism. Furthermore, this work provides novel evidence for a central role of DNA methylation mechanisms in the alcohol-induced neuroadaptive changes of human cerebellar GABAA receptor function.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - James Auta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - David P Gavin
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dulal K Bhaumik
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dennis R Grayson
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Subhash C Pandey
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Alessandro Guidotti
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey),Correspondence: Alessandro Guidotti, MD, Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| |
Collapse
|
106
|
Kantidze OL, Razin SV. 5-hydroxymethylcytosine in DNA repair: A new player or a red herring? Cell Cycle 2017; 16:1499-1501. [PMID: 28745936 DOI: 10.1080/15384101.2017.1346761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Active DNA demethylation performed by ten-eleven translocation (TET) enzymes produces 5-hydroxymethylcytosines, 5-formylcytosines, and 5-carboxylcytosines. Recent observations suggest that 5-hydroxymethylcytosine is a stable epigenetic mark rather than merely an intermediate of DNA demethylation. However, the clear functional role of this new epigenetic player is elusive. The contribution of 5-hydroxymethylation to DNA repair is being discussed currently. Recently, Jiang and colleagues have demonstrated that DNA damage response-activated ATR kinase phosphorylates TET3 in mammalian cells and promotes DNA demethylation and 5-hydroxymethylcytosine accumulation. Moreover, TET3 catalytic activity is important for proper DNA repair and cell survival. Here, we discuss recent studies on the potential role of 5-hydroxymethylation in DNA repair and genome integrity maintenance.
Collapse
Affiliation(s)
- Omar L Kantidze
- a Institute of Gene Biology RAS , Moscow , Russia.,b LIA1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| | - Sergey V Razin
- a Institute of Gene Biology RAS , Moscow , Russia.,b LIA1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| |
Collapse
|
107
|
Rahimoff R, Kosmatchev O, Kirchner A, Pfaffeneder T, Spada F, Brantl V, Müller M, Carell T. 5-Formyl- and 5-Carboxydeoxycytidines Do Not Cause Accumulation of Harmful Repair Intermediates in Stem Cells. J Am Chem Soc 2017; 139:10359-10364. [PMID: 28715893 DOI: 10.1021/jacs.7b04131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-Formyl-dC (fdC) and 5-carboxy-dC (cadC) are newly discovered bases in the mammalian genome that are supposed to be substrates for base excision repair (BER) in the framework of active demethylation. The bases are recognized by the monofunctional thymine DNA glycosylase (Tdg), which cleaves the glycosidic bond of the bases to give potentially harmful abasic sites (AP-sites). Because of the turnover of fdC and cadC during cell state transitions, it is an open question to what extent such harmful AP-sites may accumulate during these processes. Here, we report the development of a new reagent that in combination with mass spectrometry (MS) allows us to quantify the levels of AP-sites. This combination also allowed the quantification of β-elimination (βE) products, which are repair intermediates of bifunctional DNA glycosylases. In combination with feeding of isotopically labeled nucleosides, we were able to trace the intermediates back to their original nucleobases. We show that, while the steady-state levels of fdC and cadC are substantially increased in Tdg-deficient cells, those of both AP- and βE-sites are unaltered. The levels of the detected BER intermediates are 1 and 2 orders of magnitude lower than those of cadC and fdC, respectively. Thus, neither the presence of fdC nor that of cadC in stem cells leads to the accumulation of harmful AP- and βE-site intermediates.
Collapse
Affiliation(s)
- René Rahimoff
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Olesea Kosmatchev
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Angie Kirchner
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Toni Pfaffeneder
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Fabio Spada
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Victor Brantl
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Markus Müller
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, LMU Munich , Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
108
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
109
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
110
|
Abstract
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.
Collapse
|
111
|
Parrilla-Doblas JT, Ariza RR, Roldán-Arjona T. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics 2017; 12:296-303. [PMID: 28277978 DOI: 10.1080/15592294.2017.1294306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells.
Collapse
Affiliation(s)
- Jara Teresa Parrilla-Doblas
- a Maimónides Biomedical Research Institute of Córdoba (IMIBIC) , Córdoba , Spain.,b University of Córdoba , Córdoba , Spain.,c Reina Sofia University Hospital , Córdoba , Spain
| | - Rafael R Ariza
- a Maimónides Biomedical Research Institute of Córdoba (IMIBIC) , Córdoba , Spain.,b University of Córdoba , Córdoba , Spain.,c Reina Sofia University Hospital , Córdoba , Spain
| | - Teresa Roldán-Arjona
- a Maimónides Biomedical Research Institute of Córdoba (IMIBIC) , Córdoba , Spain.,b University of Córdoba , Córdoba , Spain.,c Reina Sofia University Hospital , Córdoba , Spain
| |
Collapse
|