101
|
Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol 2008; 28:4310-9. [PMID: 18443037 DOI: 10.1128/mcb.00200-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the wealth of information available on the biochemical functions and our recent findings of its roles in genome stability and cancer avoidance of the structure-specific flap endonuclease 1 (FEN1), its cellular compartmentalization and dynamics corresponding to its involvement in various DNA metabolic pathways are not yet elucidated. Several years ago, we demonstrated that FEN1 migrates into the nucleus in response to DNA damage and under certain cell cycle conditions. In the current paper, we found that FEN1 is superaccumulated in the nucleolus and plays a role in the resolution of stalled DNA replication forks formed at the sites of natural replication fork barriers. In response to UV irradiation and upon phosphorylation, FEN1 migrates to nuclear plasma to participate in the resolution of UV cross-links on DNA, most likely employing its concerted action of exonuclease and gap-dependent endonuclease activities. Based on yeast complementation experiments, the mutation of Ser(187)Asp, mimicking constant phosphorylation, excludes FEN1 from nucleolar accumulation. The replacement of Ser(187) by Ala, eliminating the only phosphorylation site, retains FEN1 in nucleoli. Both of the mutations cause UV sensitivity, impair cellular UV damage repair capacity, and decline overall cellular survivorship.
Collapse
|
102
|
Kim I, Hur NW, Shin HD, Park BL, Cheong HS, Bae SC. Associations of DNase IV polymorphisms with autoantibodies in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2008; 47:996-9. [DOI: 10.1093/rheumatology/ken125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
103
|
Saharia A, Guittat L, Crocker S, Lim A, Steffen M, Kulkarni S, Stewart SA. Flap endonuclease 1 contributes to telomere stability. Curr Biol 2008; 18:496-500. [PMID: 18394896 PMCID: PMC2367431 DOI: 10.1016/j.cub.2008.02.071] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
Abstract
Telomere stability plays an important role in the preservation of genomic stability and is maintained through the coordinated actions of telomere-specific proteins and DNA repair and replication proteins [1, 2]. Flap endonuclease 1 (FEN1) is a protein that plays a role in lagging-strand DNA replication, base excision repair, homologous recombination, and reinitiation of stalled replication forks [3, 4]. Here, we demonstrate that FEN1 depletion leads to telomere dysfunction characterized by the presence of gammaH2AX and sister telomere loss. Expression of catalytically active telomerase, the reverse transcriptase that adds telomeric repeats to chromosome ends, was sufficient to rescue telomere dysfunction upon FEN1 depletion. Strikingly, FEN1 depletion exclusively abrogates telomeres replicated by lagging-strand DNA replication. Genetic rescue experiments utilizing FEN1 mutant proteins that retained the ability to localize to telomeric repeats revealed that FEN1's nuclease activity and ability to interact with the Werner protein (WRN) and telomere-binding protein (TRF2) were required for FEN1 activity at the telomere. Given FEN1's role in lagging-strand DNA replication and reinitiation of stalled replication forks, we propose that FEN1 contributes to telomere stability by ensuring efficient telomere replication.
Collapse
Affiliation(s)
- Abhishek Saharia
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Guo Z, Chavez V, Singh P, Finger LD, Hang H, Hegde ML, Mitra S, Shen B. Comprehensive mapping of the C-terminus of flap endonuclease-1 reveals distinct interaction sites for five proteins that represent different DNA replication and repair pathways. J Mol Biol 2008; 377:679-90. [PMID: 18291413 PMCID: PMC2680686 DOI: 10.1016/j.jmb.2007.10.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 11/22/2022]
Abstract
Flap endonuclease-1 (FEN-1) is a multifunctional and structure-specific nuclease that plays a critical role in maintaining human genome stability through RNA primer removal, long-patch base excision repair, resolution of DNA secondary structures and stalled DNA replication forks, and apoptotic DNA fragmentation. How FEN-1 is involved in multiple pathways, of which some are seemingly contradictory, is of considerable interest. To date, at least 20 proteins are known to interact with FEN-1; some form distinct complexes that affect one or more FEN-1 activities presumably to direct FEN-1 to a particular DNA metabolic pathway. FEN-1 consists of a nuclease core domain and a C-terminal extension. While the core domain harbors the nuclease activity, the C-terminal extension may be important for protein-protein interactions. Here, we have truncated or mutated the C-terminus of FEN-1 to identify amino acid residues that are critical for interaction with five proteins representing roles in different DNA replication and repair pathways. We found with all five proteins that the C-terminus is important for binding and that each protein uses a subset of amino acid residues. Replacement of one or more residues with an alanine in many cases leads to the complete loss of interaction, which may consequently lead to severe biological defects in mammals.
Collapse
Affiliation(s)
- Zhigang Guo
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
| | - Valerie Chavez
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
- Graduate School of Biological Sciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
| | - Purnima Singh
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
| | - L. David Finger
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
| | - Haiying Hang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Muralidhar L. Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010
| |
Collapse
|
105
|
Devos JM, Tomanicek SJ, Jones CE, Nossal NG, Mueser TC. Crystal structure of bacteriophage T4 5' nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates. J Biol Chem 2007; 282:31713-24. [PMID: 17693399 DOI: 10.1074/jbc.m703209200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 RNase H, a flap endonuclease-1 family nuclease, removes RNA primers from lagging strand fragments. It has both 5' nuclease and flap endonuclease activities. Our previous structure of native T4 RNase H (PDB code 1TFR) revealed an active site composed of highly conserved Asp residues and two bound hydrated magnesium ions. Here, we report the crystal structure of T4 RNase H in complex with a fork DNA substrate bound in its active site. This is the first structure of a flap endonuclease-1 family protein with its complete branched substrate. The fork duplex interacts with an extended loop of the helix-hairpin-helix motif class 2. The 5' arm crosses over the active site, extending below the bridge (helical arch) region. Cleavage assays of this DNA substrate identify a primary cut site 7-bases in from the 5' arm. The scissile phosphate, the first bond in the duplex DNA adjacent to the 5' arm, lies above a magnesium binding site. The less ordered 3' arm reaches toward the C and N termini of the enzyme, which are binding sites for T4 32 protein and T4 45 clamp, respectively. In the crystal structure, the scissile bond is located within the double-stranded DNA, between the first two duplex nucleotides next to the 5' arm, and lies above a magnesium binding site. This complex provides important insight into substrate recognition and specificity of the flap endonuclease-1 enzymes.
Collapse
Affiliation(s)
- Juliette M Devos
- Department of Chemistry, The University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | |
Collapse
|
106
|
Miyoshi T, Nagai T, Kikuchi S, Ohmine K, Nakamura M, Hanafusa T, Komatsu N, Ozawa K. Cloning and characterization of a human BCR/ABL-positive cell line, K562/RR, resistant to the farnesyltransferase inhibition by tipifarnib. Exp Hematol 2007; 35:1358-65. [PMID: 17656006 DOI: 10.1016/j.exphem.2007.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 05/24/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Results of previous studies have suggested that tipifarnib (Zarnestra), a farnesyltransferase inhibitor, is useful for treating various hematological disorders, including chronic myeloid leukemia. However, acquisition of resistance may be a problem for patients being treated with tipifarnib. METHODS We generated a tipifarnib-resistant BCR/ABL-positive cell line, K562/RR, and examined its characteristics. RESULTS While levels of cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, and cleaved poly (ADP-ribose) polymerase were significantly increased in K562 cells, the levels were not changed in K562/RR cells with tipifarnib treatment, indicating that induction of apoptosis signaling mediated by tipifarnib is much less in K562/RR cells than in K562 cells. In addition, tipifarnib-mediated induction of cell-cycle blockage was abrogated in K562/RR cells. No mutation of farnesyltransferase alpha and beta genes was found and the level of unprocessed HDJ-2, which is a substrate of farnesyltransferase, was increased by tipifarnib treatment in K562/RR cells, suggesting that tipifarnib inhibits protein farnesylation in K562/RR cells in the same manner as in K562 cells and that mechanisms independent of farnesyltransferase activity are involved in the acquisition of resistance to tipifarnib in these cells. By DNA microarray analyses using a cDNA microarray comprising 25,000 genes, we identified 5 genes with higher expression levels in K562/RR cells than in K562 cells. These genes include beta-globin, calcium channel Caveolin 2, and FEN1, which is involved in DNA replication and repair, and CUGBP2, which may affect expression of cyclooxygenase 2. CONCLUSION The results of this study provide useful information for clarification of the mechanisms of resistance to tipifarnib.
Collapse
Affiliation(s)
- Takuji Miyoshi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Kanai Y, Ishikawa G, Takeuchi R, Ruike T, Nakamura RI, Ihara A, Ohashi T, Takata KI, Kimura S, Sakaguchi K. DmGEN shows a flap endonuclease activity, cleaving the blocked-flap structure and model replication fork. FEBS J 2007; 274:3914-27. [PMID: 17614965 DOI: 10.1111/j.1742-4658.2007.05924.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster XPG-like endonuclease (DmGEN) is a new category of nuclease belonging to the RAD2/XPG family. The DmGEN protein has two nuclease domains (N and I domains) similar to XPG/class I nucleases; however, unlike class I nucleases, in DmGEN these two nuclease domains are positioned close to each other as in FEN-1/class II and EXO-1/class III nucleases. To confirm the properties of DmGEN, we characterized the active-site mutant protein (E143A E145A) and found that DmGEN had flap endonuclease activity. DmGEN possessed weak nick-dependent 5'-3' exonuclease activity. Unlike XPG, DmGEN could not incise the bubble structure. Interestingly, based on characterization of flap endonuclease activity, DmGEN preferred the blocked-flap structure as a substrate. This feature is distinctly different from FEN-1. Furthermore, DmGEN cleaved the lagging strand of the model replication fork. Immunostaining revealed that DmGEN was present in the nucleus of actively proliferating Drosophila embryos. Thus, our studies revealed that DmGEN belongs to a new class (class IV) of the RAD2/XPG nuclease family. The biochemical properties of DmGEN and its possible role are also discussed.
Collapse
Affiliation(s)
- Yoshihiro Kanai
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Zheng L, Dai H, Zhou M, Li M, Singh P, Qiu J, Tsark W, Huang Q, Kernstine K, Zhang X, Lin D, Shen B. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 2007; 13:812-9. [PMID: 17589521 DOI: 10.1038/nm1599] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/01/2007] [Indexed: 11/08/2022]
Abstract
Functional deficiency of the FEN1 gene has been suggested to cause genomic instability and cancer predisposition. We have identified a group of FEN1 mutations in human cancer specimens. Most of these mutations abrogated two of three nuclease activities of flap endonuclease 1 (FEN1). To demonstrate the etiological significance of these somatic mutations, we inbred a mouse line harboring the E160D mutation representing mutations identified in human cancers. Selective elimination of nuclease activities led to frequent spontaneous mutations and accumulation of incompletely digested DNA fragments in apoptotic cells. The mutant mice were predisposed to autoimmunity, chronic inflammation and cancers. The mutator phenotype results in the initiation of cancer, whereas chronic inflammation promotes the cancer progression. The current work exemplifies the approach of studying the mechanisms of individual polymorphisms and somatic mutations in cancer development, and may serve as a reference in developing new therapeutic regimens through the suppression of inflammatory responses.
Collapse
Affiliation(s)
- Li Zheng
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zheng L, Dai H, Qiu J, Huang Q, Shen B. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol Cell Biol 2007; 27:3176-86. [PMID: 17283043 PMCID: PMC1899923 DOI: 10.1128/mcb.01652-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between flap endonuclease 1 (FEN-1) and proliferation cell nuclear antigen (PCNA) is critical for faithful and efficient Okazaki fragment maturation. In a living cell, this interaction is probably important for PCNA to load FEN-1 to the replication fork, to coordinate the sequential functions of FEN-1 and other enzymes, and to stimulate its enzyme activity. The FEN-1/PCNA interaction is mediated by the motif (337)QGRLDDFFK(345) of FEN-1, such that an F343AF344A (FFAA) mutant cannot bind to PCNA but retains its nuclease activities. To determine the physiological roles of the FEN-1/PCNA interaction in a mammalian system, we knocked the FFAA Fen1 mutation into the Fen1 gene locus of mice. FFAA/FFAA mouse embryo fibroblasts underwent DNA replication and division at a slower pace, and FFAA/FFAA mutant embryos displayed significant defects in growth and development, particularly in the lung and blood systems. All newborn FFAA mutant pups died at birth, likely due to pulmonary hypoplasia and pancytopenia. Collectively, our data demonstrate the importance of the FEN-1/PCNA complex in DNA replication and in the embryonic development of mice.
Collapse
Affiliation(s)
- Li Zheng
- City of Hope National Medical Center, Department of Molecular Biology, 1500 East Duarte Rd., Duarte, CA 91010, USA.
| | | | | | | | | |
Collapse
|
110
|
Jaiswal AS, Balusu R, Armas ML, Kundu CN, Narayan S. Mechanism of adenomatous polyposis coli (APC)-mediated blockage of long-patch base excision repair. Biochemistry 2006; 45:15903-14. [PMID: 17176113 PMCID: PMC2528549 DOI: 10.1021/bi0607958] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we found an interaction between adenomatous polyposis coli (APC) and DNA polymerase beta (pol-beta) and showed that APC blocks strand-displacement synthesis of long-patch base excision repair (LP-BER) (Narayan, S., Jaiswal, A. S., and Balusu, R. (2005) J. Biol. Chem. 280, 6942-6949); however, the mechanism is not clear. Using an in vivo LP-BER assay system, we now show that the LP-BER is higher in APC-/- cells than in APC+/+ cells. In addition to pol-beta, the pull-down experiments showed that the full-length APC also interacted with flap endonuclease 1 (Fen-1). To further characterize the interaction of APC with pol-beta and Fen-1, we performed a domain-mapping of APC and found that both pol-beta and Fen-1 interact with a 138-amino acids peptide from the APC at the DRI-domain. Our functional assays showed that APC blocks pol-beta-mediated 1-nucleotide (1-nt) as well as strand-displacement synthesis of reduced abasic, nicked-, or 1-nt gapped-DNA substrates. Further studies demonstrated that APC blocks 5'-flap endonuclease as well as the 5'-3' exonuclease activity of Fen-1 resulting in the blockage of LP-BER. From these results, we concluded that APC can have three different effects on the LP-BER pathway. First, APC can block pol-beta-mediated 1-nt incorporation and strand-displacement synthesis. Second, APC can block LP-BER by blocking the coordinated formation and removal of the strand-displaced flap. Third, APC can block LP-BER by blocking hit-and-run synthesis. These studies will have important implications for APC in DNA damage-induced carcinogenesis and chemoprevention.
Collapse
Affiliation(s)
- Aruna S. Jaiswal
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Ramesh Balusu
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Melissa L. Armas
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Chanakya N. Kundu
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
111
|
Singh P, Zheng L, Chavez V, Qiu J, Shen B. Concerted action of exonuclease and Gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n- and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. J Biol Chem 2006; 282:3465-77. [PMID: 17138563 DOI: 10.1074/jbc.m606582200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is much evidence to indicate that FEN-1 efficiently cleaves single-stranded DNA flaps but is unable to process double-stranded flaps or flaps adopting secondary structures. However, the absence of Fen1 in yeast results in a significant increase in trinucleotide repeat (TNR) expansion. There are then two possibilities. One is that TNRs do not always form stable secondary structures or that FEN-1 has an alternative approach to resolve the secondary structures. In the present study, we test the hypothesis that concerted action of exonuclease and gap-dependent endonuclease activities of FEN-1 play a role in the resolution of secondary structures formed by (CTG)n and (GAA)n repeats. Employing a yeast FEN-1 mutant, E176A, which is deficient in exonuclease (EXO) and gap endonuclease (GEN) activities but retains almost all of its flap endonuclease (FEN) activity, we show severe defects in the cleavage of various TNR intermediate substrates. Precise knock-in of this point mutation causes an increase in both the expansion and fragility of a (CTG)n tract in vivo. Taken together, our biochemical and genetic analyses suggest that although FEN activity is important for single-stranded flap processing, EXO and GEN activities may contribute to the resolution of structured flaps. A model is presented to explain how the concerted action of EXO and GEN activities may contribute to resolving structured flaps, thereby preventing their expansion in the genome.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
112
|
Da Silva M, Shen L, Tcherepanov V, Watson C, Upton C. Predicted function of the vaccinia virus G5R protein. ACTA ACUST UNITED AC 2006; 22:2846-50. [PMID: 17021162 DOI: 10.1093/bioinformatics/btl506] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MOTIVATION Of the approximately 200 proteins that have been identified for the vaccinia virus (VACV) genome, many are currently listed as having an unknown function, and seven of these are also found in all other poxvirus genomes that have been sequenced. The G5R protein of VACV is included in this list, and to date, very little is known about this essential and highly conserved protein. Conventional similarity searches of protein databases do not identify significantly similar proteins, and experimental approaches have been unsuccessful at determining protein function. RESULTS Using HHsearch, a hidden Markov model (HMM) comparison search tool, the G5R protein was found to be similar to both human and archaeal flap endonucleases (FEN-1) with 96% probability. The G5R protein structure was subsequently successfully modeled using the Robetta protein structure prediction server with an archaeal FEN-1 as the template. The G5R model was then compared to the human FEN-1 crystal structure and was found to be structurally similar to human FEN-1 in both active site residues and DNA substrate binding regions.
Collapse
Affiliation(s)
- Melissa Da Silva
- Department of Biochemistry and Microbiology, University of Victoria Petch Building 207, Ring Road, Victoria, BC, V8P 5C2, Canada
| | | | | | | | | |
Collapse
|
113
|
Lopes J, Ribeyre C, Nicolas A. Complex minisatellite rearrangements generated in the total or partial absence of Rad27/hFEN1 activity occur in a single generation and are Rad51 and Rad52 dependent. Mol Cell Biol 2006; 26:6675-89. [PMID: 16914748 PMCID: PMC1592832 DOI: 10.1128/mcb.00649-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genomes contain tandem repeat blocks that are at risk of expansion or contraction. The mechanisms of destabilization of the human minisatellite CEB1 (arrays of 36- to 43-bp repeats) were investigated in a previously developed model system, in which CEB1-0.6 (14 repeats) and CEB1-1.8 (42 repeats) alleles were inserted into the genome of Saccharomyces cerevisiae. As in human cells, CEB1 is stable in mitotically growing yeast cells but is frequently rearranged in the absence of the Rad27/hFEN1 protein involved in Okazaki fragments maturation. To gain insight into this mode of destabilization, the CEB1-1.8 and CEB1-0.6 human alleles and 47 rearrangements derived from a CEB1-1.8 progenitor in rad27Delta cells were sequenced. A high degree of polymorphism of CEB1 internal repeats was observed, attesting to a large variety of homology-driven rearrangements. Simple deletion, double deletion, and highly complex events were observed. Pedigree analysis showed that all rearrangements, even the most complex, occurred in a single generation and were inherited equally by mother and daughter cells. Finally, the rearrangement frequency was found to increase with array size, and partial complementation of the rad27Delta mutation by hFEN1 demonstrated that the production of novel CEB1 alleles is Rad52 and Rad51 dependent. Instability can be explained by an accumulation of unresolved flap structures during replication, leading to the formation of recombinogenic lesions and faulty repair, best understood by homology-dependent synthesis-strand displacement and annealing.
Collapse
Affiliation(s)
- Judith Lopes
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, UMR7147 CNRS UPMC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
114
|
van den Broek WJAA, Nelen MR, van der Heijden GW, Wansink DG, Wieringa B. Fen1does not control somatic hypermutability of the (CTG)n· (CAG)nrepeat in a knock-in mouse model for DM1. FEBS Lett 2006; 580:5208-14. [PMID: 16978612 DOI: 10.1016/j.febslet.2006.08.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/16/2022]
Abstract
The mechanism of trinucleotide repeat expansion, an important cause of neuromuscular and neurodegenerative diseases, is poorly understood. We report here on the study of the role of flap endonuclease 1 (Fen1), a structure-specific nuclease with both 5' flap endonuclease and 5'-3' exonuclease activity, in the somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat of the DMPK gene in a mouse model for myotonic dystrophy type 1 (DM1). By intercrossing mice with Fen1 deficiency with transgenics with a DM1 (CTG)(n)*(CAG)(n) repeat (where 104n110), we demonstrate that Fen1 is not essential for faithful maintenance of this repeat in early embryonic cleavage divisions until the blastocyst stage. Additionally, we found that the frequency of somatic DM1 (CTG)(n)*(CAG)(n) repeat instability was essentially unaltered in mice with Fen1 haploinsufficiency up to 1.5 years of age. Based on these findings, we propose that Fen1, despite its role in DNA repair and replication, is not primarily involved in maintaining stability at the DM1 locus.
Collapse
Affiliation(s)
- Walther J A A van den Broek
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
115
|
Liu R, Qiu J, Finger LD, Zheng L, Shen B. The DNA-protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations. Nucleic Acids Res 2006; 34:1772-84. [PMID: 16582103 PMCID: PMC1421507 DOI: 10.1093/nar/gkl106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 02/14/2006] [Accepted: 03/08/2006] [Indexed: 11/14/2022] Open
Abstract
Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5'-flap endo- (FEN) and 5'-3' exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.
Collapse
Affiliation(s)
- Ren Liu
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
- Graduate Program in Biological Sciences, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
| | - Junzhuan Qiu
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
| | - L. David Finger
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
| | - Li Zheng
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
| | - Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
- Graduate Program in Biological Sciences, City of Hope National Medical Center and Beckman Research InstituteDuarte, CA 91010, USA
| |
Collapse
|