101
|
Cui LB, Fu YF, Liu L, Wu XS, Xi YB, Wang HN, Qin W, Yin H. Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. Eur J Neurosci 2020; 53:1961-1975. [PMID: 33206423 DOI: 10.1111/ejn.15046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Multimodal neuroimaging features provide opportunities for accurate classification and personalized treatment options in the psychiatric domain. This study aimed to investigate whether brain features predict responses to the overall treatment of schizophrenia at the end of the first or a single hospitalization. Structural and functional magnetic resonance imaging (MRI) data from two independent samples (N = 85 and 63, separately) of schizophrenia patients at baseline were included. After treatment, patients were classified as responders and non-responders. Radiomics features of gray matter morphology and functional connectivity were extracted using Least Absolute Shrinkage and Selection Operator. Support vector machine was used to explore the predictive performance. Prediction models were based on structural features (cortical thickness, surface area, gray matter regional volume, mean curvature, metric distortion, and sulcal depth), functional features (functional connectivity), and combined features. There were 12 features after dimensionality reduction. The structural features involved the right precuneus, cuneus, and inferior parietal lobule. The functional features predominately included inter-hemispheric connectivity. We observed a prediction accuracy of 80.38% (sensitivity: 87.28%; specificity 82.47%) for the model using functional features, and 69.68% (sensitivity: 83.96%; specificity: 72.41%) for the one using structural features. Our model combining both structural and functional features achieved a higher accuracy of 85.03%, with 92.04% responder and 80.23% non-responders to the overall treatment to be correctly predicted. These results highlight the power of structural and functional MRI-derived radiomics features to predict early response to treatment in schizophrenia. Prediction models of the very early treatment response in schizophrenia could augment effective therapeutic strategies.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
102
|
Bolton TA, Morgenroth E, Preti MG, Van De Ville D. Tapping into Multi-Faceted Human Behavior and Psychopathology Using fMRI Brain Dynamics. Trends Neurosci 2020; 43:667-680. [DOI: 10.1016/j.tins.2020.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
103
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
104
|
Itani S, Rossignol M. At the Crossroads Between Psychiatry and Machine Learning: Insights Into Paradigms and Challenges for Clinical Applicability. Front Psychiatry 2020; 11:552262. [PMID: 33192664 PMCID: PMC7541948 DOI: 10.3389/fpsyt.2020.552262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sarah Itani
- Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium.,Department of Mathematics and Operations Research, Faculty of Engineering, University of Mons, Mons, Belgium
| | - Mandy Rossignol
- Department of Cognitive Psychology and Neuropsychology, Faculty of Psychology and Education, University of Mons, Mons, Belgium
| |
Collapse
|