101
|
Baroudi A, Karton A. Deciphering the exceptional selectivity of semipinacol rearrangements in cis-fused β-lactam diols using high-level quantum chemical methods. Org Chem Front 2019. [DOI: 10.1039/c8qo01092g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The semipinacol rearrangement mechanism in cis-fused β-lactam diols has been found to kinetically and thermodynamically favor acyl migration. The semipinacol rearrangement was also investigated for trans-fused β-lactam diol, in which the reversed selectivity that favors the alkyl migration was observed.
Collapse
Affiliation(s)
- Abdulkader Baroudi
- College of Engineering and Technology
- American University of the Middle East
- Kuwait
| | - Amir Karton
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| |
Collapse
|
102
|
Karton A. Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods. Aust J Chem 2019. [DOI: 10.1071/ch19276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJmol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0kcalmol−1 (1kcalmol−1=4.184kJmol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJmol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z+CCSD/jul-cc-pVTZ+(T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11kJmol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJmol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64kJmol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38kJmol−1).
Collapse
|
103
|
Morgante P, Peverati R. ACCDB: A collection of chemistry databases for broad computational purposes. J Comput Chem 2018; 40:839-848. [DOI: 10.1002/jcc.25761] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 11/11/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Pierpaolo Morgante
- Chemistry Program; Florida Institute of Technology, 150 W. University Blvd.; Melbourne Florida, 32901
| | - Roberto Peverati
- Chemistry Program; Florida Institute of Technology, 150 W. University Blvd.; Melbourne Florida, 32901
| |
Collapse
|
104
|
Zhao Y, Xia L, Liao X, He Q, Zhao MX, Truhlar DG. Extrapolation of high-order correlation energies: the WMS model. Phys Chem Chem Phys 2018; 20:27375-27384. [PMID: 30357169 DOI: 10.1039/c8cp04973d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new composite model chemistry method called WMS (Wuhan-Minnesota scaling method) with three characteristics: (1) a composite scheme to approximate the complete configuration interaction valence energy with the affordability condition of requiring no calculation more expensive than CCSD(T)/jul-cc-pV(T+d)Z, (2) low-cost methods for the inner-shell correlation contribution and scalar relativistic correction, and (3) accuracy comparable to methods with post-CCSD(T) components. The new method is shown to be accurate for the W4-17 database of 200 atomization energies with an average mean unsigned error (averaged with equal weight over strongly correlated and weakly correlated subsets of the data) of 0.45 kcal mol-1, and the performance/cost ratio of these results compares very favorably to previously available methods. We also assess the WMS method against the DBH24-W4 database of diverse barrier heights and the energetics of the reactions of three strongly correlated Criegee intermediates with water. These results demonstrate that higher-order correlation contributions necessary to obtain high accuracy for molecular thermochemistry may be successfully extrapolated from the lower-order components of CCSD(T) calculations, and chemical accuracy can now be obtained for larger and more complex molecules and reactions.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
105
|
Thirumoorthy K, Karton A, Thimmakondu VS. From High-Energy C7H2 Isomers with A Planar Tetracoordinate Carbon Atom to An Experimentally Known Carbene. J Phys Chem A 2018; 122:9054-9064. [DOI: 10.1021/acs.jpca.8b08809] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Venkatesan S. Thimmakondu
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403 726, India
| |
Collapse
|
106
|
Kesharwani MK, Sylvetsky N, Köhn A, Tew DP, Martin JML. Do CCSD and approximate CCSD-F12 variants converge to the same basis set limits? The case of atomization energies. J Chem Phys 2018; 149:154109. [PMID: 30342453 DOI: 10.1063/1.5048665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the title question is a clear "yes" from purely theoretical arguments, the case is less clear for practical calculations with finite (one-particle) basis sets. To shed further light on this issue, the convergence to the basis set limit of CCSD (coupled cluster theory with all single and double excitations) and of different approximate implementations of CCSD-F12 (explicitly correlated CCSD) has been investigated in detail for the W4-17 thermochemical benchmark. Near the CBS ([1-particle] complete basis set) limit, CCSD and CCSD(F12*) agree to within their respective uncertainties (about ±0.04 kcal/mol) due to residual basis set incompleteness error, but a nontrivial difference remains between CCSD-F12b and CCSD(F12*), which is roughly proportional to the degree of static correlation. The observed basis set convergence behavior results from the superposition of a rapidly converging, attractive, CCSD[F12]-CCSD-F12b difference (consisting mostly of third-order terms) and a more slowly converging, repulsive, fourth-order difference between CCSD(F12*) and CCSD[F12]. For accurate thermochemistry, we recommend CCSD(F12*) over CCSD-F12b if at all possible. There are some indications that the nZaPa family of basis sets exhibits somewhat smoother convergence than the correlation consistent family.
Collapse
Affiliation(s)
- Manoj K Kesharwani
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Andreas Köhn
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
107
|
Croce AE, Cobos CJ. Quantum-chemical and kinetic study of the reactions of the ClSO2 radical with H, O, Cl, S, SCl and ClSO2 in the atmosphere of Venus. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
108
|
Martin JML, Sylvetsky N. A simple model for scalar relativistic corrections to molecular total atomisation energies. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1509147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, Reḥovot, Israel
| | - Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, Reḥovot, Israel
| |
Collapse
|
109
|
Solel E, Kozuch S. Tuning the Spin, Aromaticity, and Quantum Tunneling in Computationally Designed Fulvalenes. J Org Chem 2018; 83:10826-10834. [DOI: 10.1021/acs.joc.8b01541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ephrath Solel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
110
|
Karton A. Post-CCSD(T) contributions to total atomization energies in multireference systems. J Chem Phys 2018; 149:034102. [DOI: 10.1063/1.5036795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
111
|
Sylvetsky N, Martin JML. Probing the basis set limit for thermochemical contributions of inner-shell correlation: balance of core-core and core-valence contributions. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1478140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, Reḥovot, Israel
| |
Collapse
|
112
|
Sylvetsky N, Kesharwani MK, Martin JML. The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. J Chem Phys 2017; 147:134106. [DOI: 10.1063/1.4998332] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Manoj K. Kesharwani
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
113
|
Řezáč J. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. J Chem Theory Comput 2017; 13:4804-4817. [DOI: 10.1021/acs.jctc.7b00629] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
114
|
Feller D, Bross DH, Ruscic B. Enthalpy of Formation of N2H4 (Hydrazine) Revisited. J Phys Chem A 2017; 121:6187-6198. [DOI: 10.1021/acs.jpca.7b06017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Feller
- Department
of Chemistry Washington State University, Pullman, Washington 99164-4630, United States
| | - David H. Bross
- Chemical
Sciences and Engineering Division Argonne National Laboratory Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical
Sciences and Engineering Division Argonne National Laboratory Argonne, Illinois 60439, United States
- Computation
Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|