101
|
Shirzadi Z, Crane DE, Robertson AD, Maralani PJ, Aviv RI, Chappell MA, Goldstein BI, Black SE, MacIntosh BJ. Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: A clinical arterial spin labeling investigation. J Magn Reson Imaging 2015; 42:1377-85. [PMID: 25873287 DOI: 10.1002/jmri.24918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition. MATERIALS AND METHODS Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner. ASL intermediate CBF images were included based on their contribution to the mean estimate, with the goal to maximize CBF detectability in gray matter (GM). Simulations were conducted to evaluate the performance of the proposed optimization procedure relative to other ASL postprocessing approaches. Clinical CBF images were also assessed visually by two experienced neuroradiologists. RESULTS Optimized CBF images (CBFopt ) had significantly greater agreement with a synthetic ground truth CBF image and greater CBF detectability relative to the other ASL analysis methods (P < 0.05). Moreover, empirical CBFopt images showed a significantly improved signal-to-noise ratio relative to CBF images obtained from other postprocessing approaches (mean: 12.6%; range 1% to 56%; P < 0.001), and this improvement was age-dependent (P = 0.03). Differences between CBF images from different analysis procedures were not perceptible by visual inspection, while there was a moderate agreement between the ratings (κ = 0.44, P < 0.001). CONCLUSION This study developed an automated head motion threshold-free procedure to improve the detection of CBF in GM. The improvement in CBF image quality was larger when considering older participants.
Collapse
Affiliation(s)
- Zahra Shirzadi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E Crane
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrew D Robertson
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Richard I Aviv
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael A Chappell
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin I Goldstein
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Departments of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
102
|
Mersov AM, Crane DE, Chappell MA, Black SE, MacIntosh BJ. Estimating the sample size required to detect an arterial spin labelling magnetic resonance imaging perfusion abnormality in voxel-wise group analyses. J Neurosci Methods 2015; 245:169-77. [DOI: 10.1016/j.jneumeth.2015.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/29/2014] [Accepted: 02/17/2015] [Indexed: 01/22/2023]
|
103
|
Tancredi FB, Lajoie I, Hoge RD. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J Magn Reson Imaging 2015; 42:1144-57. [PMID: 25752936 DOI: 10.1002/jmri.24878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/09/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To assess the reproducibility of blood oxygenation level-dependent / cerebral blood flow (BOLD/CBF) responses to hypercapnia/hyperoxia using dual-echo pseudo-continuous arterial spin labeling (pCASL) and step changes in inspired doses. MATERIALS AND METHODS Eight subjects were scanned twice, within 24 hours, using the same respiratory manipulation and imaging protocol. Imaging comprised a 5-minute anatomical acquisition, allowing segmentation of the gray matter (GM) tissue for further analysis, and an 18-minute pCASL functional scan. Hypercapnia/hyperoxia were induced by increasing the fraction of inspired CO2 to 5% and inspired O2 to 60%, alternately. Reproducibility of BOLD and CBF pCASL measures was assessed by computing the inter-session coefficient of variation (CV) of the respective signals in GM. RESULTS BOLD and CBF measures in GM were robust and consistent, yielding CV values below 10% for BOLD hypercapnic/hyperoxic responses (which averaged 1.9 ± 0.1% and 1.14 ± 0.02%) and below 20% for the CBF hypercapnic response (which averaged 35 ± 2 mL/min/100g). The CV for resting CBF was 3.5%. CONCLUSION It is possible to attain reproducible measures of the simultaneous BOLD and CBF responses to blood gases, within a reasonable scan time and with whole brain coverage, using a simple respiratory manipulation and dual-echo pCASL.
Collapse
Affiliation(s)
- Felipe B Tancredi
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada.,Hospital Israelita Albert Einstein Imagem Av. Albert Einstein, 627, São Paulo, SP, Brazil
| | - Isabelle Lajoie
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada
| | - Richard D Hoge
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada
| |
Collapse
|
104
|
Abstract
Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.
Collapse
Affiliation(s)
- Pia Wintermark
- Department of Pediatrics, Montreal Children's Hospital, McGill University, 2300 rue Tupper, C-920, Montreal, Quebec, Canada H3H 1P3.
| |
Collapse
|
105
|
Marshall O, Lu H, Brisset JC, Xu F, Liu P, Herbert J, Grossman RI, Ge Y. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol 2015; 71:1275-81. [PMID: 25133874 DOI: 10.1001/jamaneurol.2014.1668] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IMPORTANCE Cerebrovascular reactivity (CVR) is an inherent indicator of the dilatory capacity of cerebral arterioles for a vasomotor stimulus for maintaining a spontaneous and instant increase of cerebral blood flow (CBF) in response to neural activation. The integrity of this mechanism is essential to preserving healthy neurovascular coupling; however, to our knowledge, no studies have investigated whether there are CVR abnormalities in multiple sclerosis (MS). OBJECTIVE To use hypercapnic perfusion magnetic resonance imaging to assess CVR impairment in patients with MS. DESIGN, SETTING, AND PARTICIPANTS A total of 19 healthy volunteers and 19 patients with MS underwent perfusion magnetic resonance imaging based on pseudocontinuous arterial spin labeling to measure CBF at normocapnia (ie, breathing room air) and hypercapnia. The hypercapnia condition is achieved by breathing 5% carbon dioxide gas mixture, which is a potent vasodilator causing an increase of CBF. MAIN OUTCOMES AND MEASURES Cerebrovascular reactivity was calculated as the percent increase of normocapnic to hypercapnic CBF normalized by the change in end-tidal carbon dioxide, which was recorded during both conditions. Group analysis was performed for regional and global CVR comparison between patients and controls. Regression analysis was also performed between CVR values, lesion load, and brain atrophy measures in patients with MS. RESULTS A significant decrease of mean (SD) global gray matter CVR was found in patients with MS (3.56 [0.81]) compared with healthy controls (5.08 [1.56]; P = .001). Voxel-by-voxel analysis showed diffuse reduction of CVR in multiple regions of patients with MS. There was a significant negative correlation between gray matter CVR and lesion volume (R = 0.6, P = .004) and a significant positive correlation between global gray matter CVR and gray matter atrophy index (R = 0.5, P = .03). CONCLUSIONS AND RELEVANCE Our quantitative imaging findings suggest impairment in functional cerebrovascular pathophysiology, by measuring a diffuse decrease in CVR, which may be the underlying cause of neurodegeneration in MS.
Collapse
Affiliation(s)
- Olga Marshall
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas
| | - Jean-Christophe Brisset
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York
| | - Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas
| | - Joseph Herbert
- Department of Neurology, Multiple Sclerosis Comprehensive Care Center, New York University School of Medicine, New York
| | - Robert I Grossman
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York
| |
Collapse
|
106
|
Khalili-Mahani N, Niesters M, van Osch MJ, Oitzl M, Veer I, de Rooij M, van Gerven J, van Buchem MA, Beckmann CF, Rombouts SARB, Dahan A. Ketamine interactions with biomarkers of stress: a randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 2014; 108:396-409. [PMID: 25554429 DOI: 10.1016/j.neuroimage.2014.12.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022] Open
Abstract
Ketamine, an NMDA receptor antagonist, is increasingly used to study the link between glutamatergic signaling dysregulation and mood and chronic pain disorders. Glutamatergic neurotransmission and stress corticosteroids (cortisol in human) are critical for Ca(2+) mediated neuroplasticity and behavioral adaptation. The mechanisms of action of glutamatergic neurotransmission and stress corticosteroids on the NMDA-receptors of the hippocampus have been long investigated in animals, but given little attention in human studies. In this randomized single-blinded placebo-controlled crossover study (12 healthy young men), five sets of resting-state fMRI (RSFMRI), pseudocontinuous arterial spin labeling (PCASL), and corresponding salivary cortisol samples were acquired over 4h, at given intervals under pharmacokinetically-controlled infusion of subanesthetic ketamine (20 & 40mg/70kg/h). An identical procedure was repeated under a sham placebo condition. Differences in the profile of ketamine versus placebo effect over time were examined. Compared to placebo, ketamine mimicked a stress-like response (increased cortisol, reduced calmness and alertness, and impaired working memory). Ketamine effects on the brain included a transient prefrontal hyperperfusion and a dose-related reduction of relative hippocampal perfusion, plus emerging hyperconnectivity between the hippocampus and the occipital, cingulate, precuneal, cerebellar and basal ganglia regions. The spatiotemporal profiles of ketamine effects on different hippocampal subnetworks suggest a topographically dissociable change in corticohippocampal functional connectivity. We discuss our findings in the context of the negative feedback inhibition theory of the hippocampal stress-control. This pilot study provides a methodological framework for multimodal functional neuroimaging under resting-state conditions, which may be generalized for translational studies of glutamatergic- or stress-related etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J van Osch
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Melly Oitzl
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilya Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Charité Universitätsmedizin Berlin, Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Mark de Rooij
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Joop van Gerven
- Department of Neurology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour; Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Serge A R B Rombouts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
107
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
108
|
Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 2014; 34:1771-8. [PMID: 25138210 PMCID: PMC4269752 DOI: 10.1038/jcbfm.2014.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022]
Abstract
Pseudo-continuous arterial spin labeling (pCASL) measurements were performed in 20 patients with idiopathic normal pressure hydrocephalus (iNPH) to investigate whether cerebral blood flow (CBF) increases during the first 24 hours after a cerebrospinal fluid tap test (CSF TT). Five pCASL magnetic resonance imaging (MRI) scans were performed. Two scans were performed before removal of 40 mL CSF, and the other three at 30 minutes, 4 hours, and 24 hours, respectively after the CSF TT. Thirteen different regions of interest (ROIs) were manually drawn on coregistered MR images. In patients with increased CBF in lateral and frontal white matter after the CSF TT, gait function improved more than it did in patients with decreased CBF in these regions. However, in the whole sample, there was no significant increase in CBF after CSF removal compared with baseline investigations. The repeatability of CBF measurements at baseline was high, with intraclass correlation coefficients of 0.60 to 0.90 for different ROIs, but the median regional variability was in the range of 5% to 17%. Our results indicate that CBF in white matter close to the lateral ventricles plays a role in the reversibility of symptoms after CSF removal in patients with iNPH.
Collapse
|
109
|
Ghariq E, Chappell MA, Schmid S, Teeuwisse WM, van Osch MJP. Effects of background suppression on the sensitivity of dual-echo arterial spin labeling MRI for BOLD and CBF signal changes. Neuroimage 2014; 103:316-322. [PMID: 25280450 DOI: 10.1016/j.neuroimage.2014.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022] Open
Abstract
Dual-echo arterial spin labeling (DE-ASL) enables the simultaneous acquisition of BOLD and CBF fMRI data and is often used for calibrated BOLD and cerebrovascular CO2 reactivity measurements. DE-ASL, like all ASL techniques, suffers from a low intrinsic CBF SNR, which can be improved by suppressing the background signal via the inclusion of additional inversion pulses. However, until now this approach has been considered to be undesirable for DE-ASL, because the BOLD signal is extracted from the background signal and attenuating the background signal could decrease the sensitivity of DE-ASL scans for BOLD changes. In this study, the effect of background suppression on the sensitivity of DE-ASL MRI for BOLD and CBF signal changes with a visual stimulation paradigm was studied. Results showed that with an average background suppression level of 70% the BOLD sensitivity of DE-ASL MRI decreases slightly (15%), while the CBF sensitivity of the scans increased by almost a factor-of-two (81%). These findings support the conclusion that the gains in CBF sensitivity of DE-ASL MRI due to background suppression outweigh the slight decrease in sensitivity of these scans for BOLD changes, and thus that background suppression is highly recommended for DE-ASL.
Collapse
Affiliation(s)
- Eidrees Ghariq
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.
| | - Michael A Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom; FMRIB Centre, University of Oxford, Oxford, United Kingdom
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Wouter M Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
110
|
Guo L, Zhang Q, Ding L, Liu K, Ding K, Jiang C, Liu C, Li K, Cui L. Pseudo-continuous arterial spin labeling quantifies cerebral blood flow in patients with acute ischemic stroke and chronic lacunar stroke. Clin Neurol Neurosurg 2014; 125:229-36. [DOI: 10.1016/j.clineuro.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/25/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
|
111
|
Guo J, Wong EC. Increased SNR efficiency in velocity selective arterial spin labeling using multiple velocity selective saturation modules (mm-VSASL). Magn Reson Med 2014; 74:694-705. [PMID: 25251933 DOI: 10.1002/mrm.25462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Velocity-selective arterial spin labeling (VSASL) is theoretically insensitive to transit delay (TD) effects. However, it uses saturation instead of inversion, resulting in compromised signal to noise ratio (SNR). In this study we explore the use of multiple velocity-selective saturation (VSS) modules in VSASL (mm-VSASL) to improve SNR. METHODS Theoretical SNR efficiency improvement and optimized parameters were calculated from simulations for mm-VSASL. VSASL with two VSS modules (VSASL-2VSS) was implemented to measure cerebral blood flow in vivo, compared with conventional VSASL (VSASL-1VSS), pulsed ASL (PASL), and pseudo-continuous ASL (PCASL). TDs and bolus durations (BDs) were measured to validate the simulations and to examine the TD sensitivity of these preparations. RESULTS Compared with VSASL-1VSS, VSASL-2VSS achieved a significant improvement of SNR (22.1 ± 1.9%, P = 1.7 × 10(-6) ) in vivo, consistent with a 22.7% improvement predicted from simulations. The SNR was comparable to or higher (in gray matter, P = 4.3 × 10(-3) ) than that using PCASL. VSASL was experimentally verified to have minimal TD effects. CONCLUSION Utilizing multiple VSS modules can improve the SNR efficiency of VSASL. Mm-VSASL may result in an SNR that is comparable to or even higher than that of PCASL in applications where long postlabeling delays are required.
Collapse
Affiliation(s)
- Jia Guo
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Eric C Wong
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
112
|
The vascular steal phenomenon is an incomplete contributor to negative cerebrovascular reactivity in patients with symptomatic intracranial stenosis. J Cereb Blood Flow Metab 2014; 34:1453-62. [PMID: 24917040 PMCID: PMC4158662 DOI: 10.1038/jcbfm.2014.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/01/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
'Vascular steal' has been proposed as a compensatory mechanism in hemodynamically compromised ischemic parenchyma. Here, independent measures of cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) responses to a vascular stimulus in patients with ischemic cerebrovascular disease are recorded. Symptomatic intracranial stenosis patients (n=40) underwent a multimodal 3.0T MRI protocol including structural (T1-weighted and T2-weighted fluid-attenuated inversion recovery) and hemodynamic (BOLD and CBF-weighted arterial spin labeling) functional MRI during room air and hypercarbic gas administration. CBF changes in regions demonstrating negative BOLD reactivity were recorded, as well as clinical correlates including symptomatic hemisphere by infarct and lateralizing symptoms. Fifteen out of forty participants exhibited negative BOLD reactivity. Of these, a positive relationship was found between BOLD and CBF reactivity in unaffected (stenosis degree<50%) cortex. In negative BOLD cerebrovascular reactivity regions, three patients exhibited significant (P<0.01) reductions in CBF consistent with vascular steal; six exhibited increases in CBF; and the remaining exhibited no statistical change in CBF. Secondary findings were that negative BOLD reactivity correlated with symptomatic hemisphere by lateralizing clinical symptoms and prior infarcts(s). These data support the conclusion that negative hypercarbia-induced BOLD responses, frequently assigned to vascular steal, are heterogeneous in origin with possible contributions from autoregulation and/or metabolism.
Collapse
|
113
|
Ahlgren A, Wirestam R, Petersen ET, Ståhlberg F, Knutsson L. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling. NMR IN BIOMEDICINE 2014; 27:1112-1122. [PMID: 25066601 DOI: 10.1002/nbm.3164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/19/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume.
Collapse
Affiliation(s)
- André Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
114
|
Boudes E, Gilbert G, Leppert IR, Tan X, Pike GB, Saint-Martin C, Wintermark P. Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL). NEUROIMAGE-CLINICAL 2014; 6:126-33. [PMID: 25379424 PMCID: PMC4215516 DOI: 10.1016/j.nicl.2014.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. OBJECTIVE To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. DESIGN/METHODS We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. RESULTS A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). CONCLUSION This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures.
Collapse
Affiliation(s)
- Elodie Boudes
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | | | | | - Xianming Tan
- Center for Innovative Medicine, Research Institute, McGill University Health Centre, Montreal, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada ; Department of Radiology, University of Calgary, Calgary, Canada
| | - Christine Saint-Martin
- Department of Radiology, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| |
Collapse
|
115
|
Gawryluk JR, Mazerolle EL, D'Arcy RCN. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci 2014; 8:239. [PMID: 25152709 PMCID: PMC4125856 DOI: 10.3389/fnins.2014.00239] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI.
Collapse
Affiliation(s)
- Jodie R Gawryluk
- Division of Medical Sciences, Department of Psychology, University of Victoria Victoria, BC, Canada
| | - Erin L Mazerolle
- Department of Radiology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Ryan C N D'Arcy
- Applied Sciences, Simon Fraser University Burnaby, BC, Canada ; Fraser Health Authority, Surrey Memorial Hospital Surrey, BC, Canada
| |
Collapse
|
116
|
Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab 2014; 34:1373-80. [PMID: 24849665 PMCID: PMC4126098 DOI: 10.1038/jcbfm.2014.92] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
Abstract
Until recently, no direct comparison between [(15)O]water positron emission tomography (PET) and arterial spin labeling (ASL) for measuring cerebral blood flow (CBF) was possible. With the introduction of integrated, hybrid magnetic resonance (MR)-PET scanners, such a comparison becomes feasible. This study presents results of CBF measurements recorded simultaneously with [(15)O]water and ASL. A 3T MR-BrainPET scanner was used for the simultaneous acquisition of pseudo-continuous ASL (pCASL) magnetic resonance imaging (MRI) and [(15)O]water PET. Quantitative CBF values were compared in 10 young healthy male volunteers at baseline conditions. A statistically significant (P<0.05) correlation was observed between the two modalities; the whole-brain CBF values determined with PET and pCASL were 43.3±6.1 mL and 51.9±7.1 mL per 100 g per minute, respectively. The gray/white matter (GM/WM) ratio of CBF was 3.0 for PET and 3.4 for pCASL. A paired t-test revealed differences in regional CBF between ASL and PET with higher ASL-CBF than PET-CBF values in cortical areas. Using an integrated, hybrid MR-PET a direct simultaneous comparison between ASL and [(15)O]water PET became possible for the first time so that temporal, physiologic, and functional variations were avoided. Regional and individual differences were found despite the overall similarity between ASL and PET, requiring further detailed investigations.
Collapse
|
117
|
Unraveling the secrets of white matter--bridging the gap between cellular, animal and human imaging studies. Neuroscience 2014; 276:2-13. [PMID: 25003711 PMCID: PMC4155933 DOI: 10.1016/j.neuroscience.2014.06.058] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022]
Abstract
The CNS white matter makes up about half of the human brain, and with advances in human imaging it is increasingly becoming clear that changes in the white matter play a major role in shaping human behavior and learning. However, the mechanisms underlying these white matter changes remain poorly understood. Within this special issue of Neuroscience on white matter, recent advances in our knowledge of the function of white matter, from the molecular level to human imaging, are reviewed. Collaboration between fields is essential to understand the function of the white matter, but due to differences in methods and field-specific 'language', communication is often hindered. In this review, we try to address this hindrance by introducing the methods and providing a basic background to myelin biology and human imaging as a prelude to the other reviews within this special issue.
Collapse
|
118
|
Teune LK, Renken RJ, de Jong BM, Willemsen AT, van Osch MJ, Roerdink JBTM, Dierckx RA, Leenders KL. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. NEUROIMAGE-CLINICAL 2014; 5:240-4. [PMID: 25068113 PMCID: PMC4110884 DOI: 10.1016/j.nicl.2014.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/29/2022]
Abstract
Introduction Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Methods Nineteen PD patients and seventeen healthy controls underwent [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Results Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. Conclusion We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients. Unique PD-related perfusion and metabolic covariance patterns were identified. PD-related metabolic pattern is highly reproducible compared to earlier reports. PCASL is a promising addition in the early diagnosis of parkinsonian patients.
Collapse
Affiliation(s)
- Laura K Teune
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Remco J Renken
- Neuroimaging Center, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Antoon T Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | - Jos B T M Roerdink
- Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands
| | - Rudi A Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaus L Leenders
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
119
|
Gardener AG, Jezzard P. Investigating white matter perfusion using optimal sampling strategy arterial spin labeling at 7 Tesla. Magn Reson Med 2014; 73:2243-8. [PMID: 24954898 PMCID: PMC4657501 DOI: 10.1002/mrm.25333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Cerebral blood flow (CBF) is an informative physiological marker for tissue health. Arterial spin labeling (ASL) is a noninvasive MRI method of measuring this parameter, but it has proven difficult to measure white matter (WM) CBF due to low intrinsic contrast-to-noise ratio compared with gray matter (GM). Here we combine ultra-high field and optimal sampling strategy (OSS) ASL to investigate WM CBF in reasonable scan times. METHODS A FAIR-based ASL sequence at 7T was combined with a real-time-feedback OSS technique, to iteratively improve post-label image acquisition times (TIs) on a tissue- and subject-specific basis to obtain WM CBF quantification. RESULTS It was found 77% of WM voxels gave a reasonable CBF fit. Averaged WM CBF for these voxels was found to be 16.3 ± 1.5 mL/100 g/min (discarding partial-volumed voxels). The generated TI schedule was also significantly different when altering the OSS weighted-tissue-mask, favoring longer TIs in WM. CONCLUSION WM CBF could be reasonably quantified in over 75% of identified voxels, from a total preparation and scan time of 15 min. OSS results suggest longer TIs should be used versus general GM ASL settings; this may become more important in WM disease studies.
Collapse
Affiliation(s)
- Alexander G Gardener
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
120
|
Brain volume and white matter hyperintensities as determinants of cerebral blood flow in Alzheimer's disease. Neurobiol Aging 2014; 35:2665-2670. [PMID: 25018106 DOI: 10.1016/j.neurobiolaging.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 06/07/2014] [Indexed: 11/23/2022]
Abstract
To better understand whether decreased cerebral blood flow (CBF) in patients with Alzheimer's disease (AD) reflects neurodegeneration or cerebral small vessel disease, we investigated the associations of normalized brain volume (NBV) and white matter hyperintensity (WMH) volume with CBF. We included 129 patients with AD (66 ± 7 years, 53% female) and 61 age-matched controls (64 ± 5 years, 43% female). CBF was measured with pseudocontinuous arterial spin labeling at 3T in the whole brain and in partial volume corrected cortical maps. When NBV and WMH were simultaneously entered in age and sex adjusted models, smaller NBV was associated with lower whole brain (Stβ: 0.29; p < 0.01) and cortical CBF (Stβ: 0.28; p < 0.01) in patients with AD. Larger WMH volume was also associated with lower whole brain (Stβ: -0.22; p < 0.05) and cortical CBF (Stβ: -0.24; p < 0.05) in AD. Additional adjustments did not change these results. In controls, neither NBV nor WMH was associated with CBF. Our results indicate that in AD, lower CBF as measured using pseudocontinuous arterial spin labeling, reflects the combined disease burden of both neurodegeneration and small vessel disease.
Collapse
|
121
|
Schlumpf YR, Reinders AATS, Nijenhuis ERS, Luechinger R, van Osch MJP, Jäncke L. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study. PLoS One 2014; 9:e98795. [PMID: 24922512 PMCID: PMC4055615 DOI: 10.1371/journal.pone.0098795] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. METHODS Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. RESULTS Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. CONCLUSION DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing.
Collapse
Affiliation(s)
- Yolanda R. Schlumpf
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Antje A. T. S. Reinders
- Department of Neuroscience, University Medical Center Groningen, and BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | | | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Matthias J. P. van Osch
- Department of Radiology, C. J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Lutz Jäncke
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
- International Normal Aging and Plasticity Imaging Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
122
|
Fujima N, Kudo K, Tsukahara A, Yoshida D, Sakashita T, Homma A, Tha KK, Shirato H. Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo-continuous arterial spin labeling: comparison with dynamic contrast-enhanced MRI. J Magn Reson Imaging 2014; 41:983-91. [PMID: 24723251 DOI: 10.1002/jmri.24637] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/26/2014] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the feasibility of tumor blood flow (TBF) measurement in head and neck squamous cell carcinoma (HNSCC) using pseudo-continuous arterial spin labeling (pCASL) in a comparison with dynamic contrast-enhanced (DCE) perfusion. MATERIALS AND METHODS We prospectively scanned 18 patients with HNSCC using 3T magnetic resonance imaging (MRI) with both pCASL and DCE perfusion. Quantitative TBF value in the whole-tumor region of interest (ROI), and regional TBF in the ROIs of the central and peripheral areas in the tumor were respectively measured. Relative TBF value in the whole-tumor ROI was also calculated. We determined the correlation and agreement between each measured TBF by pCASL and DCE perfusion using Pearson's correlation coefficients, intraclass correlation coefficients (ICC), and Bland-Altman analysis. RESULTS In the whole-tumor ROIs, significant correlation was observed between the absolute TBF values (r = 0.72, P < 0.01), with an ICC of 0.72; moreover, higher correlation was observed in the relative TBF (r = 0.79). The correlation was higher in the peripheral ROI (r = 0.70) than the central ROI (r = 0.65), with an ICC of 0.62 and 0.54, respectively. Bland-Altman plots revealed the underestimation of TBF by pCASL in central ROIs. CONCLUSION TBF measurement by pCASL was feasible in patients with HNSCC.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Radiology, Hokkaido University Hospital, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Guo J, Meakin JA, Jezzard P, Wong EC. An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses. Magn Reson Med 2014; 73:1085-94. [PMID: 24710761 DOI: 10.1002/mrm.25227] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE Velocity-selective arterial spin labeling (VSASL) tags arterial blood on a velocity-selective (VS) basis and eliminates the tagging/imaging gap and associated transit delay sensitivity observed in other ASL tagging methods. However, the flow-weighting gradient pulses in VS tag preparation can generate eddy currents (ECs), which may erroneously tag the static tissue and create artificial perfusion signal, compromising the accuracy of perfusion quantification. METHODS A novel VS preparation design is presented using an eight-segment B1 insensitive rotation with symmetric radio frequency and gradient layouts (sym-BIR-8), combined with delays after gradient pulses to optimally reduce ECs of a wide range of time constants while maintaining B0 and B1 insensitivity. Bloch simulation, phantom, and in vivo experiments were carried out to determine robustness of the new and existing pulse designs to ECs, B0 , and B1 inhomogeneity. RESULTS VSASL with reduced EC sensitivity across a wide range of EC time constants was achieved with the proposed sym-BIR-8 design, and the accuracy of cerebral blood flow measurement was improved. CONCLUSION The sym-BIR-8 design performed the most robustly among the existing VS tagging designs, and should benefit studies using VS preparation with improved accuracy and reliability.
Collapse
Affiliation(s)
- Jia Guo
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
124
|
Emeterio Nateras OS, Harrison JM, Muir ER, Zhang Y, Peng Q, Chalfin S, Gutierrez JE, Johnson DA, Kiel JW, Duong TQ. Choroidal blood flow decreases with age: an MRI study. Curr Eye Res 2014; 39:1059-67. [PMID: 24655028 DOI: 10.3109/02713683.2014.892997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. METHODS The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24-68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. RESULTS The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R = -0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). CONCLUSIONS The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age.
Collapse
|
125
|
MacIntosh BJ, Swardfager W, Crane DE, Ranepura N, Saleem M, Oh PI, Stefanovic B, Herrmann N, Lanctôt KL. Cardiopulmonary fitness correlates with regional cerebral grey matter perfusion and density in men with coronary artery disease. PLoS One 2014; 9:e91251. [PMID: 24622163 PMCID: PMC3951327 DOI: 10.1371/journal.pone.0091251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/10/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD), a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation. Methods CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak) was measured at baseline and after 6 months of training. T1-weighted structural images were used to perform grey matter (GM) voxel-based morphometry (VBM). Pseudo-continuous arterial spin labeling (pcASL) was used to produce cerebral blood flow (CBF) images. VBM and CBF data were tested voxel-wise using VO2Peak and age as explanatory variables. Results In 30 men with CAD (mean age 65±7 years), VBM and CBF identified 7 and 5 respective regions positively associated with baseline VO2Peak. These included the pre- and post-central, paracingulate, caudate, hippocampal regions and converging findings in the putamen. VO2Peak increased by 20% at follow-up in 29 patients (t = 9.6, df = 28, p<0.0001). Baseline CBF in the left post-central gyrus and baseline GM density in the right putamen predicted greater change in VO2Peak. Conclusion Perfusion and GM density were associated with fitness at baseline and with greater fitness gains with exercise. This study identifies new neurobiological correlates of fitness and demonstrates the utility of multi-modal MRI to evaluate the effects of exercise in CAD patients.
Collapse
Affiliation(s)
- Bradley J. MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Walter Swardfager
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Crane
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nipuni Ranepura
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mahwesh Saleem
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Paul I. Oh
- Department of Clinical Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
126
|
Lindgren E, Wirestam R, Markenroth Bloch K, Ahlgren A, van Osch MJP, van Westen D, Surova Y, Ståhlberg F, Knutsson L. Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 27:487-99. [PMID: 24570336 DOI: 10.1007/s10334-014-0431-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Dynamic susceptibility contrast MRI (DSC-MRI) tends to return elevated estimates of cerebral blood flow (CBF) and cerebral blood volume (CBV). In this study, subject-specific calibration factors (CFs), based on steady-state CBV measurements, were applied to rescale the absolute level of DSC-MRI CBF. MATERIALS AND METHODS Twenty healthy volunteers were scanned in a test-retest approach. Independent CBV measurements for calibration were accomplished using a T1-based contrast agent steady-state method (referred to as Bookend), as well as a blood-nulling vascular space occupancy (VASO) approach. Calibrated DSC-MRI was compared with pseudo-continuous arterial spin labeling (pCASL). RESULTS For segmented grey matter (GM) regions of interests (ROIs), pCASL-based CBF was 63 ± 11 ml/(min 100 g) (mean ± SD). Nominal CBF from non-calibrated DSC-MRI was 277 ± 61 ml/(min 100 g), while calibrations resulted in 56 ± 23 ml/(min 100 g) (Bookend) and 52 ± 16 ml/(min 100 g) (VASO). Calibration tended to eliminate the overestimation, although the repeatability was generally moderate and the correlation between calibrated DSC-MRI and pCASL was low (r < 0.25). However, using GM instead of WM ROIs for extraction of CFs resulted in improved repeatability. CONCLUSION Both calibration approaches provided reasonable absolute levels of GM CBF, although the calibration methods suffered from low signal-to-noise ratio, resulting in weak repeatability and difficulties in showing high degrees of correlation with pCASL measurements.
Collapse
Affiliation(s)
- Emelie Lindgren
- Department of Medical Radiation Physics, Lund University, Lund University Hospital, 22185, Lund, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Tatewaki Y, Higano S, Taki Y, Thyreau B, Murata T, Mugikura S, Ito D, Takase K, Takahashi S. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR) labeling of arterial regions (QUASAR). J Neuroimaging 2014; 24:554-561. [PMID: 25370338 PMCID: PMC4282750 DOI: 10.1111/jon.12076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. METHODS Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. RESULTS The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. CONCLUSIONS Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter.
Collapse
Affiliation(s)
- Yasuko Tatewaki
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shuichi Higano
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Division of Medical Image Analysis, Department of Community Medical Megabank, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Depatment of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Benjamin Thyreau
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Takaki Murata
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Daisuke Ito
- Division of Radiology, Tohoku University Hospital, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shoki Takahashi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
128
|
Heijtel DFR, Mutsaerts HJMM, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BNM, Majoie CBLM, Booij J, van Osch MJP, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography. Neuroimage 2014; 92:182-92. [PMID: 24531046 DOI: 10.1016/j.neuroimage.2014.02.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings.
Collapse
Affiliation(s)
- D F R Heijtel
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - H J M M Mutsaerts
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E Bakker
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - P Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, The Netherlands
| | - M F Stevens
- Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - C B L M Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - J Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Vanbavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - R Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
129
|
Qin Q, Huang AJ, Hua J, Desmond JE, Stevens RD, van Zijl PC. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function. NMR IN BIOMEDICINE 2014; 27:116-28. [PMID: 24307572 PMCID: PMC3947417 DOI: 10.1002/nbm.3040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 05/12/2023]
Abstract
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| | - Alan J. Huang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD, USA
| | - Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| | - John E. Desmond
- Department of Neurology and Neurosurgery, The Johns Hopkins
University, Baltimore, MD, USA
| | - Robert D. Stevens
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins
University, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns
Hopkins University, Baltimore, MD, USA
| | - Peter C.M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
130
|
Cerebrovascular reactivity in the brain white matter: magnitude, temporal characteristics, and age effects. J Cereb Blood Flow Metab 2014; 34:242-7. [PMID: 24192640 PMCID: PMC3915204 DOI: 10.1038/jcbfm.2013.194] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 11/08/2022]
Abstract
White matter (WM) comprises about half of the brain and its dysfunction is implicated in many brain disorders. While structural properties in healthy and diseased WM have been extensively studied, relatively little is known about the physiology underlying these structural characteristics. Recent advances in magnetic resonance (MR) technologies provided new opportunities to better understand perfusion and microvasculature in the WM. Here, we aim to evaluate vasodilatory capacity of the WM vasculature, which is thought to be important in tissue ischemia and autoregulation. Fifteen younger and fifteen older subjects performed a CO2 inhalation task while blood-oxygenation-level-dependent (BOLD) magnetic resonance imaging (MRI) images were continuously collected. The cerebrovascular reactivity (CVR) index showed that the value of CVR in the WM (0.03±0.002%/mm Hg) was positive, but was significantly lower than that in the gray matter (GM) (0.22±0.01%/mm Hg). More strikingly, the WM response showed a temporal delay of 19±3 seconds compared with GM, which was attributed to the longer time it takes for extravascular CO2 to change. With age, WM CVR response becomes greater and faster, which is opposite to the changes seen in the GM. These data suggest that characteristics of WM CVR are different from that of GM and caution should be used when interpreting pathologic WM CVR results.
Collapse
|
131
|
MacIntosh BJ, Crane DE, Sage MD, Rajab AS, Donahue MJ, McIlroy WE, Middleton LE. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One 2014; 9:e85163. [PMID: 24416356 PMCID: PMC3885687 DOI: 10.1371/journal.pone.0085163] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/24/2013] [Indexed: 02/03/2023] Open
Abstract
Purpose Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfusion and neuronal activation. Methods Healthy adults (n = 16; age range: 20–35 yrs) were scanned using Magnetic Resonance Imaging (MRI) before and after 20 minutes of exercise at 70% of their age-predicted maximal heart rate. Pseudo-continuous arterial spin labeling (pcASL) was used to measure absolute cerebral blood flow (CBF) prior to exercise (pre) and at 10 min (post-10) and 40 min (post-40) post-exercise. Blood oxygenation level dependent (BOLD) functional MRI (fMRI) was performed pre and post-exercise to characterize activation differences related to a go/no-go reaction time task. Results Compared to pre-exercise levels, grey matter CBF was 11% (±9%) lower at post-10 (P<0.0004) and not different at post-40 (P = 0.12), while global WM CBF was increased at both time points post-exercise (P<0.0006). Regionally, the hippocampus and insula showed a decrease in perfusion in ROI-analysis at post-10 (P<0.005, FDR corrected), whereas voxel-wise analysis identified elevated perfusion in the left medial postcentral gyrus at post-40 compared to pre (pcorrected = 0.05). BOLD activations were consistent between sessions, however, the left parietal operculum showed reduced BOLD activation after exercise. Conclusion This study provides preliminary evidence of regionalized brain effects associated with a single bout of aerobic exercise. The observed acute cerebrovascular responses may provide some insight into the brain’s ability to change in relation to chronic interventions.
Collapse
Affiliation(s)
- Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail:
| | - David E. Crane
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Michael D. Sage
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - A. Saeed Rajab
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Manus J. Donahue
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - William E. McIlroy
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura E. Middleton
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
132
|
Teeuwisse WM, Schmid S, Ghariq E, Veer IM, van Osch MJP. Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications. Magn Reson Med 2014; 72:1712-22. [PMID: 24395462 DOI: 10.1002/mrm.25083] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. METHODS First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. RESULTS No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. CONCLUSION Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.
Collapse
Affiliation(s)
- Wouter M Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
133
|
Wu WC, Lin SC, Wang DJ, Chen KL, Li YD. Measurement of cerebral white matter perfusion using pseudocontinuous arterial spin labeling 3T magnetic resonance imaging--an experimental and theoretical investigation of feasibility. PLoS One 2013; 8:e82679. [PMID: 24324822 PMCID: PMC3855805 DOI: 10.1371/journal.pone.0082679] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL) 3T magnetic resonance imaging (MRI) at a relatively fine resolution to mitigate partial volume effect from gray matter. MATERIALS AND METHODS The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28 ± 3 years) were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms) and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms), at a spatial resolution (1.56 x 1.56 x 5 mm(3)) finer than commonly used (3.5 x 3.5 mm(2), 5-8 mm in thickness). Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay. RESULTS Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2) to support perfusion measurement in the majority (~60%) of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. CONCLUSION PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.
Collapse
Affiliation(s)
- Wen-Chau Wu
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chi Lin
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Danny J. Wang
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kuan-Lin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Ding Li
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
134
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Arterial spin labeling (ASL) perfusion: Techniques and clinical use. Diagn Interv Imaging 2013; 94:1211-23. [DOI: 10.1016/j.diii.2013.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
135
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Perfusion par arterial spin labeling (ASL) : technique et mise en œuvre clinique. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jradio.2013.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
136
|
Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. NEUROIMAGE-CLINICAL 2013; 4:139-44. [PMID: 24371796 PMCID: PMC3871287 DOI: 10.1016/j.nicl.2013.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 01/28/2023]
Abstract
Introduction White matter (WM) perfusion measurements with arterial spin labeling can be severely contaminated by gray matter (GM) perfusion signal, especially in the elderly. The current study investigates the spatial extent of GM contamination by comparing perfusion signal measured in the WM with signal measured outside the brain. Material and methods Four minute 3T pseudo-continuous arterial spin labeling scans were performed in 41 elderly subjects with cognitive impairment. Outward and inward geodesic distance maps were created, based on dilations and erosions of GM and WM masks. For all outward and inward geodesic distances, the mean CBF was calculated and compared. Results GM contamination was mainly found in the first 3 subcortical WM voxels and had only minor influence on the deep WM signal (distances 4 to 7 voxels). Perfusion signal in the WM was significantly higher than perfusion signal outside the brain, indicating the presence of WM signal. Conclusion These findings indicate that WM perfusion signal can be measured unaffected by GM contamination in elderly patients with cognitive impairment. GM contamination can be avoided by the erosion of WM masks, removing subcortical WM voxels from the analysis. These results should be taken into account when exploring the use of WM perfusion as micro-vascular biomarker. A single slice distance analysis was performed. Perfusion signal in the white matter was compared with signal outside the brain. The application of erosion was compared with removal of partial volume voxels. White matter perfusion signal can be distinguished from gray matter contamination. The erosion of three voxels is warranted to avoid gray matter contamination.
Collapse
|
137
|
D'haeseleer M, Steen C, Hoogduin JM, van Osch MJP, Fierens Y, Cambron M, Koch MW, De Keyser J. Performance on Paced Auditory Serial Addition Test and cerebral blood flow in multiple sclerosis. Acta Neurol Scand 2013; 128:e26-9. [PMID: 23550954 DOI: 10.1111/ane.12129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND To assess the relationship between performance on the Paced Auditory Serial Addition Test (PASAT) and both cerebral blood flow (CBF) and axonal metabolic integrity in normal appearing white matter (NAWM) of the centrum semiovale in patients with multiple sclerosis (MS). METHODS Normal appearing white matter of the centrum semiovale was investigated with magnetic resonance (MR) imaging in 28 non-depressed individuals (18 patients with MS and 10 healthy controls). CBF was assessed with pseudo-continuous arterial spin labeling. N-acetylacetate/creatine (NAA/Cr) ratios (a metabolic axonal marker) were measured using (1) H-MR spectroscopy. CBF was also measured in frontoparietal cortices and cerebellar hemispheres. RESULTS In subjects with MS, we found a positive correlation between performance on the PASAT and CBF to the left centrum semiovale (P = 0.008), but not with the NAA/Cr ratio. There were no correlations between PASAT scores and CBF to the right centrum semiovale, frontoparietal cortices, and cerebellar hemispheres. There was no correlation between PASAT scores and NAA/Cr ratios. CONCLUSIONS Our preliminary results suggest that performance on the PASAT in subjects with MS correlates with CBF to the left centrum semiovale, which contains left frontoparietal white matter association tracts involved in information processing speed and working memory.
Collapse
Affiliation(s)
- M. D'haeseleer
- Department of Neurology; Universitair Ziekenhuis Brussel; Center for Neurosciences; Vrije Universiteit Brussel (VUB); Brussels; Belgium
| | - C. Steen
- Department of Neurology; Universitair Medisch Centrum Groningen; Groningen; The Netherlands
| | - J. M. Hoogduin
- Department of Neurology and Neurosurgery; Universitair Medisch Centrum Utrecht; Utrecht; The Netherlands
| | - M. J. P. van Osch
- Department of Radiology; C. J. Gorter Center for High-field MRI; Leiden University Medical Center; Leiden; The Netherlands
| | - Y. Fierens
- Department of Medical Physics; Department of Radiology; Universitair Ziekenhuis Brussel; Brussels; Belgium
| | - M. Cambron
- Department of Neurology; Universitair Ziekenhuis Brussel; Center for Neurosciences; Vrije Universiteit Brussel (VUB); Brussels; Belgium
| | - M. W. Koch
- Division of Neurology; Department of Clinical Neurosciences; University of Calgary; Calgary; AB; Canada
| | | |
Collapse
|
138
|
Khoury MN, Gheuens S, Ngo L, Wang X, Alsop DC, Koralnik IJ. Hyperperfusion in progressive multifocal leukoencephalopathy is associated with disease progression and absence of immune reconstitution inflammatory syndrome. ACTA ACUST UNITED AC 2013; 136:3441-50. [PMID: 24088807 DOI: 10.1093/brain/awt268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We sought to characterize perfusion patterns of progressive multifocal leukoencephalopathy lesions by arterial spin labelling perfusion magnetic resonance imaging and to analyse their association with immune reconstitution inflammatory syndrome, and survival. A total of 22 patients with progressive multifocal leukoencephalopathy underwent a clinical evaluation and magnetic resonance imaging of the brain within 190 days of symptom onset. The presence of immune reconstitution inflammatory syndrome was determined based on clinical and laboratory criteria. Perfusion within progressive multifocal leukoencephalopathy lesions was determined by arterial spin labelling magnetic resonance imaging. We observed intense hyperperfusion within and at the edge of progressive multifocal leukoencephalopathy lesions in a subset of subjects. This hyperperfusion was quantified by measuring the fraction of lesion volume showing perfusion in excess of twice normal appearing grey matter. Hyperperfused lesion fraction was significantly greater in progressive multifocal leukoencephalopathy progressors than in survivors (12.8% versus 3.4% P = 0.02) corresponding to a relative risk of progression for individuals with a hyperperfused lesion fraction ≥ 4.0% of 9.1 (95% confidence interval of 1.4-59.5). The presence of hyperperfusion was inversely related to the occurrence of immune reconstitution inflammatory syndrome at the time of scan (P = 0.03). Indeed, within 3 months after symptom onset, hyperperfusion had a positive predictive value of 88% for absence of immune reconstitution inflammatory syndrome. Arterial spin labelling magnetic resonance imaging recognized regions of elevated perfusion within lesions of progressive multifocal leukoencephalopathy. These regions might represent virologically active areas operating in the absence of an effective adaptive immune response and correspond with a worse prognosis.
Collapse
Affiliation(s)
- Michael N Khoury
- 1 Division of Neurovirology, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
139
|
Zhang Q, Stafford RB, Wang Z, Arnold SE, Wolk DA, Detre JA. Microvascular perfusion based on arterial spin labeled perfusion MRI as a measure of vascular risk in Alzheimer's disease. J Alzheimers Dis 2013; 32:677-87. [PMID: 22886015 DOI: 10.3233/jad-2012-120964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing recognition of an interaction between cerebrovascular disease and Alzheimer's disease, but the mechanisms of this interaction remain poorly understood. While macroscopic stroke can clearly produce cognitive deficits and accelerate Alzheimer's disease, the prevalence and implications of microvascular disease in Alzheimer's disease pathogenesis has been harder to define. At present, white matter (WM) lesions, primarily defined as hyperintensities seen on T2-weighted magnetic resonance imaging (MRI), provide the best biomarker of cerebrovascular disease at the microvascular level. However, T2 hyperintensities in WM can also be caused by other mechanisms such as inflammation. Arterial spin labeled (ASL) perfusion MRI provides a noninvasive approach for quantifying cerebral blood flow (CBF). We explored CBF measurements with ASL in AD patients, mild cognitive impairment patients, and an age-matched control group to determine if CBF in gray matter or WM could be correlated with WM lesions, or to stratify patients by microvascular disease severity. In a retrospective sample, we were able to obtain credible measures of WM CBF using ASL MRI and observed trends suggesting that WM CBF may provide a useful biomarker of microvascular disease. Future prospective studies in larger cohorts with optimized ASL MRI protocols will be needed to validate these observations.
Collapse
Affiliation(s)
- Quan Zhang
- Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
140
|
Huang YC, Liu HL, Lee JD, Yang JT, Weng HH, Lee M, Yeh MY, Tsai YH. Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MRI in patients with acute stroke. PLoS One 2013; 8:e69085. [PMID: 23874876 PMCID: PMC3712946 DOI: 10.1371/journal.pone.0069085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this study was to evaluate whether arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) can reliably quantify perfusion deficit as compared to dynamic susceptibility contrast (DSC) perfusion MRI. Methods Thirty-nine patients with acute ischemic stroke in the anterior circulation territory were recruited. All underwent ASL and DSC MRI perfusion scans within 30 hours after stroke onset and 31 patients underwent follow-up MRI scans. ASL cerebral blood flow (CBF) and DSC time to maximum (Tmax) maps were used to calculate the perfusion defects. The ASL CBF lesion volume was compared to the DSC Tmax lesion volume by Pearson's correlation coefficient and likewise the ASL CBF and DSC Tmax lesion volumes were compared to the final infarct sizes respectively. A repeated measures analysis of variance and least significant difference post hoc test was used to compare the mean lesion volumes among ASL CBF, DSC Tmax >4–6 s and final infarct. Results Mean patient age was 72.6 years. The average time from stroke onset to MRI was 13.9 hours. The ASL lesion volume showed significant correlation with the DSC lesion volume for Tmax >4, 5 and 6 s (r = 0.81, 0.82 and 0.80; p<0.001). However, the mean lesion volume of ASL (50.1 ml) was significantly larger than those for Tmax >5 s (29.2 ml, p<0.01) and Tmax >6 s (21.8 ml, p<0.001), while the mean lesion volumes for Tmax >5 or 6 s were close to mean final infarct size. Conclusion Quantitative measurement of ASL perfusion is well correlated with DSC perfusion. However, ASL perfusion may overestimate the perfusion defects and therefore further refinement of the true penumbra threshold and improved ASL technique are necessary before applying ASL in therapeutic trials.
Collapse
Affiliation(s)
- Yen-Chu Huang
- Department of Neurology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Ho-Ling Liu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Jiann-Der Lee
- Department of Neurology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Hsu-Huei Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Meng Lee
- Department of Neurology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Mei-Yu Yeh
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
141
|
Ouyang C, Sutton BP. Optimizing pTILT perfusion imaging in the presence of off-resonance frequency. J Magn Reson Imaging 2013; 38:210-6. [DOI: 10.1002/jmri.23968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/25/2012] [Indexed: 11/09/2022] Open
|
142
|
Hasan KM, Ali H, Shad MU. Atlas-based and DTI-guided quantification of human brain cerebral blood flow: feasibility, quality assurance, spatial heterogeneity and age effects. Magn Reson Imaging 2013; 31:1445-52. [PMID: 23731534 DOI: 10.1016/j.mri.2013.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022]
Abstract
Accurate and noninvasive quantification of regional cerebral blood perfusion (CBF) of the human brain tissue would advance the study of the complex interplay between human brain structure and function, in both health and disease. Despite the plethora of works on CBF in gray matter, a detailed quantitative white matter perfusion atlas has not been presented on healthy adults using the International Consortium for Brain Mapping atlases. In this study, we present a host of assurance measures such as temporal stability, spatial heterogeneity and age effects of regional and global CBF in selected deep, cortical gray matter and white matter tracts identified and quantified using diffusion tensor imaging (DTI). We utilized whole brain high-resolution DTI combined with arterial spin labeling to quantify regional CBF on 15 healthy adults aged 23.2-57.1years. We present total brain and regional CBF, corresponding volume, mean diffusivity and fractional anisotropy spatial heterogeneity, and dependence on age as additional quality assurance measures to compare with published trends using both MRI and nuclear medicine methods. Total CBF showed a steady decrease with age in gray matter (r=-0.58; P=.03), whereas total CBF of white matter did not significantly change with age (r=0.11; P=.7). This quantitative report offers a preliminary baseline of CBF, volume and DTI measurements for the design of future multicenter and clinical studies utilizing noninvasive perfusion and DT-MRI.
Collapse
Affiliation(s)
- Khader M Hasan
- Medical School, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
143
|
Macintosh BJ, Graham SJ. Magnetic resonance imaging to visualize stroke and characterize stroke recovery: a review. Front Neurol 2013; 4:60. [PMID: 23750149 PMCID: PMC3664317 DOI: 10.3389/fneur.2013.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/09/2013] [Indexed: 11/21/2022] Open
Abstract
The global burden of stroke continues to grow. Although stroke prevention strategies (e.g., medications, diet, and exercise) can contribute to risk reduction, options for acute interventions (e.g., thrombolytic therapy for ischemic stroke) are limited to the minority of patients. The remaining patients are often left with profound neurological disabilities that substantially impact quality of life, economic productivity, and increase caregiver burden. In the last decade, however, the future outlook for such patients has been tempered by movement toward the view that the brain is capable of reorganizing after injury. Many now view brain recovery after stroke as an area of scientific research with large potential for therapeutic advances, far into the future (Broderick and William, 2004). As a probe of brain anatomy, function and physiology, magnetic resonance imaging (MRI) is a non-invasive and highly versatile modality that promises to play a particularly important role in such research. Here we provide a basic review of MRI physical principles and applications for assessing stroke, looking toward the future role MRI may play in improving stroke rehabilitation methods and stroke recovery.
Collapse
Affiliation(s)
- Bradley J Macintosh
- Physical Sciences Platform, Sunnybrook Research Institute Toronto, ON, Canada ; Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
144
|
Feasibility of MR perfusion-weighted imaging by use of a time-spatial labeling inversion pulse. Radiol Phys Technol 2013; 6:461-6. [PMID: 23703027 DOI: 10.1007/s12194-013-0219-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Perfusion-weighted imaging (PWI) by use of arterial spin labeling (ASL) has been introduced to the clinical setting. However, it is not widely available because it requires specialized pulse sequences. Imaging using a time-spatial labeling inversion pulse (time-SLIP), which is a magnetic resonance angiography (MRA) technique that is based on ASL, can be used in various situations. In this study, we examined the feasibility of time-SLIP PWI. Two types of time-SLIP sequences were evaluated: (1) a single inversion recovery (IR) pulse sequence, which is the same as that used in conventional time-SLIP MRA except for the timing of data acquisition, and (2) a dual IR pulse sequence, where a second, non-selective, IR pulse was added during the inflow time to suppress background signals. Subtraction processing is performed between the "on" and "off" settings of the first IR pulse (time-SLIP tag) to obtain PWI. The average signal intensity was measured in a uniform phantom as the residual of the background, and in five healthy subjects as the perfusion signal. The average signal-to-noise ratio (SNR) was also measured in the five subjects. All imaging was performed with a 1.5-T MR scanner. Images using the dual IR method showed lower background signals and higher perfusion signals compared with images using the single IR method. However, the SNR was lower in images with the dual IR method. These results demonstrate that a time-SLIP, which is an MRA method, can be used for obtaining cerebral PWI simply by adjusting the imaging parameters.
Collapse
|
145
|
Wong AM, Yan FX, Liu HL. Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI. J Magn Reson Imaging 2013; 39:427-33. [PMID: 23677620 DOI: 10.1002/jmri.24178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/27/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. MATERIALS AND METHODS Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. RESULTS Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. CONCLUSION This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.
Collapse
Affiliation(s)
- Alex M Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | |
Collapse
|
146
|
Heijtel DF, van Osch MJ, Caan MW, Majoie CB, vanBavel E, Nederveen AJ. Feasibility of arterial spin labeling on a 1T open MRI scanner. J Magn Reson Imaging 2013; 37:958-64. [DOI: 10.1002/jmri.23880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/13/2012] [Indexed: 11/09/2022] Open
|
147
|
Steen C, D’haeseleer M, Hoogduin JM, Fierens Y, Cambron M, Mostert JP, Heersema DJ, Koch MW, De Keyser J. Cerebral white matter blood flow and energy metabolism in multiple sclerosis. Mult Scler 2013; 19:1282-9. [DOI: 10.1177/1352458513477228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. Objective: The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. Methods: Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using 1H-MR spectroscopy and PCr/β-ATP ratios using 31P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. Results: Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls ( p = 0.02), but not in MS subjects ( p = 0.68). Conclusions: Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.
Collapse
Affiliation(s)
- Christel Steen
- Department of Neurology, Universitair Medisch Centrum Groningen, The Netherlands
| | - Miguel D’haeseleer
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Belgium
| | - Johannes M Hoogduin
- Department of Neurology and Neurosurgery, Universitair Medisch Centrum Utrecht, The Netherlands
| | - Yves Fierens
- Department of Medical Physics, Department of Radiology, Universitair Ziekenhuis Brussel, Belgium
| | - Melissa Cambron
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Belgium
| | - Jop P Mostert
- Department of Neurology, Rijnstate Hospital, The Netherlands
| | - Dorothea J Heersema
- Department of Neurology, Universitair Medisch Centrum Groningen, The Netherlands
| | - Marcus W Koch
- Department of Clinical Neurosciences, Division of Neurology, University of Calgary, Canada
| | - Jacques De Keyser
- Department of Neurology, Universitair Medisch Centrum Groningen, The Netherlands
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Belgium
| |
Collapse
|
148
|
Khalili-Mahani N, van Osch MJ, de Rooij M, Beckmann CF, van Buchem MA, Dahan A, van Gerven JM, Rombouts SARB. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies. Hum Brain Mapp 2012; 35:929-42. [PMID: 23281174 DOI: 10.1002/hbm.22224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/08/2012] [Accepted: 10/22/2012] [Indexed: 01/28/2023] Open
Abstract
Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Zhang Y, San Emeterio Nateras O, Peng Q, Rosende CA, Duong TQ. Blood flow MRI of the human retina/choroid during rest and isometric exercise. Invest Ophthalmol Vis Sci 2012; 53:4299-305. [PMID: 22661466 DOI: 10.1167/iovs.11-9384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate blood flow (BF) in the human retina/choroid during rest and handgrip isometric exercise using magnetic resonance imaging (MRI). METHODS Four healthy volunteers (25-36 years old) in multiple sessions (1-3) on different days. MRI studies were performed on a 3-Tesla scanner using a custom-made surface coil (7×5cm in diameter) at the spatial resolution of 0.5×0.8×6.0 mm. BF was measured using the pseudo-continuous arterial-spin-labeling technique with background suppression and turbo-spin-echo acquisition. During MRI, subjects rested for 1 minute followed by 1 minute of handgrip, repeating three times, while maintaining stable eye fixation on a target with cued eye blinks at the end of each data acquisition (every 4.6 seconds). RESULTS Robust BF of the unanesthetized human retina/choroid was detected. Basal BF in the posterior retina/choroid was 149±48 mL/100 mL/min with a mean heart rate of 60±5 beats per minute, mean arterial pressure of 78±5 mm Hg, ocular perfusion pressure of 67±4 mm Hg at rest (mean±SD, n=4 subjects). Handgrip significantly increased retina/choroid BF by 25%±7%, heart rate by 19%±8%, mean arterial pressure by 22%±5% (measured at the middle of the handgrip task), and ocular perfusion pressure by 25%±6% (averaged across the entire handgrip task) (P<0.01), but did not change intraocular pressure, arterial oxygen saturation, end-tidal CO2, and respiration rate (P>0.05). CONCLUSIONS This study demonstrates a novel MRI application to image quantitative BF of the human retina/choroid during rest and isometric exercise. Retina/choroid BF increases during brief handgrip exercise, paralleling increases in mean arterial pressure. Handgrip exercise changes ocular perfusion pressure free of potential drug side effect and can be done in the MRI scanner. MRI offers quantitative BF with large field of view without depth limitation, potentially providing insights into retinal pathophysiology.
Collapse
Affiliation(s)
- Yi Zhang
- Research Imaging Institute, Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
150
|
Abstract
INTRODUCTION The past decade has seen an explosion of functional magnetic resonance imaging (MRI) studies in neuroscience. As the technology progresses, it is now possible to carry out longitudinal studies using functional MRI. Such studies can be used to understand the progression of mental and neurological disorders and the effectiveness of different treatments by obtaining direct measures of brain activity as well as markers of tissue health and connectivity. AREAS COVERED We review six popular neuroimaging tools that can be used for longitudinal studies: blood oxygen level-dependent (BOLD)-weighted imaging, BOLD-based functional connectivity, arterial spin labeling, dynamic R2* imaging, voxel-based morphometry, and diffusion tensor imaging. EXPERT OPINION Each of these techniques is targeted to probe a specific feature of brain function or brain structure and can reveal important information about the progression of a pathological condition. We anticipate that in the near future, the MRI techniques discussed here may become standard tools in clinical use and will not be used for research purposes only.
Collapse
Affiliation(s)
- Luis Hernandez-Garcia
- University of Michigan, FMRI Laboratory , 2360 Bonisteel Blvd, room 1096, Ann Arbor, MI 48109-2108 , USA +1 734 763 9254 ;
| | | |
Collapse
|