101
|
Duffy MM, McNicholas BA, Monaghan DA, Hanley SA, McMahon JM, Pindjakova J, Alagesan S, Fearnhead HO, Griffin MD. Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the related inflammatory response in the kidney. Am J Physiol Renal Physiol 2014; 307:F1412-26. [DOI: 10.1152/ajprenal.00024.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) suppress T helper (Th)17 cell differentiation and are being clinically pursued for conditions associated with aberrant Th17 responses. Whether such immunomodulatory effects are enhanced by coadministration of MSCs with other agents is not well known. In the present study, individual and combined effects of MSCs and the vitamin D receptor (VDR) agonist paricalcitol on Th17 induction were investigated in vitro and in a mouse model of sterile kidney inflammation (unilateral ureteral obstruction). In vitro, MSCs and paricalcitol additively suppressed Th17 differentiation, although only MSCs suppressed expression of Th17-associated transcriptions factors. Combined administration of MSCs and paricalcitol resulted in an early ( day 3) reduction of intrarenal CD4+ and CD8+ T cells, CD11b+/lymphocyte antigen 6G+ neutrophils, and inflammatory (lymphocyte antigen 6Chi) monocytes as well as reduced transcript for IL-17 compared with untreated animals. Later ( day 8), obstructed kidneys of MSC/paricalcitol double-treated mice, but not mice treated with either intervention alone, had reduced tubular injury and interstitial fibrosis as well as lower numbers of neutrophils and inflammatory monocytes and an increase in the ratio between M2 (CD206+) and M1 (CD206−) macrophages compared with control mice. Adjunctive therapy with VDR agonists may enhance the immunosuppressive properties of MSCs in the setting of pathogenic Th17-type immune responses and related inflammatory responses.
Collapse
Affiliation(s)
- Michelle M. Duffy
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - David A. Monaghan
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Shirley A. Hanley
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jill M. McMahon
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Jana Pindjakova
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Howard O. Fearnhead
- National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
102
|
Reinders MEJ, Bank JR, Dreyer GJ, Roelofs H, Heidt S, Roelen DL, Al Huurman V, Lindeman J, van Kooten C, Claas FHJ, Fibbe WE, Rabelink TJ, de Fijter JW. Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J Transl Med 2014; 12:331. [PMID: 25491391 PMCID: PMC4273432 DOI: 10.1186/s12967-014-0331-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Kidney transplantation has improved survival and quality of life for patients with end-stage renal disease. Despite excellent short-term results due to better and more potent immunosuppressive drugs, long-term survival of transplanted kidneys has not improved accordingly in the last decades. Consequently there is a strong interest in immunosuppressive regimens that maintain efficacy for the prevention of rejection, whilst preserving renal structure and function. In this respect the infusion of mesenchymal stromal cells (MSCs) may be an interesting immune suppressive strategy. MSCs have immune suppressive properties and actively contribute to tissue repair. In experimental animal studies the combination of mammalian target of rapamycin (mTOR) inhibitor and MSCs was shown to attenuate allo immune responses and to promote allograft tolerance. The current study will test the hypothesis that MSC treatment, in combination with the mTOR inhibitor everolimus, facilitates tacrolimus withdrawal, reduces fibrosis and decreases the incidence of opportunistic infections compared to standard tacrolimus dose. Methods/design 70 renal allograft recipients, 18–75 years old, will be included in this Phase II, open label, randomized, non-blinded, prospective, single centre clinical study. Patients in the MSC treated group will receive two doses of autologous bone marrow derived MSCs IV (target 1,5x106, Range 1-2x106 million MSCs per/kg body weight), 7 days apart, 6 and 7 weeks transplantation in combination with everolimus and prednisolone. At the time of the second MSC infusion tacrolimus will be reduced to 50% and completely withdrawn 1 week later. Patients in the control group will receive everolimus, prednisolone and standard dose tacrolimus. The primary end point is to compare fibrosis by quantitative Sirius Red scoring of MSC treated and untreated groups at 6 months compared to 4 weeks post-transplant. Secondary end points include: composite end point efficacy failure (Biopsy Proven Acute Rejection, graft loss or death); renal function and proteinuria; opportunistic infections; immune monitoring and “subclinical” cardiovascular disease groups by assessing echocardiography in the different treatment groups. Discussion This study will provide information whether MSCs in combination with everolimus can be used for tacrolimus withdrawal, and whether this strategy leads to preservation of renal structure and function in renal recipients. Trial registration NCT02057965.
Collapse
|
103
|
Wakao S, Akashi H, Kushida Y, Dezawa M. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int 2014; 64:1-9. [PMID: 24471964 DOI: 10.1111/pin.12129] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) have been presumed to include a subpopulation of pluripotent-like cells as they differentiate not only into the same mesodermal-lineage cells but also into ectodermal- and endodermal-lineage cells and exert tissue regenerative effects in a wide variety of tissues. A novel type of pluripotent stem cell, Multilineage-differentiating stress enduring (Muse) cells, was recently discovered in mesenchymal tissues such as the bone marrow, adipose tissue, dermis and connective tissue of organs, as well as in cultured fibroblasts and bone marrow-MSCs. Muse cells are able to differentiate into all three germ layers from a single cell and to self-renew, and yet exhibit non-tumorigenic and low telomerase activities. They can migrate to and target damaged sites in vivo, spontaneously differentiate into cells compatible with the targeted tissue, and contribute to tissue repair. Thus, Muse cells may account for the wide variety of differentiation abilities and tissue repair effects that have been observed in MSCs. Muse cells are unique in that they are pluripotent stem cells that belong in the living body, and are thus assumed to play an important role in 'regenerative homeostasis' in vivo.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
104
|
Islam N, Whitehouse M, Mehendale S, Hall M, Tierney J, O'Connell E, Blom A, Bannister G, Hinde J, Ceredig R, Bradley BA. Post-traumatic immunosuppression is reversed by anti-coagulated salvaged blood transfusion: deductions from studying immune status after knee arthroplasty. Clin Exp Immunol 2014; 177:509-20. [PMID: 24749651 DOI: 10.1111/cei.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 12/28/2022] Open
Abstract
Major trauma increases vulnerability to systemic infections due to poorly defined immunosuppressive mechanisms. It confers no evolutionary advantage. Our objective was to develop better biomarkers of post-traumatic immunosuppression (PTI) and to extend our observation that PTI was reversed by anti-coagulated salvaged blood transfusion, in the knowledge that others have shown that non-anti-coagulated (fibrinolysed) salvaged blood was immunosuppressive. A prospective non-randomized cohort study of patients undergoing primary total knee arthroplasty included 25 who received salvaged blood transfusions collected post-operatively into acid-citrate-dextrose anti-coagulant (ASBT cohort), and 18 non-transfused patients (NSBT cohort). Biomarkers of sterile trauma included haematological values, damage-associated molecular patterns (DAMPs), cytokines and chemokines. Salvaged blood was analysed within 1 and 6 h after commencing collection. Biomarkers were expressed as fold-changes over preoperative values. Certain biomarkers of sterile trauma were common to all 43 patients, including supranormal levels of: interleukin (IL)-6, IL-1-receptor-antagonist, IL-8, heat shock protein-70 and calgranulin-S100-A8/9. Other proinflammatory biomarkers which were subnormal in NSBT became supranormal in ASBT patients, including IL-1β, IL-2, IL-17A, interferon (IFN)-γ, tumour necrosis factor (TNF)-α and annexin-A2. Furthermore, ASBT exhibited subnormal levels of anti-inflammatory biomarkers: IL-4, IL-5, IL-10 and IL-13. Salvaged blood analyses revealed sustained high levels of IL-9, IL-10 and certain DAMPs, including calgranulin-S100-A8/9, alpha-defensin and heat shock proteins 27, 60 and 70. Active synthesis during salvaged blood collection yielded increasingly elevated levels of annexin-A2, IL-1β, Il-1-receptor-antagonist, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IFN-γ, TNF-α, transforming growth factor (TGF)-β1, monocyte chemotactic protein-1 and macrophage inflammatory protein-1α. Elevated levels of high-mobility group-box protein-1 decreased. In conclusion, we demonstrated that anti-coagulated salvaged blood reversed PTI, and was attributed to immune stimulants generated during salvaged blood collection.
Collapse
Affiliation(s)
- N Islam
- Musculoskeletal Research Unit, 1st Floor Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, United Kingdom; National Centre for Biomedical Engineering Science, National University of Ireland, Galway; Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, County Kerry, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Duffy MM, Griffin MD. Back from the brink: a mesenchymal stem cell infusion rescues kidney function in acute experimental rhabdomyolysis. Stem Cell Res Ther 2014; 5:109. [PMID: 25688472 PMCID: PMC4338850 DOI: 10.1186/scrt497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Systemic administration of mesenchymal stem (stromal) cells (MSCs) has shown benefit in a range of experimental models of acute kidney injury, although the reported mechanisms of action and requirement for MSC localization to the kidney have varied. Geng and colleagues now demonstrate that a single intravenous infusion of MSCs given 6 hours after induction of acute muscle necrosis (rhabdomyolysis) robustly ameliorates the resulting acute kidney injury and promotes early intra-renal accumulation of CD206+ (M2) macrophages. The benefit occurred in the absence of MSC localization to the kidney and could be reproduced by adoptive transfer of ex vivo-programmed M2 macrophages.
Collapse
|
106
|
Prado-Lòpez S, Duffy MM, Baustian C, Alagesan S, Hanley SA, Stocca A, Griffin MD, Ceredig R. The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines. Immunol Cell Biol 2014; 92:612-23. [PMID: 24777310 DOI: 10.1038/icb.2014.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/27/2022]
Abstract
Multipotent mesenchymal stromal cells are multipotent cells capable of differentiating into different mesodermal cell types. Enigmatically, mesenchymal stromal cells present in the bone marrow support early lymphopoiesis yet can inhibit mature lymphocyte growth. Critical features of the bone marrow microenvironment, such as the level of oxygen, play an important role in mesenchymal stromal cell biology. Herein, we show that a panel of continuously growing mouse mesenchymal stromal cell lines, namely OP9, MS5, PA6, ST2 and B16-14, exhibit mesenchymal stromal cell characteristic phenotypes and respond physiologically to oxygen deprivation. Culturing freshly isolated bone marrow-derived mesenchymal stromal cells or cell lines at 5% O2 resulted in a dramatic increase in expression of hypoxia-inducible factor family members and of key genes involved in their differentiation. Phenotypically, their osteogenic and adipogenic differentiation capacity was generally improved in hypoxia, whereas their inhibitory effects on in vitro T-cell proliferation were preserved. Taken together, we conclude that these continuously growing mouse cell lines behave as canonical mesenchymal stromal cells and respond physiologically to hypoxia, thereby providing a potent tool for the study of different aspects of mesenchymal stromal cell biology.
Collapse
Affiliation(s)
- Sonia Prado-Lòpez
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Michelle M Duffy
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Claas Baustian
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Shirley A Hanley
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Alessia Stocca
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Rhodri Ceredig
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
107
|
Kooreman NG, Ransohoff JD, Wu JC. Tracking gene and cell fate for therapeutic gain. NATURE MATERIALS 2014; 13:106-9. [PMID: 24452344 PMCID: PMC4892936 DOI: 10.1038/nmat3868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parallel advances in molecular imaging modalities and in gene- and cell-based therapeutics have significantly advanced their respective fields. Here we discuss how the collaborative, preclinical intersection of these technologies will facilitate more informed and effective clinical translation of relevant therapies.
Collapse
Affiliation(s)
- Nigel G. Kooreman
- Stanford Cardiovascular Institute
- Departments of Medicine and Radiology (Molecular Imaging Program)
| | - Julia D. Ransohoff
- Stanford Cardiovascular Institute
- Departments of Medicine and Radiology (Molecular Imaging Program)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Departments of Medicine and Radiology (Molecular Imaging Program)
- Institute of Stem Cell Biology and Regenerative Medicine
| |
Collapse
|
108
|
|
109
|
Ma T. Acellular biomaterials in mesenchymal stem cell-mediated endogenous tissue regeneration. J Mater Chem B 2014; 2:31-35. [DOI: 10.1039/c3tb21369b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:86. [PMID: 24936198 PMCID: PMC4047679 DOI: 10.3389/fendo.2014.00086] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
The worldwide increase in the prevalence of Diabetes mellitus (DM) has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. In recent years, mesenchymal stromal cells (MSCs) have been highlighted as a new emerging regenerative therapy due to their multipotency but also due to their paracrine secretion of angiogenic factors, cytokines, and immunomodulatory substances. This review focuses on the potential use of MSCs as a regenerative medicine in microvascular and secondary complications of DM and will discuss the challenges and future prospects of MSCs as a regenerative therapy in this field. MSCs are believed to have an important role in tissue repair. Evidence in recent years has demonstrated that MSCs have potent immunomodulatory functions resulting in active suppression of various components of the host immune response. MSCs may also have glucose lowering properties providing another attractive and unique feature of this therapeutic approach. Through a combination of the above characteristics, MSCs have been shown to exert beneficial effects in pre-clinical models of diabetic complications prompting initial clinical studies in diabetic wound healing and nephropathy. Challenges that remain in the clinical translation of MSC therapy include issues of MSC heterogeneity, optimal mode of cell delivery, homing of these cells to tissues of interest with high efficiency, clinically meaningful engraftment, and challenges with cell manufacture. An issue of added importance is whether an autologous or allogeneic approach will be used. In summary, MSC administration has significant potential in the treatment of diabetic microvascular and secondary complications but challenges remain in terms of engraftment, persistence, tissue targeting, and cell manufacture.
Collapse
Affiliation(s)
- Grace C Davey
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Swapnil B Patil
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Aonghus O'Loughlin
- Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland ; Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| |
Collapse
|