101
|
Somasekaram A, Jarmuz A, How A, Scott J, Navaratnam N. Intracellular localization of human cytidine deaminase. Identification of a functional nuclear localization signal. J Biol Chem 1999; 274:28405-12. [PMID: 10497201 DOI: 10.1074/jbc.274.40.28405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis.
Collapse
Affiliation(s)
- A Somasekaram
- MRC Molecular Medicine Group, Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
102
|
Steinburg MF, Schock D, Backus JW, Smith HC. Tissue-specific differences in the role of RNA 3' of the apolipoprotein B mRNA mooring sequence in editosome assembly. Biochem Biophys Res Commun 1999; 263:81-6. [PMID: 10486257 DOI: 10.1006/bbrc.1999.1329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Site-specific editing of apolipoprotein B (apoB) mRNA by the cytidine deaminase, APOBEC-1 is proposed to require interactions of auxiliary protein(s) with an eleven nucleotide element, the mooring sequence, located 3' of the C --> U editing site. An analysis of the RNA sequence dependence for protein-RNA interactions and editosome assembly in rat liver and the small intestine demonstrated that the mooring sequence was a minimal requirement for these interactions. Sequences 3' of the mooring sequence either interacted with 66 kDa and 44 kDa proteins or enhanced the interactions of these proteins with the mooring sequence. The data also suggested tissue-specific differences in the relative importance of the 3' cis-acting 'enhancer' elements in the efficiency or stability of editosome assembly. We propose that the previously demonstrated differences in apoB mRNA editing efficiency and its regulation in liver and intestine may in part be due to differences in auxiliary protein interactions with apoB mRNA 3' of the mooring sequence.
Collapse
Affiliation(s)
- M F Steinburg
- Department of Biochemistry and Biophysics, Department of Pathology, Environmental Health Sciences Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
103
|
Maas S, Gerber AP, Rich A. Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A 1999; 96:8895-900. [PMID: 10430867 PMCID: PMC17704 DOI: 10.1073/pnas.96.16.8895] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/1999] [Indexed: 11/18/2022] Open
Abstract
The mammalian adenosine deaminases acting on RNA (ADARs) constitute a family of sequence-related proteins involved in pre-mRNA editing of nuclear transcripts through site-specific adenosine modification. We report here the identification and characterization of a human ADAR protein, hADAT1, that specifically deaminates adenosine 37 to inosine in eukaryotic tRNA(Ala). It represents the functional homologue of the recently identified yeast protein Tad1p [Gerber, A., Grosjean, H., Melcher, T. & Keller, W. (1998) EMBO J. 17, 4780-4789]. The hADAT1 cDNA predicts a protein of 502 aa whose sequence displays strongest overall homology to a Drosophila melanogaster ORF (50% similarity, 32% identity), and the catalytic domain is closely related to the other ADAR proteins. In vitro, the recombinantly expressed and purified hADAT1 protein efficiently and specifically deaminates A(37) in the anticodon loop of tRNA(Ala) from higher eukaryotes and with lower efficiency from lower eukaryotes. It does not modify adenosines residing in double-stranded RNA or in pre-mRNAs that serve as substrates for ADAR1 or ADAR2. The anticodon stem-loop of tRNA(Ala) alone is not a functional substrate for hADAT1. The enzyme is expressed ubiquitously in human tissues and is represented by a single gene. The identification and cloning of hADAT1 should help to elucidate the physiological significance of this unique modification in tRNA(Ala), which is conserved from yeast to man.
Collapse
Affiliation(s)
- S Maas
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139, USA
| | | | | |
Collapse
|
104
|
Faivre-Nitschke SE, Grienenberger JM, Gualberto JM. A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:896-903. [PMID: 10469156 DOI: 10.1046/j.1432-1327.1999.00591.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene and cDNA of an Arabidopsis thaliana cytidine deaminase (CDA) were cloned and sequenced. The gene, At-cda1, is located on chromosome 2 and is expressed in all plant tissues tested, although with quantitative differences. Expression analysis suggest that At-cda1 probably codes for the housekeeping cytidine deaminase of Arabidopsis. The gene was functionally expressed in Escherichia coli and the protein, At-CDA1, shows similar enzymatic and substrate specificities as conventional cytidine deaminases: it deaminates cytidine and deoxycytidine and is competitively inhibited by cytosine-containing compounds. Because the protein shows no affinity to RNA, it is not likely to be involved in RNA-editing by C-to-U deamination. When compared to cytidine deaminases from other organisms, it becomes clear that At-CDA1 is related, both in sequence and structure, to the CDA of E. coli and other gram-negative bacteria. The eubacterial nature of the Arabidopsis CDA suggests that it is an additional example of a plant gene of endosymbiotic origin.
Collapse
|
105
|
Fujino T, Navaratnam N, Jarmuz A, von Haeseler A, Scott J. C-->U editing of apolipoprotein B mRNA in marsupials: identification and characterisation of APOBEC-1 from the American opossum Monodelphus domestica. Nucleic Acids Res 1999; 27:2662-71. [PMID: 10373583 PMCID: PMC148475 DOI: 10.1093/nar/27.13.2662] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.
Collapse
Affiliation(s)
- T Fujino
- Tohoku University Gene Research Centre, 1-1 Tsutsumidori-Amamiya, Aoba, Sendai 981-0914, Japan
| | | | | | | | | |
Collapse
|
106
|
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999; 274:18470-6. [PMID: 10373455 DOI: 10.1074/jbc.274.26.18470] [Citation(s) in RCA: 878] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel gene referred to as activation-induced deaminase (AID) by subtraction of cDNAs derived from switch-induced and uninduced murine B lymphoma CH12F3-2 cells, more than 80% of which switch exclusively to IgA upon stimulation. The amino acid sequence encoded by AID cDNA is homologous to that of apolipoprotein B (apoB) mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC-1), a type of cytidine deaminase that constitutes a catalytic subunit for the apoB mRNA-editing complex. In vitro experiments using a glutathione S-transferase AID fusion protein revealed significant cytidine deaminase activity that is blocked by tetrahydrouridine and by zinc chelation. However, AID alone did neither demonstrate activity in C to U editing of apoB mRNA nor bind to AU-rich RNA targets. AID mRNA expression is induced in splenic B cells that were activated in vitro or by immunizations with sheep red blood cells. In situ hybridization of immunized spleen sections revealed the restricted expression of AID mRNA in developing germinal centers in which modulation of immunoglobulin gene information through somatic hypermutation and class switch recombination takes place. Taken together, these findings suggest that AID is a new member of the RNA-editing deaminase family and may play a role in genetic events in the germinal center B cell.
Collapse
Affiliation(s)
- M Muramatsu
- Department of Medical Chemistry, Faculty of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
107
|
Keller W, Wolf J, Gerber A. Editing of messenger RNA precursors and of tRNAs by adenosine to inosine conversion. FEBS Lett 1999; 452:71-6. [PMID: 10376681 DOI: 10.1016/s0014-5793(99)00590-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double-stranded RNA-specific adenosine deaminases ADAR1 and ADAR2 convert adenosine (A) residues to inosine (I) in messenger RNA precursors (pre-mRNA). Their main physiological substrates are pre-mRNAs encoding subunits of ionotropic glutamate receptors or serotonin receptors in the brain. ADAR1 and ADAR2 have similar sequence features, including double-stranded RNA binding domains (dsRBDs) and a deaminase domain. The tRNA-specific adenosine deaminases Tad1p and Tad2p/Tad3p modify A 37 in tRNA-Ala1 of eukaryotes and the first nucleotide of the anticodon (A 34) of several bacterial and eukaryotic tRNAs, respectively. Tad1p is related to ADAR1 and ADAR2 throughout its sequence but lacks dsRBDs. Tad1p could be the ancestor of ADAR1 and ADAR2. The deaminase domains of ADAR1, ADAR2 and Tad1p are very similar and resemble the active site domains of cytosine/cytidine deaminases.
Collapse
Affiliation(s)
- W Keller
- Biozentrum, University of Basel, Switzerland.
| | | | | |
Collapse
|
108
|
Abstract
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.
Collapse
|
109
|
Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1): structure–function relationships of RNA editing and dimerization. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32141-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
110
|
Scott J, Navaratnam N, Carter C. Molecular modelling and the biosynthesis of apolipoprotein B containing lipoproteins. Atherosclerosis 1998; 141 Suppl 1:S17-24. [PMID: 9888637 DOI: 10.1016/s0021-9150(98)00213-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
APOBEC-1 is the cytidine deaminase. We show by sequence alignment, molecular modelling and mutagenesis, that it is related in crystal structure to the cytidine deaminase of Escherichia coli (ECCDA). The two enzymes are both homodimers with composite active sites formed with loops from each monomer. In the sequence of APOBEC-1, three gaps compared to ECCDA match the size and contour of the minimal RNA substrate. We propose a model in which the asymmetric binding of one active site to the substrate cytidine which is positioned by the downstream binding of the product uridine and that this helps to target the other active site for deamination.
Collapse
Affiliation(s)
- J Scott
- National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
111
|
Richardson N, Navaratnam N, Scott J. Secondary structure for the apolipoprotein B mRNA editing site. Au-binding proteins interact with a stem loop. J Biol Chem 1998; 273:31707-17. [PMID: 9822632 DOI: 10.1074/jbc.273.48.31707] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C to U editing of apolipoprotein B (apoB) mRNA converts a glutamine codon in apoB100 mRNA into a stop translation codon thereby generating apoB48. The catalytic subunit of the editing enzyme, APOBEC-1, is an RNA-binding cytidine deaminase that requires auxiliary factors for the editing of apoB mRNA. Computer modeling and ribonuclease probing of the wild-type and mutant apoB RNA substrates reveal a stem loop at the editing site. This structure incorporates the essential sequence motifs required for editing. The localization of the edited cytidine within the loop suggests how it could be presented to the active site of APOBEC-1 for deamination. We have identified 43/45 kDa proteins from chick enterocytes and show evidence for their involvement in auxiliary editing activity. p43/45 demonstrates preferential binding to AU-rich RNA and to the Caauuug motif that forms the loop and proximal stem of the apoB mRNA.
Collapse
Affiliation(s)
- N Richardson
- MRC Molecular Medicine Group, Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
112
|
Gerber A, Grosjean H, Melcher T, Keller W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J 1998; 17:4780-9. [PMID: 9707437 PMCID: PMC1170807 DOI: 10.1093/emboj/17.16.4780] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have identified an RNA-specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor-mRNAs and on long double-stranded RNA. These findings suggest an evolutionary link between pre-mRNA editing and tRNA modification.
Collapse
Affiliation(s)
- A Gerber
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
113
|
Greeve J, Lellek H, Rautenberg P, Greten H. Inhibition of the apolipoprotein B mRNA editing enzyme-complex by hnRNP C1 protein and 40S hnRNP complexes. Biol Chem 1998; 379:1063-73. [PMID: 9792439 DOI: 10.1515/bchm.1998.379.8-9.1063] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The apolipoprotein (apo) B mRNA can be modified by a posttranscriptional base change from cytidine to uridine at nucleotide position 6666. This editing of apo B mRNA is mediated by a specific enzyme-complex of which only the catalytic subunit APOBEC-1 (apo B mRNA editing enzyme component 1) has been cloned and extensively characterized. In this study, two-hybrid selection in yeast identified hnRNP C1 protein to interact with APOBEC-1. Recombinant hnRNP C1 protein inhibited partially purified apo B mRNA editing activity from rat small intestine and bound specifically to apo B sense RNA around the editing site. The inhibition of apo B mRNA editing by hnRNP C1 protein was not due to masking of the RNA substrate as the mutant protein M104 spanning the RNA-binding domain of hnRNP C1 protein bound strongly to the apo B RNA, but did not inhibit the editing reaction. The apo B mRNA editing enzyme-complex of rat liver nuclear extracts sedimented in sucrose density gradients around 22-27S, but did not contain hnRNP C1 protein that was found exclusively within 40S hnRNP complexes. The removal of 40S hnRNP complexes increased the activity of the 22-27S editing enzyme-complex. Adding back 40S hnRNP complexes with hnRNP C1 protein resulted in an inhibition of the 22-27S apo B mRNA editing enzyme-complex, while addition of 18S fractions had no effect. In conclusion, hnRNP C1 protein identified by two-hybrid selection in yeast is a potent inhibitor of the apo B mRNA editing enzyme-complex. The abundant hnRNP C1 protein, which is contiguously deposited on nascent pre-mRNA during transcription and is involved in spliceosome assembly and mRNA splicing, is a likely regulator of the editing of apo B mRNA which restricts the activity of APOBEC-1 to limited and specific editing events.
Collapse
Affiliation(s)
- J Greeve
- Medizinische Klinik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
114
|
Anant S, Yu H, Davidson NO. Evolutionary origins of the mammalian apolipoproteinB RNA editing enzyme, apobec-1: structural homology inferred from analysis of a cloned chicken small intestinal cytidine deaminase. Biol Chem 1998; 379:1075-81. [PMID: 9792440 DOI: 10.1515/bchm.1998.379.8-9.1075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mammalian apolipoproteinB (apoB) RNA editing is a site-specific deamination reaction that mediates the C to U conversion responsible for apoB48 production in the mammalian small intestine. This process is not detected in chicken apoB RNA. Mammalian apoB RNA editing is mediated by a multicomponent enzyme complex that includes a single catalytic subunit, apobec-1. In order to examine the evolution of apobec-1, we have cloned and characterized an orthologous cytidine deaminase cDNA isolated from chicken small intestine. Northern blot analysis revealed expression restricted to the small intestine, colon and lung but not the liver or other tissues. The cDNA encodes a single 31 kDa protein with features reminiscent of other cytidine deaminases and with approximately 39% overall homology to rat apobec-1. The recombinant protein is a cytidine deaminase with activity on a monomeric substrate that was found to be zinc-dependent. However, no RNA editing activity was detectable towards cytidine nucleotides presented in the context of an optimally configured mammalian apoB RNA template. These studies provide information concerning the evolution of the apoB RNA editing machinery and indicate that a chicken small intestinal cytidine deaminase with homology to apobec-1 demonstrates no activity on an RNA substrate.
Collapse
Affiliation(s)
- S Anant
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|