101
|
The effects of inflammation on glial fibrillary acidic protein expression in satellite cells of the dorsal root ganglion. Spine (Phila Pa 1976) 2009; 34:1631-7. [PMID: 19770604 DOI: 10.1097/brs.0b013e3181ab1f68] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
STUDY DESIGN After undergoing L5 hemilaminectomy, chromic gut suture was placed onto the DRG and the animals were sacrificed at various time-points. OBJECTIVE The purpose of this study was to identify the effects of inflammation on satellite cells (SCs) of the dorsal root ganglion (DRG) by analyzing glial fibrillary acidic protein (GFAP) expression in of the DRG at various time points. SUMMARY OF BACKGROUND DATA SCs are neuroglial cells that closely interact with nerve cells of the DRG. The role of SC remains unknown GFAP expression increases in response to CNS injury. Loss of GFAP has impaired Schwann cell proliferation and delayed nerve regeneration after injury. METHODS Sixty rats underwent a left L5 hemilaminectomy. In Group I, a chromic-gut suture was place topically on the DRG (n = 30), Group II was the sham surgery group (n = 30). DRGs were harvested at 6, 24, 48, 72 hours, and 7 days after surgery. In Group III, 6 control rats were killed and their bilateral L5 DRG harvested. The harvested DRG were analyzed using light microscopy for SC immunoreactivity, using GFAP, HIS-36, TNF-alpha, IL-1alpha, IL-1beta, IL-6 monoclonal antibodies. RESULTS One hundred thirty-two DRGs were harvested for analysis. Naïve controls and neurons did not express GFAP. The SC sheath expressed GFAP as early as 6 hours postchromic gut application. In Group I, GFAP expression steadily increased after chromic-gut application with 100% of SC soma and SC sheaths being GFAP positive at 7 days. The contralateral DRG demonstrated delayed GFAP expression, with 83% of SC soma and SC sheaths were GFAP positive at 7 days. In Group II, 89% of sacs expressed GFAP by 7 compared to 79% in the contralateral undisturbed DRG. CONCLUSION Under physiologic conditions, the expression of GFAP by SCs is undetectable. As the inflammatory process develops, GFAP expression steadily increases with 100% of SCs being GFAP immunoreactive 7 days after chromic gut application. These data suggest that SCs are the primary source of GFAP in the DRG. We hypothesize that SC play an important role in the response to early inflammatory injury.
Collapse
|
102
|
Li WW, Sabsovich I, Guo TZ, Zhao R, Kingery WS, Clark DJ. The role of enhanced cutaneous IL-1beta signaling in a rat tibia fracture model of complex regional pain syndrome. Pain 2009; 144:303-313. [PMID: 19473768 DOI: 10.1016/j.pain.2009.04.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 12/20/2022]
Abstract
Tibia fracture in rats initiates a syndrome resembling the complex regional pain syndrome type I. Accumulating evidence indicates that IL-1beta is involved in the modulation of nociceptive information and it acts as an intermediate inflammatory mediator via up-regulation of NGF. We hypothesized that IL-1beta signaling might mediate the development of the CRPS-like changes after tibial fracture, either directly or by stimulating NGF expression. Rats underwent distal tibia fracture and casting for 4 weeks and were chronically treated with an IL-1 receptor antagonist (IL-1ra). Nociceptive testing and assessment of edema and hindpaw warmth were performed at baseline and after cast removal. Bone microarchitecture was evaluated by micro-computed tomography. Confocal immunofluorescence and in situ hybridization techniques were used to evaluate changes in the cutaneous expression of IL-1beta at 4 weeks post-fracture. The nociceptive and vascular effects of intraplantar IL-1beta injections were evaluated in intact rats at different time points after injection. We found that: (1) IL-1ra reduced fracture-induced nociceptive sensitization, but did not decrease hindpaw edema or warmth, (2) fracture chronically up-regulated IL-1beta mRNA and protein expression in hindpaw skin keratinocytes, (3) IL-1beta intraplantar injection induced mechanical allodynia in a dose-dependent manner and stimulated keratinocyte NGF expression in the hindpaw skin, and (4) intraplantar injection of NGF-induced nociceptive sensitization. Collectively, these results indicate that cutaneous IL-1beta signaling can contribute to chronic regional nociceptive sensitization after fracture, possibly by stimulating NGF over-expression in keratinocytes. Our data also highlight the importance of the keratinocyte as the primary source of post-traumatic IL-1beta over-expression.
Collapse
Affiliation(s)
- Wen-Wu Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
103
|
Mode of action of cytokines on nociceptive neurons. Exp Brain Res 2009; 196:67-78. [PMID: 19290516 DOI: 10.1007/s00221-009-1755-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/24/2009] [Indexed: 01/05/2023]
Abstract
Cytokines are pluripotent soluble proteins secreted by immune and glial cells and are key elements in the induction and maintenance of pain. They are categorized as pro-inflammatory cytokines, which are mostly algesic, and anti-inflammatory cytokines, which have analgesic properties. Progress has been made in understanding the mechanisms underlying the action of cytokines in pain. To date, several direct and indirect pathways are known that link cytokines with nociception or hyperalgesia. Cytokines may act via specific cytokine receptors inducing downstream signal transduction cascades, which then modulate the function of other receptors like the ionotropic glutamate receptor, the transient vanilloid receptors, or sodium channels. This receptor activation, either through amplification of the inflammatory reaction, or through direct modulation of ion channel currents, then results in pain sensation. Following up on results from animal experiments, cytokine profiles have recently been investigated in human pain states. An imbalance of pro- and anti-inflammatory cytokine expression may be of importance for individual pain susceptibility. Individual cytokine profiles may be of diagnostic importance in chronic pain states, and, in the future, might guide the choice of treatment.
Collapse
|
104
|
Abstract
Glia have emerged as key contributors to pathological and chronic pain mechanisms. On activation, both astrocytes and microglia respond to and release a number of signalling molecules, which have protective and/or pathological functions. Here we review the current understanding of the contribution of glia to pathological pain and neuroprotection, and how the protective, anti-inflammatory actions of glia are being harnessed to develop new drug targets for neuropathic pain control. Given the prevalence of chronic pain and the partial efficacy of current drugs, which exclusively target neuronal mechanisms, new strategies to manipulate neuron-glia interactions in pain processing hold considerable promise.
Collapse
|
105
|
Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 2009; 5:183-90. [PMID: 19202543 DOI: 10.1038/nchembio.146] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.
Collapse
Affiliation(s)
- Hongzhen Hu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
106
|
Rothman SM, Huang Z, Lee KE, Weisshaar CL, Winkelstein BA. Cytokine mRNA expression in painful radiculopathy. THE JOURNAL OF PAIN 2008; 10:90-9. [PMID: 18848809 DOI: 10.1016/j.jpain.2008.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/18/2008] [Accepted: 07/29/2008] [Indexed: 01/01/2023]
Abstract
UNLABELLED Inflammatory cytokines contribute to lumbar radiculopathy. Regulation of cytokines for transient cervical injuries, with or without longer-lasting inflammation, remains to be defined. The C7 root in the rat underwent compression (10gf), chromic gut suture exposure (chr), or their combination (10gf+chr). Ipsilateral C7 spinal cord and dorsal root ganglia (DRG) were harvested at 1 hour after injury for real-time PCR analysis of IL-1beta, IL-6, and TNF-alpha. Cytokine mRNA increased after all 3 injuries. TNF-alpha mRNA in the DRG was significantly increased over sham after 10gf+chr (P = .026). Spinal IL-1beta was significantly increased over sham after 10gf and 10gf+chr (P < .024); IL-6 was significantly increased after 10gf+chr (P < .024). In separate studies, the soluble TNF-alpha receptor was administered at injury and again at 6 hours in all injury paradigms. Allodynia was assessed and tissue samples were harvested for cytokine PCR. Allodynia significantly decreased with receptor administration for 10gf and 10gf+chr (P < .005). Treatment also significantly decreased IL-1beta and TNF-alpha mRNA in the DRG for 10gf+chr (P < .028) at day 1. Results indicate an acute, robust cytokine response in cervical nerve root injury with varying patterns, dependent on injury type, and that early increases in TNF-alpha mRNA in the DRG may drive pain-related signaling for transient cervical injuries. PERSPECTIVE Inflammatory cytokine mRNA in the DRG and spinal cord are defined after painful cervical nerve root injury. Studies describe a role for TNF-alpha in mediating behavioral sensitivity and inflammatory cytokines in transient painful radiculopathy. Results outline an early response of inflammatory cytokine upregulation in cervical pain.
Collapse
Affiliation(s)
- Sarah M Rothman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, USA
| | | | | | | | | |
Collapse
|
107
|
Wolf G, Livshits D, Beilin B, Yirmiya R, Shavit Y. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav Immun 2008; 22:1072-1077. [PMID: 18442892 DOI: 10.1016/j.bbi.2008.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/09/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022] Open
Abstract
Postoperative incisional pain is characterized by persistent acute pain in the area of the cut, and is associated with release of proinflammatory cytokines, including interleukin-1 (IL-1), which play important hyperalgesic and allodynic roles in various inflammatory conditions. In the present study, we tested the role of IL-1 signaling in postoperative incisional pain using three mouse strains impaired in IL-1 signaling due to deletion of the IL-1 type I receptor on a mixed genetic background (IL-1rKO) or congenic background (IL-1rKOCog), or due to transgenic over-expression of IL-1 receptor antagonist (IL-1raTG). We used the relevant wild-type (WT) mice both as controls for the mutant strains, and for assessing the effects of pharmacological blockade of IL-1-signaling. Mechanosensitivity was assessed using the von-Frey filament test before, and up to 4 days following plantar incision, an animal model of postoperative pain. WT mice developed significant allodynia in the incised, compared with the intact, hind-paw beginning 3h after the incision and lasting up to 48h postoperatively. In contrast, IL-1rKO, IL-1rKOCog, and IL-1raTG mice, as well as WT mice chronically treated with IL-1ra, did not display increased mechanical pain sensitivity in either hind-paw. To test the hypothesis that IL-1-signaling is also involved in the maintenance of postoperative pain, WT mice were acutely treated with IL-1ra 24h following the incision, when allodynia was already evident. This treatment reversed the allodynic response throughout the observation period. Together, these findings suggest that IL-1 plays a critical role in the development and maintenance of postoperative incisional pain.
Collapse
Affiliation(s)
- Gilly Wolf
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Dina Livshits
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Benzion Beilin
- Department of Anesthesiology, Rabin Medical Center, Hasharon Hospital, Petah Tiqwa 49372, Affiliated with Sackler School of Medicine, Tel Aviv University, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Yehuda Shavit
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel.
| |
Collapse
|
108
|
Schäfers M, Sommer C, Geis C, Hagenacker T, Vandenabeele P, Sorkin LS. Selective stimulation of either tumor necrosis factor receptor differentially induces pain behavior in vivo and ectopic activity in sensory neurons in vitro. Neuroscience 2008; 157:414-23. [PMID: 18838115 DOI: 10.1016/j.neuroscience.2008.08.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that tumor necrosis factor-alpha (TNF) sensitizes primary afferent neurons, and thus facilitates neuropathic pain. Here, we separately examined the roles of tumor necrosis factor receptor (TNFR) 1 and 2 by parallel in vivo and in vitro paradigms using proteins that selectively activate TNFR1 or TNFR2 (R1 and R2). In vivo, intrathecally injected R1, but not R2 slightly reduced mechanical and thermal withdrawal thresholds in rats, whereas co-injection resulted in robust, at least additive pain-associated behavior. In vitro, the electrophysiological responses of dorsal root ganglia (DRG) from rats with spinal nerve ligation were measured utilizing single-fiber recordings of teased dorsal root filaments. In naïve DRG, only R1 (10-1000 pg/ml) induced firing in Ass- and Adelta-fibers, whereas R2 had no effect. In injured DRG, both R1 and R2 at significantly lower concentrations (1 pg/ml) increased discharge rates of Adelta-fibers. Most interesting, in adjacent uninjured DRG, R2 and not R1, increased ectopic activity in both Ass- and Adelta-fibers. We conclude that TNFR1 may be predominantly involved in the excitation of sensory neurons and induction of pain behavior in the absence of nerve injury, TNFR2 may contribute in the presence of TNFR1 activation. Importantly, the effects of individually applied R1 and R2 on injured and adjacent uninjured fibers imply that the role of TNFR2 in the excitation of sensory neurons increases after injury.
Collapse
Affiliation(s)
- M Schäfers
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
109
|
Effect of cytokines on neuronal excitability. Neurosci Lett 2008; 437:188-93. [PMID: 18420346 DOI: 10.1016/j.neulet.2008.03.052] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/28/2008] [Accepted: 03/19/2008] [Indexed: 01/11/2023]
Abstract
Numerous studies have shown that proinflammatory cytokines induce or facilitate pain and hyperalgesia in the presence of inflammation, injury to the nervous system or cancer. Besides acting as inflammatory mediators, increasing evidence indicates that cytokines may also specifically interact with receptor and ion channels regulating neuronal excitability, synaptic plasticity and injury under both physiological and pathological conditions. Here we summarize findings on two prototypical proinflammatory cytokines, tumor-necrosis factor-alpha and interleukin-1 beta, and their effects on neuronal excitability and ion channels with special regards to pain and hyperalgesia.
Collapse
|
110
|
Kraneveld AD, Rijnierse A, Nijkamp FP, Garssen J. Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: future therapeutic targets. Eur J Pharmacol 2008; 585:361-74. [PMID: 18417115 DOI: 10.1016/j.ejphar.2008.02.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/11/2008] [Accepted: 02/20/2008] [Indexed: 12/22/2022]
Abstract
The gastro-intestinal tract is well known for its largest neural network outside the central nervous system and for the most extensive immune system in the body. Research in neurogastroenterology implicates the involvement of both enteric nervous system and immune system in symptoms of inflammatory bowel disease and irritable bowel syndrome. Since both disorders are associated with increased immune cell numbers, nerve growth and activation of both immune cells and nerves, we focus in this review on the involvement of immune cell-nerve interactions in inflammatory bowel disease and irritable bowel syndrome. Firstly, the possible effects of enteric nerves, especially of the nonadrenergic and noncholinergic nerves, on the intestinal immune system and their possible role in the pathogenesis of chronic intestinal inflammatory diseases are described. Secondly, the possible effects of immunological factors, from the innate (chemokines and Toll-like receptors) as well as the adaptive (cytokines and immunoglobulins) immune system, on gastro-intestinal nerves and its potential role in the development of inflammatory bowel disease and irritable bowel syndrome are reviewed. Investigations of receptor-mediated and intracellular signal pathways in neuro-immune interactions might help to develop more effective therapeutic approaches for chronic inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Aletta D Kraneveld
- Division Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
111
|
Martinez V, Melgar S. Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain 2008; 12:934-44. [PMID: 18280187 DOI: 10.1016/j.ejpain.2007.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/28/2007] [Indexed: 02/06/2023]
Abstract
Tetrodotoxin-resistant voltage-gated sodium channels subtype 9 (Na(v)1.9) are expressed in small-diameter dorsal root ganglion neurons and have been involved in persistent somatic hyperalgesic responses associated with inflammation. We assessed the role of Na(v)1.9 channels on acute colonic inflammation-induced visceral hypersensitivity in conscious mice, using Na(v)1.9 knockout (KO) mice. Colorectal distension (CRD)-induced visceral pain was assessed in conscious wild-type and Na(v)1.9 KO mice (C57Bl/6 background). The mechanical activity of the abdominal muscles during isobaric colorectal distension was used as a measure of visceral pain. Acute colonic inflammation was induced by intracolonic administration of the toll-like receptor (TLR) 7 activator, R-848 (40mug/animal). CRD was performed 5h later, thereafter animals were euthanized and the colonic content of inflammatory mediators assessed. Normal pain responses were similar in Na(v)1.9 KO and wild-type mice. In wild-type mice, R-848 administration increased the response to phasic CRD by 62% compared with vehicle-treated animals (vehicle: 0.16+/-0.04, R-848: 0.26+/-0.03, n=6-7, P<0.05). However, in Na(v)1.9 KO mice, intracolonic R-848 did not affect the response to CRD (0.11+/-0.02, n=7) compared to animals treated with vehicle (0.17+/-0.03, n=5; P>0.05). After R-848 administration, the colonic content of pro-inflammatory cytokines was increased in similar proportion in wild type and Na(v)1.9 KO mice, suggesting the presence of a similar acute inflammatory reaction in both groups of animals. These results suggest that Na(v)1.9 channels do not significantly contribute to normal visceral pain responses to acute colonic mechanical stimulation but may be important for the development of inflammation-related acute visceral hyperalgesic responses.
Collapse
Affiliation(s)
- V Martinez
- Integrative Pharmacology, Gastrointestinal Biology, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | |
Collapse
|
112
|
Czeschik JC, Hagenacker T, Schäfers M, Büsselberg D. TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci Lett 2008; 434:293-8. [PMID: 18314270 DOI: 10.1016/j.neulet.2008.01.070] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/04/2008] [Accepted: 01/29/2008] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine involved in the development and maintenance of inflammatory and neuropathic pain conditions. The mechanisms by which TNF-alpha elicits pain behavior are still incompletely understood. Numerous studies suggest that TNF-alpha sensitizes primary afferent neurons. Most recently, it was shown that TNF-alpha induced an enhancement of TTX-R Na(+) current in dorsal root ganglion (DRG) cells. In the present study, we have tested the effect of acute application of TNF-alpha on voltage-gated potassium, calcium and sodium channel currents as well as its influence on membrane conductance in isolated rat DRG neurons. We report that voltage-gated potassium channel currents of nociceptive DRG neurons are not influenced by TNF-alpha (100 ng/ml), while voltage-gated calcium channel currents were decreased voltage-dependently by -7.73+/-6.01% (S.D.), and voltage-activated sodium channels currents were increased by +5.62+/-4.27%, by TNF-alpha. In addition, TNF-alpha induced a significant increase in IV ramps at a potential of +20 mV, which did not exist when the experiments were conducted in a potassium-free solution, indicating that this effect is mainly the result of a change in potassium conductance. These different actions of TNF-alpha might help to explain how it sensitizes primary afferent neurons after nerve injury and thus facilitates pain.
Collapse
|
113
|
Abstract
Cytokine activation or dysregulation is implied in a variety of painful disease states. Numerous experimental studies provide evidence that proinflammatory cytokines induce or facilitate neuropathic pain. Cytokine levels are rapidly and markedly upregulated in the peripheral nerves, dorsal root ganglia, spinal cord and in particular regions of the brain, after peripheral nerve injuries. Direct receptor-mediated actions on afferent nerve fibers as well as cytokine effects involving further mediators have been reported. Whereas direct application of exogenous proinflammatory cytokines induces pain, blockade of these cytokines or application of anti-inflammatory cytokines reduces pain behavior in most experimental paradigms. Cytokine measurements may identify patients at risk of developing chronic pain associated with their neuropathic conditions, as in the examples of peripheral neuropathies and postherpetic neuralgia. Anticytokine agents currently on the market are effective for the treatment of mostly inflammatory pain conditions, and are starting to be introduced for neuropathic pain states; however, their use is limited by potential life-threatening complications. Owing to the pleiotropy and redundancy of the cytokine system, the successful approach may not be inhibition of one particular cytokine but strategies shifting the balance between pro- and anti-inflammatory cytokines in properly selected patients. Agents that specifically target downstream signaling molecules may provide hope for safer and more specific therapies.
Collapse
Affiliation(s)
- Maria Schäfers
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55,45147 Essen, Germany.
| | | |
Collapse
|
114
|
Watkins LR, Hutchinson MR, Milligan ED, Maier SF. "Listening" and "talking" to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. BRAIN RESEARCH REVIEWS 2007; 56:148-69. [PMID: 17706291 PMCID: PMC2245863 DOI: 10.1016/j.brainresrev.2007.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 01/08/2023]
Abstract
It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
115
|
Rothman SM, Winkelstein BA. Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res 2007; 1181:30-43. [PMID: 17920051 DOI: 10.1016/j.brainres.2007.08.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/19/2007] [Accepted: 08/28/2007] [Indexed: 12/24/2022]
Abstract
Both chemical irritation and mechanical compression affect radicular pain from disc herniation. However, relative effects of these insults on pain symptoms are unclear. This study investigated chemical and mechanical contributions for painful cervical nerve root injury. Accordingly, the C7 nerve root separately underwent chromic gut exposure, 10gf compression, or their combination. Mechanical allodynia was assessed, and glial reactivity in the C7 spinal cord tissue was assayed at days 1 and 7 by immunohistochemistry using GFAP and OX-42 as markers of astrocytes and microglia, respectively. Both chromic gut irritation and 10gf compression produced ipsilateral increases in allodynia over sham (p<0.048); combining the two insults significantly (p<0.027) increased ipsilateral allodynia compared to either insult alone. Behavioral hypersensitivity was also produced in the contralateral forepaw for all injuries, but only the combined insult was significantly increased over sham (p<0.031). Astrocytic activation was significantly increased over normal (p<0.001) in the ipsilateral dorsal horn at 1 day after either compression or the combined injury. By day 7, GFAP-reactivity was further increased for the combined injury compared to day 1 (p<0.001). In contrast, spinal OX-42 staining was generally variable, with only mild activation at day 1. By day 7 after the combined injury, there were significant (p<0.003) bilateral increases in OX-42 staining over normal. Spinal astrocytic and microglial reactivity follow different patterns after chemical root irritation, compression, and a combined insult. The combination of transient compression and chemical irritation produces sustained bilateral hypersensitivity, sustained ipsilateral spinal astrocytic activation and late onset bilateral spinal microglial activation.
Collapse
Affiliation(s)
- Sarah M Rothman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
116
|
Shu HF, Wang BR, Wang SR, Yao W, Huang HP, Zhou Z, Wang X, Fan J, Wang T, Ju G. IL-1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat. Eur J Neurosci 2007; 25:3638-47. [PMID: 17610583 DOI: 10.1111/j.1460-9568.2007.05586.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence indicates that there exists a reciprocal communication between the immune system and the brain. Interleukin 1beta (IL-1beta), a proinflammatory cytokine produced during immune challenge, is believed to be one of the mediators of immune-to-brain communication, but how it gets into the brain is unknown because of its large molecular weight and difficulty in crossing the blood-brain barrier. Our previous work has demonstrated that IL-1 receptor type I is strongly expressed in the glomus cells of rat carotid body (CB), a well characterized polymodal chemoreceptive organ which serves not only for the detection of hypoxia, hypercapnia and acidity, but also for low temperature and blood glucose. The present study was designed to test whether IL-1beta could stimulate the CB glomus cells and alter the discharge properties in the carotid sinus nerve, the afferent nerve innervating the organ. The results from whole-cell patch-clamp recordings and calcium imaging showed that extracellular application of IL-1beta significantly decreased the outward potassium current and triggered a transient rise in [Ca(2+)](i) in the cultured glomus cells of rat CB. Furthermore, by using extracellular recordings and pharmacological intervention, it was found that IL-1beta stimulation of the CB in the anaesthetized rat in vivo significantly increased the discharge rate in the carotid sinus nerve, most probably mediated by ATP release. This experiment provides evidence that the CB responds to cytokine stimulation and proposes the possibility that the CB might play a role in immune-to-brain communication.
Collapse
Affiliation(s)
- Hai-Feng Shu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Affiliation(s)
- Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio, 45267-0531, USA.
| | | |
Collapse
|