101
|
A Toxin Involved in Salmonella Persistence Regulates Its Activity by Acetylating Its Cognate Antitoxin, a Modification Reversed by CobB Sirtuin Deacetylase. mBio 2017; 8:mBio.00708-17. [PMID: 28559487 PMCID: PMC5449658 DOI: 10.1128/mbio.00708-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin systems trigger the onset of a persister state by inhibiting essential cellular processes. The TacT toxin of Salmonella enterica is known to induce a persister state in macrophages through the acetylation of aminoacyl-tRNAs. Here, we show that the TacT toxin and the TacA antitoxin work as a complex that modulates TacT activity via the acetylation state of TacA. TacT acetylates TacA at residue K44, a modification that is removed by the NAD+-dependent CobB sirtuin deacetylase. TacA acetylation increases the activity of TacT, downregulating protein synthesis. TacA acetylation altered binding to its own promoter, although this did not change tacAT expression levels. These claims are supported by results from in vitro protein synthesis experiments used to monitor TacT activity, in vivo growth analyses, electrophoretic mobility shift assays, and quantitative reverse transcription-PCR (RT-qPCR) analysis. TacT is the first example of a Gcn5-related N-acetyltransferase that modifies nonprotein and protein substrates. During host infection, pathogenic bacteria can modulate their physiology to evade host defenses. Some pathogens use toxin-antitoxin systems to modulate a state of self-toxicity that can decrease their cellular activity, triggering the onset of a persister state. The lower metabolic activity of persister cells allows them to escape host defenses and antibiotic treatments. Hence a better understanding of the mechanisms used by pathogens to ingress and egress the persister state is of relevance to human health.
Collapse
|
102
|
Validation of reference genes for the normalization of the RT-qPCR gene expression of virulence genes of Erwinia amylovora in apple shoots. Sci Rep 2017; 7:2034. [PMID: 28515453 PMCID: PMC5435713 DOI: 10.1038/s41598-017-02078-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/05/2017] [Indexed: 01/11/2023] Open
Abstract
To study the expression of pathogenicity-related genes in Erwinia amylovora, seven candidate reference genes (ffh, glyA, gyrA, proC, pykA, recA, rpoB) were selected and validated with the following five different mathematic algorithms: geNorm, NormFinder, BestKeeper, the delta CT method and the RefFinder web-based tool. An overall comprehensive ranking output from each of the selected software programs revealed that proC and recA, followed by ffh and pykA, were the most stably expressed genes and can be recommended for the normalization of RT-qPCR data. A combination of the three reference genes, proC, recA and ffh, allowed for the accurate expression analysis of amsB and hrpN genes and the calculation of their fold change in E. amylovora after its infection of susceptible and resistant apple cultivars. To the best of our knowledge, this is the first study presenting a list of the most suitable reference genes for use in the relative quantification of target gene expression in E. amylovora in planta, selected on the basis of a multi-algorithm analysis.
Collapse
|
103
|
Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Appl Microbiol Biotechnol 2017; 101:4659-4667. [DOI: 10.1007/s00253-017-8288-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
104
|
Whitmire JM, Merrell DS. Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori. Methods Mol Biol 2017; 1498:461-480. [PMID: 27709595 DOI: 10.1007/978-1-4939-6472-7_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mutagenesis is a valuable tool to examine the structure-function relationships of bacterial proteins. As such, a wide variety of mutagenesis techniques and strategies have been developed. This chapter details a selection of random mutagenesis methods and site-directed mutagenesis procedures that can be applied to an array of bacterial species. Additionally, the direct application of the techniques to study the Helicobacter pylori Ferric Uptake Regulator (Fur) protein is described. The varied approaches illustrated herein allow the robust investigation of the structural-functional relationships within a protein of interest.
Collapse
Affiliation(s)
- Jeannette M Whitmire
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
105
|
da Silva PRA, Vidal MS, de Paula Soares C, Polese V, Simões-Araújo JL, Baldani JI. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice. Antonie van Leeuwenhoek 2016; 109:1493-1502. [PMID: 27535840 DOI: 10.1007/s10482-016-0751-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.
Collapse
Affiliation(s)
- Paula Renata Alves da Silva
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | | | - Cleiton de Paula Soares
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | - Valéria Polese
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | | | - José Ivo Baldani
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil.
| |
Collapse
|
106
|
Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The Chromosomal parDE2 Toxin-Antitoxin System of Mycobacterium tuberculosis H37Rv: Genetic and Functional Characterization. Front Microbiol 2016; 7:886. [PMID: 27379032 PMCID: PMC4906023 DOI: 10.3389/fmicb.2016.00886] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis H37Rv escapes host-generated stresses by entering a dormant persistent state. Activation of toxin-antitoxin modules is one of the mechanisms known to trigger such a state with low metabolic activity. M. tuberculosis harbors a large number of TA systems mostly located within discernible genomic islands. We have investigated the parDE2 operon of M. tuberculosis H37Rv encoding MParE2 toxin and MParD2 antitoxin proteins. The parDE2 locus was transcriptionally active from growth phase till late stationary phase in M. tuberculosis. A functional promoter located upstream of parD2 GTG start-site was identified by 5'-RACE and lacZ reporter assay. The MParD2 protein transcriptionally regulated the P parDE2 promoter by interacting through Arg16 and Ser15 residues located in the N-terminus. In Escherichia coli, ectopic expression of MParE2 inhibited growth in early stages, with a drastic reduction in colony forming units. Live-dead analysis revealed that the reduction was not due to cell death alone but due to formation of viable but non-culturable cells (VBNCs) also. The toxic activity of the protein, identified in the C-terminal residues Glu98 and Arg102, was neutralized by the antitoxin MParD2, both in vivo and in vitro. MParE2 inhibited mycobacterial DNA gyrase and interacted with the GyrB subunit without affecting its ATPase activity. Introduction of parE2 gene in the heterologous M. smegmatis host prevented growth and colony formation by the transformed cells. An M. smegmatis strain containing the parDE2 operon also switched to a non-culturable phenotype in response to oxidative stress. Loss in colony-forming ability of a major part of the MParE2 expressing cells suggests its potential role in dormancy, a cellular strategy for adaptation to environmental stresses. Our study has laid the foundation for future investigations to explore the physiological significance of parDE2 operon in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Biotechnology, TERI University, NewDelhi, India; Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi, India
| | - Nishtha Nayyar
- Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences Bangalore, India
| | - Meenakshi Chawla
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | | | - Rakesh Bhatnagar
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Nirupama Banerjee
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
107
|
Pessoa DDV, Vidal MS, Baldani JI, Simoes-Araujo JL. Validation of reference genes for RT-qPCR analysis in Herbaspirillum seropedicae. J Microbiol Methods 2016; 127:193-196. [PMID: 27302038 DOI: 10.1016/j.mimet.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/17/2022]
Abstract
The RT-qPCR technique needs a validated set of reference genes for ensuring the consistency of the results from the gene expression. Expression stabilities for 9 genes from Herbaspirillum seropedicae, strain HRC54, grown with different carbon sources were calculated using geNorm and NormFinder, and the gene rpoA showed the best stability values.
Collapse
Affiliation(s)
- Daniella Duarte Villarinho Pessoa
- Universidade Federal do Rio de Janeiro - UFRJ, Programa de Pós-Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde - CCS, Campus Ilha do Fundão, Av. Carlos Chagas Filho, 373 - Cidade Universitária, CEP: 21941-590 Rio de Janeiro, RJ, Brazil; Centro Nacional de Pesquisa de Agrobiologia, CNPAB, Embrapa, Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, BR 465, Km 7, s/n, Pavilhão Johanna Döbereiner, Bairro Ecologia, CEP: 23890-000 Seropédica, RJ, Brazil.
| | - Marcia Soares Vidal
- Centro Nacional de Pesquisa de Agrobiologia, CNPAB, Embrapa, Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, BR 465, Km 7, s/n, Pavilhão Johanna Döbereiner, Bairro Ecologia, CEP: 23890-000 Seropédica, RJ, Brazil
| | - José Ivo Baldani
- Centro Nacional de Pesquisa de Agrobiologia, CNPAB, Embrapa, Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, BR 465, Km 7, s/n, Pavilhão Johanna Döbereiner, Bairro Ecologia, CEP: 23890-000 Seropédica, RJ, Brazil
| | - Jean Luiz Simoes-Araujo
- Centro Nacional de Pesquisa de Agrobiologia, CNPAB, Embrapa, Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, BR 465, Km 7, s/n, Pavilhão Johanna Döbereiner, Bairro Ecologia, CEP: 23890-000 Seropédica, RJ, Brazil.
| |
Collapse
|