101
|
Friebe A, Brünahl C, Karimi K, Schäfer M, Juckel G, Sakic B, Arck P. Effects of complete vagotomy and blockage of cell adhesion molecules on interferon-α induced behavioral changes in mice. Behav Brain Res 2013. [DOI: 10.1016/j.bbr.2012.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Calorie restricted rats do not increase metabolic rate post-LPS, but do seek out warmer ambient temperatures to behaviourally induce a fever. Physiol Behav 2012; 107:762-72. [DOI: 10.1016/j.physbeh.2012.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022]
|
103
|
Krause DL, Müller N. The Relationship between Tourette's Syndrome and Infections. Open Neurol J 2012; 6:124-8. [PMID: 23230453 PMCID: PMC3514747 DOI: 10.2174/1874205x01206010124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/29/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence shows that infections and an activated immune status might be involved in the pathogene-sis of tic disorders. Studies discuss the influence of neurotrophic bacteria and viruses on different psychiatric disorders. In addition, signs of inflammation and immunological abnormalities have been described especially in schizophrenia and Tourette’s syndrome (tic disorder). Neuroimaging studies revealed increased microglial activation in psychiatric diseases; indicating an inflammatory state of the CNS. However, it still remains unclear what the underlying mechanism is of how infectious agents could contribute to tic symp-toms. One hypothesis is that not only one particular infectious agent causes directly to the disease; instead different (chronic) infections influence the immune balance and are therefore involved in the pathology. In tic disorders, infections with group A streptococci, Borrelia burgdorferi or Mycoplasma pneumoniae seem to be associated with symptoms of the disease. Studies have shown that immunologic treatment improves and prevents the re-occurrence of clinical symptoms in Tourette’s syndrome. Also post-infectious events by cross-reactive antibodies(against M-protein) and an altered dopamine rgic(noradrenergic) neurotransmission as well as inflammatory/immunological dysregulations were considered as possible mechanisms to cause symptoms. Another contributing factor to the pathogenesis of these diseases could be an activation of the tryptophan catabolism through infectious agents. Tryptophan functions as a precursor for neurotransmitters like se-rotonin and becomes degraded to products that can modulate the neurotransmitter balance. A deeper insight into the precise mechanism of how infectious agents influence immune parameter, tryptophan metabo-lism and the resulting neurotransmitter availability could help finding new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela L Krause
- Department of Psychiatry and Psychotherapy Ludwig-Maximilians University Munich, Germany
| | | |
Collapse
|
104
|
Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 2012; 248:188-204. [PMID: 22725962 DOI: 10.1111/j.1600-065x.2012.01138.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4(+) T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field.
Collapse
Affiliation(s)
- Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
105
|
The transition from acute to chronic pain: might intensive care unit patients be at risk? Ann Intensive Care 2012; 2:36. [PMID: 22898192 PMCID: PMC3488025 DOI: 10.1186/2110-5820-2-36] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/15/2012] [Indexed: 12/14/2022] Open
Abstract
Pain remains a significant problem for patients hospitalized in intensive care units (ICUs). As research has shown, for some of these patients pain might even persist after discharge and become chronic. Exposure to intense pain and stress during medical and nursing procedures could be a risk factor that contributes to the transition from acute to chronic pain, which is a major disruption of the pain neurological system. New evidence suggests that physiological alterations contributing to chronic pain states take place both in the peripheral and central nervous systems. The purpose of this paper is to: 1) review cutting-edge theories regarding pain and mechanisms that underlie the transition from acute to chronic pain, such as increases in membrane excitability of peripheral and central nerve fibers, synaptic plasticity, and loss of the function of descending inhibitory pain fibers; 2) provide information on the association between the immune system and pain and its crucial contribution to development of chronic pain syndromes, and 3) discuss mechanisms at brain levels in the nervous system and their contribution to affective (i.e., emotional) states associated with chronic pain conditions. Finally, we will offer suggestions for ICU clinical interventions to attempt to prevent the transition from acute to chronic pain.
Collapse
|
106
|
Krause DL, Wagner JK, Wildenauer A, Matz J, Weidinger E, Riedel M, Obermeier M, Gruber R, Schwarz M, Müller N. Intracellular monocytic cytokine levels in schizophrenia show an alteration of IL-6. Eur Arch Psychiatry Clin Neurosci 2012; 262:393-401. [PMID: 22271344 DOI: 10.1007/s00406-012-0290-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 01/07/2012] [Indexed: 01/19/2023]
Abstract
Several studies have shown an involvement of the immune system, in particular the monocytic system, in the pathophysiology of schizophrenia. Beside others, the monocyte-derived cytokines TNF-α, IL-6 and IL-10 were found to be affected. Since cytokines are secreted by several different cell types, the cellular source is only clear if intracellular levels are measured. Thus, in order to study the monocytic system in schizophrenia, the intracellular levels of TNF-α, IL-6 and IL-10 were determined. The intracellular concentration of TNF-α, IL-6 and IL-10 in CD33 positive monocytes was evaluated in schizophrenic patients and controls with monoclonal antibodies against these cytokines. In addition, in vitro stimulation with lipopolysaccharide (LPS) or poly I/C, which mimic a bacterial and viral infection, was performed before immunocytochemistry. At baseline, monocytic IL-6 levels were significantly lower in schizophrenic patients than in controls. After stimulation with LPS, compared with baseline, monocytic intracellular IL-6 production tended to increase more in schizophrenic patients. The present results provide further support for the hypothesis of an involvement of a dysfunction of the monocytic system in the pathophysiology of schizophrenia and indicate that especially the pro-inflammatory immune response seems to be impaired.
Collapse
Affiliation(s)
- Daniela L Krause
- Department of Psychiatry, Ludwig Maximilian University Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Alzheimer's disease promotion by obesity: induced mechanisms-molecular links and perspectives. Curr Gerontol Geriatr Res 2012; 2012:986823. [PMID: 22701480 PMCID: PMC3373073 DOI: 10.1155/2012/986823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
The incidence of AD is increasing in parallel with the increase in life expectancy. At the same time the prevalence of metabolic syndrome and obesity is reaching epidemic proportions in western populations. Stress is one of the major inducers of visceral fat and obesity development, underlying accelerated aging processes. Adipose tissue is at present considered as an active endocrine organ, producing important mediators involved in metabolism regulation as well as in inflammatory mechanisms. Insulin and leptin resistance has been related to the dysregulation of energy balance and to the induction of a chronic inflammatory status which have been recognized as important cofactors in cognitive impairment and AD initiation and progression. The aim of this paper is to disclose the correlation between the onset and progression of AD and the stress-induced changes in lifestyle, leading to overnutrition and reduced physical activity, ending with metabolic syndrome and obesity. The involved molecular mechanisms will be briefly discussed, and advisable guide lines for the prevention of AD through lifestyle modifications will be proposed.
Collapse
|
108
|
Abstract
The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Kevin J. Tracey
- Feinstein Institute for Medical Research, Manhasset, New York 11030
| |
Collapse
|
109
|
Courtier N, Gambling T, Enright S, Barrett-Lee P, Abraham J, Mason MD. Psychological and immunological characteristics of fatigued women undergoing radiotherapy for early-stage breast cancer. Support Care Cancer 2012; 21:173-81. [PMID: 22644262 DOI: 10.1007/s00520-012-1508-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/20/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE The amelioration of fatigue in radiotherapy patients is limited by an equivocal aetiology and uncertainty regarding who is likely to experience significant fatigue. The research objective was to characterise fatigue in women undergoing radiotherapy for breast cancer, in order to evaluate associations with elevations in anxiety, depression and a marker of systemic inflammation. METHODS Participants comprised 100 women, diagnosed with stages 0-IIA breast cancer and prescribed with 40 Gy in 15 fractions over 3 weeks. Fatigue was assessed at baseline between 10 and 22 days before radiotherapy, after 10 and 15 fractions of radiotherapy and 4 weeks after the completion of radiotherapy, using the Functional Assessment of Chronic Illness Therapy Fatigue Subscale. Psychological status was self-reported using the Hospital Anxiety and Depression Scale. Sera concentrations of interleukin-6-soluble receptor were established via enzyme-linked immunosorbent assay. The contributions of pretreatment factors to fatigue were analysed using multivariable regression. RESULTS Thirty-eight percent of participants experienced significant fatigue during radiotherapy, with the remainder little are affected. After controlling for baseline fatigue, anxiety before treatment was the strongest unique predictor of subsequent fatigue. During radiotherapy, interleukin-6-soluble receptor was significantly elevated in the fatigued group compared to the non-fatigued group (p = 0.01). This association was not mediated by depression. CONCLUSIONS The data are consistent with the concept that psychological distress prior to radiotherapy relates to a distinct immunological and behavioural response during radiotherapy. Patients reporting elevated anxiety should benefit from interventions that appropriately address the underlying psychological distress and have the potential to ameliorate disabling treatment-related fatigue.
Collapse
|
110
|
Ribeiro Machado MP, Dias da Silva VJ. Autonomic neuroimmunomodulation in chagasic cardiomyopathy. Exp Physiol 2012; 97:1151-60. [PMID: 22581749 DOI: 10.1113/expphysiol.2012.066381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chagas disease is an endemic parasitic disease, caused by the flagellate protozoan Trypanosoma cruzi, with a high prevalence in Latin America. During its chronic phase, chronic chagasic cardiomyopathy is the most apparent clinical form, affecting 25-30% of patients. This clinical form may present as congestive heart failure, thromboembolic phenomena, cardiac arrhythmias and sudden death. Pathological findings in the heart include mononuclear inflammatory infiltrate, focal myocarditis, epicarditis and neuroganglionitis, associated with variable focal fibrosis and widely variable autonomic dysfunction. The immune-inflammatory response has been considered to be the cause of the autonomic dysfunction, which may trigger life-threatening arrhythmias and sudden death. In the last few years, several reports in the literature have described the marked role played by the autonomic nervous system in the modulation of the immune-inflammatory response in some experimental models of infectious, ischaemic and autoimmune diseases. However, nothing is known about this autonomic neural modulation of the immune response in Chagas disease. In the present report, we discuss several sets of evidence suggesting that changes in the autonomic drive directed towards the heart could modify blood and tissue parasitism, as well as inflammatory infiltration, in chagasic cardiomyopathy. The pathogenic implications of these potential neural immune manipulations are also discussed.
Collapse
|
111
|
Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFκB pathway. Transl Psychiatry 2012; 2:e78. [PMID: 22832815 PMCID: PMC3309554 DOI: 10.1038/tp.2012.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic anxiety notably involves inflammation, but its causes and functional significance are yet unclear. Here, we report that failure of the innate immune system Toll-like receptor 9 (TLR9) to limit inflammation is causally involved with anxiety-associated inflammation and that peripheral administration of specific oligonucleotide activators of TLR9 may prevent post-traumatic consequences in stressed mice. Suggesting involvement of NFκB-mediated enhancement of inflammatory reactions in the post-traumatic phenotype, we found association of serum interleukin-1β increases with symptoms severity and volumetric brain changes in post-traumatic stress disorder patients. In predator scent-stressed mice, the moderate NFκB-activating oligonucleotides mEN101 and its human ortholog BL-7040, but not the canonic NFκB activator oligonucleotide ODN1826, induced anxiolytic effects. In stressed mice, peripherally administered mEN101 prevented delayed stress-inducible serum interleukin-1β increases while limiting stress-characteristic hippocampal transcript modifications and the anxiety-induced EGR1-mediated neuronal activation. Attesting to the TLR9 specificity of this response, BL-7040 suppressed NFκB-mediated luciferase in transfected cells co-expressing TLR9, but not other TLRs. Furthermore, TLR9-/- mice were mEN101 and BL-7040 resistant and presented unprovoked anxiety-like behavior and anxiety-characteristic hippocampal transcripts. Our findings demonstrate functional relevance of TLR9 in protecting stressed mammals from overreacting to traumatic experiences and suggest using oligonucleotide-mediated peripheral TLR9 activation to potentiate the innate immune system and prevent post-traumatic inflammation and anxiety.
Collapse
|
112
|
Cailotto C, Costes LMM, van der Vliet J, van Bree SHW, van Heerikhuize JJ, Buijs RM, Boeckxstaens GE. Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol Motil 2012; 24:191-200, e93. [PMID: 22118533 DOI: 10.1111/j.1365-2982.2011.01824.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway is proposed to be part of the so-called vago-vagal 'inflammatory reflex'. The aim of this study is to provide neuro-anatomical evidence to support the existence of a functional neuronal circuit and its activation in response to intestinal inflammation. METHODS The expression of c-fos was evaluated at different levels of the neurocircuitry in the course of postoperative ileus (POI) in a mouse model. Specific activation of the motor neurons innervating the inflamed intestine and the spleen was monitored by retrograde tracing using cholera toxin-b. The role of the vagal afferent pathway nerve was evaluated by selective vagal denervation of the intestine. KEY RESULTS Abdominal surgery resulted in subtle inflammation of the manipulated intestine at 24 h (late phase), but not after 2 and 6 h (early) after surgery. This local inflammation was associated with activation of neurons in the nucleus of the solitary tract and in the dorsal nucleus of the vagus. The vagal output mainly targeted the inflamed zone: 42% of motor neurons innervating the intestine expressed c-fos IR in contrast to 7% of those innervating the spleen. Vagal denervation of the intestine abolished c-fos expression in the brain nuclei involved in the neuronal network activated by intestinal inflammation. CONCLUSIONS & INFERENCES Our data demonstrate that intestinal inflammation triggers a vagally mediated circuit leading mainly to activation of vagal motor neurons connected to the inflamed intestine. These findings for the first time provide neuro-anatomical evidence for the existence of the endogenous 'inflammatory reflex' and its activation during inflammation.
Collapse
Affiliation(s)
- C Cailotto
- Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
113
|
Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 2012; 19:121-30. [PMID: 22248728 PMCID: PMC3707010 DOI: 10.1159/000330247] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/22/2011] [Indexed: 01/16/2023] Open
Abstract
The blood-brain barrier (BBB) is not simply a physical barrier but a regulatory interface between the central nervous system (CNS) and immune system. The BBB both affects and is affected by the immune system and connects at many levels with the CNS, including the following: (1) the BBB transports cytokines and secretes various substances with neuroinflammatory properties; (2) transporters are altered in disease states including traumatic injury, Alzheimer's disease and inflammatory processes; (3) cytokines and other immune secretions from the cells comprising the BBB are both constitutive and inducible; (4) immune cells are transported across the BBB by the highly regulated process termed diapedesis, which involves communication and interactions between the brain endothelial cells and the immune cells; (5) the neuroimmune system has various effects on the BBB, including modulation of important transport systems and in extreme pathological conditions even disruption of the BBB, and (6) the brain-to-blood efflux transporter P-glycoprotein is altered in inflammatory conditions, thus affecting drug delivery to the brain. In summary, the BBB is an interactive interface that regulates and defines many of the ways that the CNS and the immune system communicate with one another.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Kenji Dohi
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Wash., USA
- Department of Emergency and Critical Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle, Wash., USA
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Wash., USA
| |
Collapse
|
114
|
Possible Involvement of Oxidative Stress and Inflammatory Mediators in the Protective Effects of the Early Preconditioning Window Against Transient Global Ischemia in Rats. Neurochem Res 2011; 37:614-21. [DOI: 10.1007/s11064-011-0651-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 01/25/2023]
|
115
|
HOSOI T. Novel Therapeutic Approach Based on Recent Understanding of the Development of Metabolic Syndrome. YAKUGAKU ZASSHI 2011; 131:1557-62. [DOI: 10.1248/yakushi.131.1557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Toru HOSOI
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
116
|
Jacono FJ, Mayer CA, Hsieh YH, Wilson CG, Dick TE. Lung and brainstem cytokine levels are associated with breathing pattern changes in a rodent model of acute lung injury. Respir Physiol Neurobiol 2011; 178:429-38. [PMID: 21569869 PMCID: PMC3170447 DOI: 10.1016/j.resp.2011.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 02/07/2023]
Abstract
Acute lung injury evokes a pulmonary inflammatory response and changes in the breathing pattern. The inflammatory response has a centrally mediated component which depends on the vagi. We hypothesize that the central inflammatory response, complimentary to the pulmonary inflammatory response, is expressed in the nuclei tractus solitarii (nTS) and that the expression of cytokines in the nTS is associated with breathing pattern changes. Adult, male Sprague-Dawley rats (n=12) received intratracheal instillation of either bleomycin (3units in 120μl of saline) or saline (120μl). Respiratory pattern changed by 24h. At 48h, bronchoalveolar lavage fluid and lung tissue had increased IL-1β and TNF-α levels, but not IL-6. No changes in these cytokines were noted in serum. Immunocytochemical analysis of the brainstem indicated increased expression of IL-1β in the nTS commissural subnucleus that was localized to neurons. We conclude that breathing pattern changes in acute lung injury were associated with increased levels of IL-1β in brainstem areas which integrate cardio-respiratory sensory input.
Collapse
Affiliation(s)
- Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, CWRU School of Medicine and University Hospitals Case Medical Center, United States.
| | | | | | | | | |
Collapse
|
117
|
Krause D, Wagner J, Matz J, Weidinger E, Obermeier M, Riedel M, Gruber R, Schwarz M, Mueller N. Monocytic HLA DR antigens in schizophrenic patients. Neurosci Res 2011; 72:87-93. [PMID: 21964165 DOI: 10.1016/j.neures.2011.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/22/2022]
Abstract
A genetic association of specific human leukocyte antigens (HLA) DR genes and schizophrenia has recently been shown. These HLA play a fundamental role in the control of immune responses. Furthermore infectious agents have been proposed to be involved in the pathogenesis of schizophrenia. In this study we investigated the rate of HLA DR positive monocytes in schizophrenic patients compared to controls with a special focus on the adaption to in vitro stimulation with toll-like receptor ligands. Patients with schizophrenia and matched controls were included. For each individual, we evaluated the rate of HLA DR positive monocytes (either incubated at 37 °C or after stimulation with lipopolysaccharide or Poly I:C). We found a significantly higher percentage of schizophrenic patients with elevated HLA DR positive cells (p=0.045) as compared to controls. The adjustment rate from baseline levels of monocytic HLA DR positive cells to stimulation with Poly I:C was significantly lower in schizophrenic patients (p=0.038). The increased monocytic HLA DR in schizophrenic patients and the maladjustment of their monocytic HLA DR levels to an infectious stimulus might be a sign for a disturbed monocytic immune balance in schizophrenic individuals.
Collapse
Affiliation(s)
- Daniela Krause
- Department of Psychiatry, Ludwig-Maximilians University Munich, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
A crucial role for IL-6 in the CNS of rats during fever induced by the injection of live E. coli. Med Microbiol Immunol 2011; 201:47-60. [DOI: 10.1007/s00430-011-0204-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Indexed: 12/20/2022]
|
119
|
Chiba T, Ueno S, Obara Y, Nakahata N. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. ACTA ACUST UNITED AC 2011; 63:636-47. [PMID: 21492165 DOI: 10.1111/j.2042-7158.2011.01250.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The inflammatory response plays an important role in the pathogenesis of many diseases in the central nervous system. Cannabinoids exhibit diverse pharmacological actions including anti-inflammatory activity. In this study, we tried to elucidate possible effects of cannabinoids on lipopolysaccharide (LPS)-induced expression of inflammatory cytokine mRNAs in rat cerebellar granule cells. METHODS Inhibitory effects of cannabinoids on cytokine induction in cerebellar granule cells were determined by RT-PCR method. KEY FINDINGS In these cells, both mRNA and protein of cannabinoid receptor 1 (CB(1) ), but not CB(2) , were expressed. LPS (1 µg/ml) produced a marked increase in the induction of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumour necrosis factor-α. CP55940, a synthetic cannabinoid analogue, concentration-dependently inhibited inflammatory cytokine expression induced by LPS. On the other hand, the endocannabinoids 2-arachidonoylglycerol and anandamide were not able to inhibit this inflammatory response. Notably, a CB(1) /CB(2) antagonist NESS0327 (3 µm) did not reverse the inhibition of cytokine mRNA expression induced by CP55940. GPR55, a putative novel cannabinoid receptor, mRNA was also expressed in cerebellar granule cells. Although it has been suggested that G(q) associates with GPR55, cannabinoids including CP55940 did not promote phosphoinositide hydrolysis and consequent elevation of intracellular Ca([2+]) concentration. Furthermore, a putative GPR55 antagonist, cannabidiol, also showed a similar inhibitory effect to that of CP55940. CONCLUSIONS These results suggest that the synthetic cannabinoid CP55940 negatively modulates cytokine mRNA expression in cerebellar granule cells by a CB and GPR55 receptor-independent mechanism.
Collapse
Affiliation(s)
- Toshiki Chiba
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
120
|
Miller AH, Pearce BD, Ruzek MC, Biron CA. Interactions Between the Hypothalamic‐Pituitary‐Adrenal Axis and Immune System During Viral Infection: Pathways for Environmental Effects on Disease Expression. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
121
|
Spencer RL, Kalman BA, Dhabhar FS. Role of Endogenous Glucocorticoids in Immune System Function: Regulation and Counterregulation. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
122
|
Andrzejczak D. Padaczka a cytokiny prozapalne. Immunomodulujące właściwości leków przeciwpadaczkowych. Neurol Neurochir Pol 2011; 45:275-85. [PMID: 21866484 DOI: 10.1016/s0028-3843(14)60080-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
123
|
Fernández R, Nardocci G, Simon F, Martin A, Becerra A, Rodríguez-Tirado C, Maisey KR, Acuña-Castillo C, Cortes PP. Lipopolysaccharide signaling in the carotid chemoreceptor pathway of rats with sepsis syndrome. Respir Physiol Neurobiol 2010; 175:336-48. [PMID: 21195213 DOI: 10.1016/j.resp.2010.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
In addition to their role in cardiorespiratory regulation, carotid body (CB) chemoreceptors serve as sensors for inflammatory status and as a protective factor during sepsis. However, lipopolysaccharide-induced sepsis (LPS) reduces CB responsiveness to excitatory or depressant stimuli. We tested whether LPS exerts a direct effect on the carotid chemoreceptor pathway, the CB and its sensory ganglion. We determined that the rat CB and nodose-petrosal-jugular ganglion complex (NPJgc) express TLR4, TNF-α and its receptors (TNF-R1 and TNF-R2). LPS administration (15mg/kg intraperitoneally) evoked MyD88-mechanism pathway activation in CB and NPJgc, with NF-κB p65, p38 MAPK, and ERK activation. Consistently, LPS increased TNF-α and TNF-R2. Double-labeling studies showed that the aforementioned pathway occurs in TH-containing glomus cells and NPJgc neurons, components of the chemosensitive neural pathway. Thus, our results suggest that LPS acting directly through TLR4/MyD88-mechanism pathways increases TNF-α and TNF-R2 expression in the carotid chemoreceptor pathway. These results show a novel afferent pathway to the central nervous system during endotoxemia, and could be relevant in understanding sepsis pathophysiology and therapy.
Collapse
Affiliation(s)
- Ricardo Fernández
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Gądek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep 2010; 62:969-82. [DOI: 10.1016/s1734-1140(10)70359-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/26/2010] [Indexed: 01/07/2023]
|
125
|
Lee HY, Kim YK. Transforming growth factor-beta1 and major depressive disorder with and without attempted suicide: preliminary study. Psychiatry Res 2010; 178:92-6. [PMID: 20452036 DOI: 10.1016/j.psychres.2009.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 02/07/2009] [Accepted: 03/19/2009] [Indexed: 01/26/2023]
Abstract
A substantial body of evidence indicates that dysregulation of the immune system is associated with suicidal behavior in major depressive disorder (MDD). Transforming growth factor (TGF)-beta1 is believed to be an important factor in regulating inflammatory responses and to have anti-inflammatory effects. We aimed to identify the role of TGF-beta1 on suicidal depression. The TGF-beta1 polymorphisms at codons 10 and 25 were analyzed in 122 suicidal MDD patients, 61 non-suicidal MDD patients, and 120 control subjects and, among them, in vitro TGF-beta1 productions were measured in 48 suicidal MDD patients, 47 non-suicidal MDD patients, and 91 control subjects. There was no genetic polymorphism at codon 25 and three genotypes at codon 10. No significant difference in the distributions of the TGF-beta1 genotypes was found among the three groups. The in vitro TGF-beta1 productions were significantly higher in suicidal MDD patients (844.3+/-329.7 pg/ml) and in non-suicidal MDD patients (853.0+/-439.7 pg/ml) than in controls (683.0+/-397.0 pg/ml) (P=0.01). In vitro TGF-beta1 productions were not significantly different among patients with any of the TGF-beta1 alleles or genotypes. Our findings suggest that in vitro TGF-beta1 productions play an important role on MDD, but we found no associations between TGF-beta1 and suicidal behavior.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Kyunggi Province, Republic of Korea
| | | |
Collapse
|
126
|
Kentner AC, McLeod SA, Field EF, Pittman QJ. Sex-dependent effects of neonatal inflammation on adult inflammatory markers and behavior. Endocrinology 2010; 151:2689-99. [PMID: 20392837 PMCID: PMC3524265 DOI: 10.1210/en.2009-1101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory molecules, such as cyclooxygenase (COX), a prostaglandin synthetic enzyme, have been identified as a marker of depressive symptomology. Previously, we have observed elevated basal COX-2 expression in the hypothalamus of adult male rats treated neonatally with lipopolysaccharide (LPS), which might suggest a phenotype for disrupted hedonic behavior, a symptom of depression. However, COX-2 and its contribution to the expression of anhedonic behavior has not been investigated in these males or in female rats across the estrous cycle, which is the purpose of the current work. Here, we examine the effects of a neonatal LPS challenge or saline on the sucrose preference test as a measure of anhedonia, and hypothalamic COX-2 expression, in adult male and freely cycling female rats. Our data indicate a sex difference in that neonatal LPS at postnatal d 14 causes elevated basal expression of hypothalamic COX-2 in male, but not in female, rats. Additionally, baseline sucrose preference in male and female rats was unaltered as a function of neonatal LPS treatment or estrous cycle stage. In both male and female animals, 50 microg/kg LPS in adulthood caused elevated plasma IL-6 and hypothalamic COX-2 expression in neonatally saline-treated rats but significantly less so in neonatally LPS-treated rats of both sexes; this neonatal programming was not evident for sucrose preference or for total fluid intake (even after much higher doses of LPS). Our data are suggestive of a dissociation between inflammation and anhedonic behavior and a differential effect of neonatal inflammation in males and females.
Collapse
Affiliation(s)
- A C Kentner
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
127
|
The hypothalamic endocannabinoid system participates in the secretion of oxytocin and tumor necrosis factor-alpha induced by lipopolysaccharide. J Neuroimmunol 2010; 221:32-41. [DOI: 10.1016/j.jneuroim.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 01/21/2023]
|
128
|
Abstract
Psychoneuroimmunology (PNI) is a relatively new discipline within the field of neuroscience which researches the relationship between emotional states, the central and peripheral nervous systems, and the endocrine and immune systems. Negative psychological states, such as stress, anxiety, and depression, may alter immune system regulation and modulation of peripheral cytokines. A plethora of PNI studies have shown that increased psychological stress and depression are associated with an alteration of immune functioning and worsened health outcomes for many conditions. To date, application of PNI methodology has not been reported for ocular diseases. This article provides an historical perspective on the origins of the rift between the emotional and spiritual from physical aspects of disease. A review of how stress is mediated through sympathetic adrenomedullary and hypothalamic pituitary axis activation with shifts in immunity is provided. The literature which supports spirituality in healing is presented. Finally, ocular diseases which would be most amenable to a PNI approach are discussed.
Collapse
Affiliation(s)
- Lori M Ventura
- University of Miami Miller School of Medicine, Bascom Palmer Eye Institute, Miami, FL USA
| |
Collapse
|
129
|
Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 2010; 24:102-9. [PMID: 19735725 PMCID: PMC2789209 DOI: 10.1016/j.bbi.2009.09.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/21/2022] Open
Abstract
LPS given peripherally or into the brain induces a neuroinflammatory response. How peripheral LPS induces its effects on brain is not clear, but one mechanism is that LPS crosses the blood-brain barrier (BBB). Alternatively, LPS acts outside the BBB by stimulating afferent nerves, acting at circumventricular organs, and altering BBB permeabilities and functions. Here, we labeled LPS with radioactive iodine (I-LPS) and coinjected it with radioactively labeled albumin (I-Alb) which acted as a vascular space marker. Measurable amounts of I-LPS associated with the BBB, most reversibly bound to brain endothelia. Brain endothelia also sequestered small amounts of I-LPS and about 0.025% of an intravenously injected dose of I-LPS crossed the BBB to enter the CNS. Disruption of the BBB with repeated injections of LPS did not enhance I-LPS uptake. Based on dose-response curves in the literature of the amounts of LPS needed to stimulate brain neuroimmune events, it is unlikely that enough peripherally administered LPS enters the CNS to invoke those events except possibly at the highest doses used and for the most sensitive brain functions. I-LPS injected into the lateral ventricle of the brain entered the circulation with the reabsorption of cerebrospinal fluid (bulk flow) as previously described. In conclusion, brain uptake of circulating I-LPS is so low that most effects of peripherally administered LPS are likely mediated through LPS receptors located outside the BBB.
Collapse
|
130
|
Aluise CD, Sultana R, Tangpong J, Vore M, St Clair D, Moscow JA, Butterfield DA. Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 678:147-56. [PMID: 20738017 DOI: 10.1007/978-1-4419-6306-2_19] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Doxorubicin (ADRIAMYCIN, RUBEX) is a chemotherapeutic agent that is commonly administered to breast cancer patients in standard chemotherapy regimens. As true of all such therapeutic cytotoxic agents, it can damage normal, noncancerous cells and might affect biochemical processes in a manner that might lead to, or contribute to, chemotherapy-induced cognitive deficits when administered either alone or in combination with other agents.
Collapse
|
131
|
Reyes-Gibby CC, Shete S, Yennurajalingam S, Frazier M, Bruera E, Kurzrock R, Crane CH, Abbruzzese J, Evans D, Spitz MR. Genetic and nongenetic covariates of pain severity in patients with adenocarcinoma of the pancreas: assessing the influence of cytokine genes. J Pain Symptom Manage 2009; 38:894-902. [PMID: 19692203 PMCID: PMC2795073 DOI: 10.1016/j.jpainsymman.2009.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that select cytokine gene polymorphisms in interleukin (IL)-8 are a significant predictor of pain and analgesia in patients with lung cancer. This study explores the role of 13 potentially functional polymorphisms in cytokine genes, including IL-1beta, IL-6, IL-8, IL-10, IL-18, tumor necrosis factor-alpha, and nuclear factor kappa-B subunit 1, in pain severity in patients with pancreatic cancer. We evaluated a series of patients with histologically confirmed adenocarcinoma of the pancreas (n=484), who had completed a self-administered survey of pain before initiating any cancer treatment. DNA (n=156) available for a subset of white patients was assayed and assessed for association with pain severity. Results showed that 26% (128 of 484) reported experiencing severe pain (score of >7 on a 0-10 scale). Severe pain varied by the stage of disease (odds ratio [OR] Stage II=4.02, 95% confidence interval (CI)=1.07, 15.07; Stage III=5.02, 95% CI=1.28, 19.61; Stage IV=6.90, 95% CI=1.96, 24.29), ethnicity (OR non-Hispanic blacks=3.67; 95% CI=1.44, 9.38), reports of depressed mood (OR=1.94; 95% CI=1.09, 3.43), and female sex (OR=1.78; 95% CI=1.04, 3.05). Controlling for these covariates, IL8-251T/A (OR=2.43, 95% CI=1.3, 4.7, P<0.009) significantly predicted severe pain in a subset of white patients. When we adjusted for reported analgesic use, we found that IL8-251T/A persisted as a predictor for severe pain, with carriers of TT and AT genotypes having more than a threefold risk (OR=3.23, 95% CI=1.4, 4.7) for severe pain relative to the AA genotypes. We provide preliminary evidence of the role of IL-8 in the severity of pain in pancreatic cancer patients. Additional studies are needed in larger cohorts of patients.
Collapse
Affiliation(s)
- Cielito C Reyes-Gibby
- Department of Epidemiology, Division of Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Reyes-Gibby CC, Spitz MR, Yennurajalingam S, Swartz M, Gu J, Wu X, Bruera E, Shete S. Role of inflammation gene polymorphisms on pain severity in lung cancer patients. Cancer Epidemiol Biomarkers Prev 2009; 18:2636-42. [PMID: 19773451 DOI: 10.1158/1055-9965.epi-09-0426] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many of the same inflammatory factors that promote tumor growth are also hypothesized to function as pain modulators. There is substantial interindividual variation in pain severity in cancer patients. Therefore, we evaluated 59 single nucleotide polymorphisms in 37 inflammation genes in newly diagnosed non-Hispanic Caucasian lung cancer patients (n = 667) and assessed their association with pain severity. Patients rated their pain "during the past week" on an 11-point numeric scale (0 = "no pain" and 10 = "pain as bad as you can imagine") at presentation before initiating cancer therapy. Reported analgesic use was abstracted from charts and converted to morphine equivalent daily dose. Results showed that 16% of the patients reported severe pain (score > or = 7). Advanced stage of disease [odds ratio (OR), 2.34; 95% confidence interval (95% CI), 1.50-3.65; P = 0.001], age < or = 50 years (OR, 2.10; 95% CI, 1.32-3.30; P = 0.002), reports of depressed mood (OR, 3.68; 95% CI, 1.96-6.93; P = 0.001), fatigue (OR, 3.72; 95% CI, 2.36-5.87; P = 0.001), and morphine equivalent daily dose (OR, 1.02; 95% CI, 1.01-1.03) were significantly correlated with severe pain. Controlling for these nongenetic covariates, we found that patients with CC genotypes for PTGS2 exon10+837T>C (rs5275) were at lower risk for severe pain (OR, 0.33; 95% CI, 0.11-0.97) and an additive model for TNFalpha -308GA (rs1800629; OR, 1.67; 95% CI, 1.08-2.58) and NFKBIA Ex6+50C>T (rs8904) was predictive of severe pain (OR, 0.64; 95% CI, 0.43-0.93). In a multigene analysis, we found a gene-dose effect, with each protective genotype reducing the risk for severe pain by as much as 38%. This study suggests the importance of inflammation gene polymorphisms in modulating pain severity. Additional studies are needed to validate our findings.
Collapse
Affiliation(s)
- Cielito C Reyes-Gibby
- Department of Epidemiology, Division of Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Unit 1340, 1155 Pressler Street, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Tseng YT, Yang CS, Tseng FG. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing. LAB ON A CHIP 2009; 9:2673-2682. [PMID: 19704983 DOI: 10.1039/b823449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper proposes a novel perfusion-based micro opto-fluidic system (PMOFS) as a reusable immunosensor for in-situ and continuous protein detection. The PMOFS includes a fiber optic interferometry (FOI) sensor housed in a micro-opto-fluidic chip covered with a microdialysis membrane. It features a surface regeneration mechanism for continuous detection. Gold nanoparticles (GNPs) labeled anti-rabbit IgG were used to enhance the immune conjugation signal by the elongated optical path from GNPs conjugation. Surface regeneration of the sensor was achieved through local pH level manipulation by means of a photoactive molecule, o-Nitrobenzaldehyde (o-NBA), which triggered the elution of immune complexes. Experimental results showed that the pH level of the o-NBA solution can be reduced from 7 to 3.5 within 20 seconds under UV irradiation, sufficient for an effective elution process. The o-NBA molecules, contained within poly(ethylene glycol) diacrylate (PEG) complexes, were trapped within the sensing compartment by the microdialysis membrane and would not leak into the outside environment. The pH variation was also limited in the neighborhood of the sensor surface, resulting in a self-contained sensing system. In-situ immune detection and surface regeneration of the sensing probe has been successfully carried out for two identical cycles by the same sensing probe, and the cycle time can be less than 8 minutes, which is so far the fastest method for continuous monitoring on protein/peptide molecules. In addition, the interference fringe shift of the sensor is linearly related to the concentration of anti-cytochrome C antibody solution and the detection limit approaches 10 ng/ml.
Collapse
Affiliation(s)
- Yuan-Tai Tseng
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan, 300
| | | | | |
Collapse
|
134
|
Fan J, Zhang B, Shu HF, Zhang XY, Wang X, Kuang F, Liu L, Peng ZW, Wu R, Zhou Z, Wang BR. Interleukin-6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells. J Neurosci Res 2009; 87:2757-2762. [PMID: 19396873 DOI: 10.1002/jnr.22107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although abundant evidence indicates mutual regulation between the immune and the central nervous systems, how the immune signals are transmitted to the brain is still an unresolved question. In a previous study we found strong expression of proinflammatory cytokine receptors, including interleukin (IL)-1 receptor I and IL-6 receptor alpha in the rat carotid body (CB), a well-known arterial chemoreceptor that senses a variety of chemostimuli in the arterial blood. We demonstrated that IL-1 stimulation increases intracellular calcium ([Ca(2+)](i)) in CB glomus cells, releases ATP, and increases the discharge rate in carotid sinus nerve. To explore the effect of IL-6 on CB, here we examine the effect of IL-6 on [Ca(2+)](i) and catecholamine (CA) secretion in rat CB glomus cells. Calcium imaging showed that extracellular application of IL-6 induced a rise in [Ca(2+)](i) in cultured glomus cells. Amperometry showed that local application of IL-6 evoked CA release from glomus cells. Furthermore, the CA secretory response to IL-6 was blocked by 200 microM Cd(2+), a well-known Ca(2+) channel blocker. Our experiments provide further evidence for the responsiveness of the CB to proinflammatory cytokines and indicate that the CB might play a role in inflammation sensing and transmission of such information to the brain.
Collapse
Affiliation(s)
- Juan Fan
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Borghetti P, Saleri R, Mocchegiani E, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141-62. [PMID: 19261335 PMCID: PMC7112574 DOI: 10.1016/j.vetimm.2009.01.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 01/17/2009] [Accepted: 01/27/2009] [Indexed: 12/11/2022]
Abstract
The Central Nervous (CNS) and Immune Systems (IS) are the two major adaptive systems which respond rapidly to numerous challenges that are able to compromise health. The defensive response strictly linking innate to acquired immunity, works continuously to limit pathogen invasion and damage. The efficiency of the innate response is crucial for survival and for an optimum priming of acquired immunity. During infection, the immune response is modulated by an integrated neuro-immune network which potentiates innate immunity, controls potential harmful effects and also addresses metabolic and nutritional modifications supporting immune function. In the last decade much knowledge has been gained on the molecular signals that orchestrate this integrated adaptive response, with focus on the systemic mediators which have a crucial role in driving and controlling an efficient protective response. These mediators are also able to signal alterations and control pathway dysfunctions which may be involved in the persistence and/or overexpression of inflammation that may lead to tissue damage and to a negative metabolic impact, causing retarded growth. This review aims to describe some important signalling pathways which drive bidirectional communication between the Immune and Nervous Systems during infection. Particular emphasis is placed on pro-inflammatory cytokines, immunomodulator hormones such as Glucocorticoids (GCs), Growth hormone (GH), Insulin-like Growth Factor-1 (IGF-1), and Leptin, as well as nutritional factors such as Zinc (Zn). Finally, the review includes up-to-date information on this neuroimmune cross-talk in domestic animals. Data in domestic animal species are still limited, but there are several exciting areas of research, like the potential interaction pathways between mediators (i.e. cytokine-HPA regulation, IL-6-GCS-Zn, cytokines-GH/IGF-1, IL-6-GH-Leptin and thymus activity) that are or could be promising topics of future research in veterinary medicine.
Collapse
|
136
|
Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis 2009; 37:26-32. [PMID: 19664708 DOI: 10.1016/j.nbd.2009.07.031] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/20/2009] [Accepted: 07/25/2009] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) is the monocellular interface that divides the peripheral circulation from direct contact with the central nervous system (CNS). This interface consists of several parallel barriers that include most notably the capillary bed of the CNS and the choroid plexus. These barriers at one level create the dichotomy between the circulating factors of the immune system and the components of the CNS only to regulate interactions between the immune and central nervous systems at other levels. The BBB is thus an integral part of the neuroimmune axis. Here, we will consider four aspects of BBB-neuroimmune interactions: BBB disruption as mediated by LPS and cytokines, cytokine transport across the BBB, immune cell trafficking, and effects of lipopolysaccharide (LPS) on various functions of the BBB.
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Medical Center-St. Louis, USA.
| | | |
Collapse
|
137
|
Psychoneuroimmunology: application to ocular diseases. J Ocul Biol Dis Infor 2009; 2:84-93. [PMID: 19672468 PMCID: PMC2723676 DOI: 10.1007/s12177-009-9028-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 01/18/2023] Open
Abstract
Psychoneuroimmunology (PNI) is a relatively new discipline within the field of neuroscience which researches the relationship between emotional states, the central and peripheral nervous systems, and the endocrine and immune systems. Negative psychological states, such as stress, anxiety, and depression, may alter immune system regulation and modulation of peripheral cytokines. A plethora of PNI studies have shown that increased psychological stress and depression are associated with an alteration of immune functioning and worsened health outcomes for many conditions. To date, application of PNI methodology has not been reported for ocular diseases. This article provides an historical perspective on the origins of the rift between the emotional and spiritual from physical aspects of disease. A review of how stress is mediated through sympathetic adrenomedullary and hypothalamic pituitary axis activation with shifts in immunity is provided. The literature which supports spirituality in healing is presented. Finally, ocular diseases which would be most amenable to a PNI approach are discussed.
Collapse
|
138
|
Abstract
INTRODUCTION An increasing amount of data suggests that dysregulation of the immune system, including the cytokine network, is associated with the etiology and pathophysiology of mood disorders. Genes encoding cytokines are highly polymorphic and single nucleotide polymorphisms, associated with increased or reduced cytokine production, have been described. The aim of this study was to define the genetic immunologic scenario associated with major depressive disorder (MDD) and bipolar disorder. METHODS Eighty-four Italian outpatients affected by bipolar disorder type I, bipolar disorder type II, or MDD, and 363 healthy controls were enrolled into the study. We analyzed allele and genotype distribution of -308 (G/A) tumor necrosis factor-a (TNF-a), +874 (T/A) interferon-g (IFN-g), -174 (G/C) interleukin (IL)-6, and -1082 (G/A) IL-10 promoter polymorphisms by Polymerase Chain Reaction Sequence Specific Primers technique. RESULTS We observed different genotype and allele distributions of TNF-a, IFN-g, and IL-10 polymorphisms in the three groups of patients analyzed. In particular, bipolar II patients were characterized by an absence of adenine (A) high producer allele of TNF-a (P<.001) and a lower percentage of TT high producer genotype of IFN-g (P<.001); bipolar I individuals showed reduced percentage of AA low producer genotype of IL-10 (P<.001). Both bipolar I and bipolar II patients not carrying guanine (G) high producer IL-6 allele showed a lower mean age at onset (P=.048). CONCLUSION These data support the existence of a genetic profile related to pro-inflammatory cytokines in patients affected by mood disorders. The differences observed across the three clinical phenotypes suggest the presence of different pathogenetic mechanisms involved in the susceptibility of phenotypically different mood disorders.
Collapse
|
139
|
Abstract
After defining hyperthermia and fever, this article describes the complete chain of events leading to the genesis of fever, starting with the lipopolysaccharide-induced formation of endogenous pyrogens (cytokines), their interactions with relevant targets in the brain, the induction of enzymes responsible for the formation of prostaglandin E2, the activation of descending neuronal pathways via the EP3 receptor, and the stimulation of thermogenesis via this pathway to support the febrile shift of the thermoregulatory set point. This article also summarizes an alternative hypothesis to account for a rapid induction of the early phase of lipopolysaccharide-induced fever before the release of larger amounts of cytokines into the bloodstream. Other topics discussed include malignant hypothermia, drug-induced hypothermia, and the heat stroke syndrome.
Collapse
|
140
|
O'Connor JC, Johnson DR, Freund GG. Psychoneuroimmune implications of type 2 diabetes: redux. Immunol Allergy Clin North Am 2009; 29:339-58. [PMID: 19389586 DOI: 10.1016/j.iac.2009.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sizable body of knowledge has arisen demonstrating that type 2 diabetes (T2D) is associated with alterations in the innate immune system. The resulting proinflammatory-leaning imbalance is implicated in the development of secondary disease complications and comorbidities, such as delayed wound healing, accelerated progress of atherosclerosis, and retinopathy, in people who have T2D. New experimental data and the results of recently published health-related quality-of-life surveys indicate that individuals who have T2D experience diminished feelings of happiness, well being, and satisfaction with life. These emotional and psychological consequences of T2D point to altered neuroimmunity as a previously unappreciated complication of T2D. This article discusses recent data detailing the impact of T2D on a person's PNI response.
Collapse
Affiliation(s)
- Jason C O'Connor
- Department of Animal Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
141
|
Constandil L, Hernández A, Pelissier T, Arriagada O, Espinoza K, Burgos H, Laurido C. Effect of interleukin-1beta on spinal cord nociceptive transmission of normal and monoarthritic rats after disruption of glial function. Arthritis Res Ther 2009; 11:R105. [PMID: 19586548 PMCID: PMC2745785 DOI: 10.1186/ar2756] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/09/2009] [Accepted: 07/08/2009] [Indexed: 12/02/2022] Open
Abstract
Introduction Cytokines produced by spinal cord glia after peripheral injuries have a relevant role in the maintenance of pain states. Thus, while IL-1β is overexpressed in the spinal cords of animals submitted to experimental arthritis and other chronic pain models, intrathecal administration of IL-1β to healthy animals induces hyperalgesia and allodynia and enhances wind-up activity in dorsal horn neurons. Methods To investigate the functional contribution of glial cells in the spinal cord nociceptive transmission, the effect of intrathecally administered IL-1β was studied in both normal and adjuvant-induced arthritic rats with or without glial inhibition. Four weeks after induction of monoarthritis, rats were treated with the glial cell inhibitor propentofylline (10 μg i.t. daily during 10 days) and submitted to a C-fiber-mediated reflex paradigm evoked by single and repetitive (wind-up) electric stimulation. Results Both the propentofylline treatment and the monoarthritic condition modified the stimulating current required for threshold activation of C reflex responses. Intrathecal IL-1β increased spinal cord wind-up activity in normal and monoarthritic rats without propentofylline pre-treatment, but resulted in decreased wind-up activity in normal and monoarthritic propentofylline-treated animals. Intrathecal saline did not produce any effect. Thus, glial inactivation reverted into inhibition the excitatory effect of IL-1β on spinal cord wind-up, irrespective of the normal or monoarthritic condition of rats. Conclusions The results suggest that the excitatory effect of nanomolar doses of IL-1β on spinal wind-up in healthy rats is produced by an unidentified glial mediator, while the inhibitory effects of IL-1β on wind-up activity in animals with inactivated glia resulted from a direct effect of the cytokine on dorsal horn neurons. The present study failed to demonstrate a differential sensitivity of normal and monoarthritic rats to IL-1β administration into the spinal cord and to disruption of β glial function, as both normal and monoarthritic animals changes wind-up activity in the same direction after propentofylline treatment, suggesting that after glial inhibition normal and monoarthritic animals behave similarly relative to the capability of dorsal horn neurons to generate wind-up activity when repeatedly stimulated by C-fibers.
Collapse
Affiliation(s)
- Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Ave. Libertador B. O'Higgins 3363, Casilla 40 Correo 33, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
142
|
De Herdt V, Puimege L, De Waele J, Raedt R, Wyckhuys T, El Tahry R, Libert C, Wadman W, Boon P, Vonck K. Increased rat serum corticosterone suggests immunomodulation by stimulation of the vagal nerve. J Neuroimmunol 2009; 212:102-5. [DOI: 10.1016/j.jneuroim.2009.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
|
143
|
Murphy BA. Chronobiology and the horse: recent revelations and future directions. Vet J 2009; 185:105-14. [PMID: 19427248 DOI: 10.1016/j.tvjl.2009.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 01/13/2023]
Abstract
The circadian system provides animals with a means to adapt their internal physiology to the constantly changing environmental stimuli that exist on a rotating planet. Light information is translated into molecular timing mechanisms within pacemaker cells of the mammalian hypothalamic suprachiasmatic nucleus (SCN) via transcriptional-translational feedback loops. Humoral and neural outputs from this 'master' clock result in circadian rhythms of physiology and behaviour. The larger circadian system involves SCN synchronisation of cellular clocks throughout the organism such that individual organs can adapt their specific function to the time of day. In the short history of this scientific field, the vast majority of mammalian chronobiological research has been conducted using small laboratory animals. This review examines what these studies have revealed, discusses how recent chronobiological findings in the horse compare to what is known and highlights how the principles of circadian biology are applicable to equine husbandry and veterinary care.
Collapse
Affiliation(s)
- Barbara A Murphy
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
144
|
Gold SM, Irwin MR. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis. Immunol Allergy Clin North Am 2009; 29:309-20. [PMID: 19389584 PMCID: PMC3625861 DOI: 10.1016/j.iac.2009.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An increasing body of evidence suggests that patients who have major depressive disorder show alterations in immunologic markers including increases in proinflammatory cytokine activity and inflammation. Inflammation of the central nervous system is a pathologic hallmark of multiple sclerosis (MS). Patients affected by this disease also show a high incidence of depression. Accumulating evidence from animal studies suggests that some aspects of depression and fatigue in MS may be linked to inflammatory markers. This article reviews the current knowledge in the field and illustrates how the sickness behavior model may be applied to investigate depressive symptoms in inflammatory neurologic diseases.
Collapse
Affiliation(s)
- Stefan M. Gold
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Multiple Sclerosis Program, Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Irwin
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
145
|
Boufidou F, Lambrinoudaki I, Argeitis J, Zervas IM, Pliatsika P, Leonardou AA, Petropoulos G, Hasiakos D, Papadias K, Nikolaou C. CSF and plasma cytokines at delivery and postpartum mood disturbances. J Affect Disord 2009; 115:287-92. [PMID: 18708264 DOI: 10.1016/j.jad.2008.07.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 12/01/2022]
Abstract
BACKGROUND Immune activation has been shown to be involved in the pathophysiology of anxiety states and major depression and pregnancy is associated with a characteristic immune activation to sustain the fetus. Despite the possibility of a relation between immune parameters and postpartum mood disturbance, few studies have explored this association. Further, no study to-date has examined CSF. METHODS Fifty-six Greek parturients were recruited and a detailed medical and obstetric history was recorded. All of them completed the Postpartum Blues Questionnaire (on admission and on days 1-4 postpartum) and the Edinburgh Postnatal Depression Scale (at first and sixth week postpartum). At delivery, a blood sample and a CSF sample while puncturing for epidural analgesia were taken from 33 participants; blood samples only were obtained from the rest of the 23 parturients. TNF-a and IL-6 were quantified with an ELISA assay. RESULTS A multiple regression analysis of psychometric scores depending on cytokine levels revealed that cytokine levels were positively associated with depressive mood during the first four days postpartum (p=0.035 for CSF IL-6, p=0.025 for CSF TnF-a, p=0.023 for serum TnF-a) and also at sixth week postpartum (p=0.012 for CSF IL-6, p=0.072 for CSF TnF-a). Pregnancy duration had an adverse association to psychometric scores. CONCLUSIONS It is suggested that immune mechanisms may play a role in the etiopathology of postpartum depressive mood shifts. The role of a "rebound" reaction of the maternal immune system postnatal should be further investigated.
Collapse
Affiliation(s)
- Fotini Boufidou
- Laboratory of Biopathology and Immunology, University of Athens, Eginition Hospital, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hein AM, O'Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 2009; 40:15-32. [PMID: 19365736 DOI: 10.1007/s12035-009-8066-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators within the brain, and recruitment of peripheral immune cells. Interestingly, memory deficits have been observed following many inflammatory states including infection, traumatic brain injury (TBI), normal aging, and Alzheimer's disease (AD). Prostaglandins (PGs), a class of lipid mediators which can have inflammatory actions, are upregulated by these inflammatory challenges and can impair memory. In this paper, we critically review the success of nonsteroidal anti-inflammatory drugs, which prevent the formation of PGs, in preventing neuroinflammation-induced memory deficits following lipopolysaccharide injection, TBI, aging, and experimental models of AD in rodents and propose a mechanism by which PGs could disrupt memory formation.
Collapse
Affiliation(s)
- Amy M Hein
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
147
|
Luz PA, Saraiva R, Almeida T, Fregoneze JB, De Castro e Silva E. Blockade of central kappa-opioid receptors inhibits the antidipsogenic effect of interleukin-1beta. Neuropeptides 2009; 43:93-103. [PMID: 19217659 DOI: 10.1016/j.npep.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/27/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to investigate the role of brain kappa-opioid receptors (KOR) in the antidipsogenic effect promoted by third ventricle injections of interleukin-1beta (IL-1beta). Wistar male rats were submitted to three different, thirst-inducing, physiological conditions: dehydration induced by water deprivation, hyperosmolarity induced by salt-load and hypovolemia induced by polyethylene glycol subcutaneous injection. Third ventricle injections of IL-1beta significantly inhibited the increase in water intake observed in those situations. The pharmacological blockade of central KOR by the selective KOR antagonist nor-binaltorphimine (BNI) at different doses significantly inhibited the antidipsogenic effect induced by the central administration of IL-1beta in all conditions tested: dehydration, hypovolemia and hyperosmolarity. The central administration of IL-1beta failed to induce any locomotor deficit, as verified in an open field test. Stimulation of the central interleukinergic component did not result in any general suppression of ingestive behavior since no change in saccharin intake was recorded during a dessert test in animals receiving central injections of IL-1beta. Furthermore, the inhibitory effects of IL-1beta on water intake cannot be attributed to sickness-like effects induced by these compounds, since an aversion test excluded this possibility. In summary, the data shown in the present study clearly show that the antidipsogenic effect observed in rats following third ventricle injections of IL-1beta depend on the functional integrity of a brain kappa-opioid-dependent component.
Collapse
Affiliation(s)
- P A Luz
- Department of Biological Sciences, State University of Southwest Bahia, 45200-000 Jequié, Bahia, Brazil
| | | | | | | | | |
Collapse
|
148
|
Johnston G, Webster N. Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth 2009; 102:453-62. [DOI: 10.1093/bja/aep037] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
149
|
Costa-Pinto FA, Cohn DWH, Sa-Rocha VM, Sa-Rocha LC, Palermo-Neto J. Behavior: a relevant tool for brain-immune system interaction studies. Ann N Y Acad Sci 2009; 1153:107-19. [PMID: 19236334 DOI: 10.1111/j.1749-6632.2008.03961.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.
Collapse
Affiliation(s)
- Frederico Azevedo Costa-Pinto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Sao Paulo, Brazil.
| | | | | | | | | |
Collapse
|
150
|
Reyes-Gibby CC, El Osta B, Spitz MR, Parsons H, Kurzrock R, Wu X, Shete S, Bruera E. The influence of tumor necrosis factor-alpha -308 G/A and IL-6 -174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol Biomarkers Prev 2009; 17:3262-7. [PMID: 18990769 DOI: 10.1158/1055-9965.epi-08-0125] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION We previously showed that select cytokine gene polymorphisms are a significant predictor for pain reported at initial presentation in 446 white patients newly diagnosed with non-small cell lung cancer. This follow-up study explores the extent to which polymorphisms in tumor necrosis factor-alpha (TNF- alpha-308 G/A), interleukin (IL)-6 -174G/C, and IL-8 -251T/A could explain variability in pain and analgesic response among those patients (n = 140) subsequently referred for pain treatment. METHODS Pain severity (0, no pain; 10, worst pain) was assessed at initial consultation and at follow-up visit. The total dose of opioids at the time of first-follow up visit (30 days postconsult) was converted to an equivalent dose of parenteral morphine. RESULTS Forty-one percent (57 of 140) of the patients reported severe pain (score > 7/10) at initial consultation (mean, 5.5), which significantly decreased to 25% (mean, 4) at first follow-up visit (McNemar = P < 0.001). Polymorphisms in TNF and IL-6 were significantly associated with pain severity (for TNF GG, 4.12; GA, 5.38; AA, 5.50; P = 0.04) and with morphine equivalent daily dose (IL-6 GG, 69.61; GC, 73.17; CC, 181.67; P = 0.004), respectively. Adjusting for demographic and clinical variables, variant alleles in TNFalpha -308 G/A remained significantly associated with pain severity (b = 0.226; P = 0.036) and carriers of the IL-6 -174C/C genotypes required 4.7 times higher dose of opioids for pain relief (odds ratio, 4.7; 95% confidence interval, 1.2;15.0) relative to GG and GC genotypes. CONCLUSIONS We provide preliminary evidence of the influence of cytokine genes on pain and response to analgesia in lung cancer patients. Additional studies are needed to validate our findings. The long-term application is to tailored pain therapies.
Collapse
Affiliation(s)
- Cielito C Reyes-Gibby
- Department of Epidemiology, Division of Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, 1155 Pressler Street-Unit 1340, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | | | |
Collapse
|