101
|
Xue D, Lu H, Xu HY, Zhou CX, He XZ. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12. J Cell Mol Med 2018; 22:3223-3237. [PMID: 29633510 PMCID: PMC5980122 DOI: 10.1111/jcmm.13604] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/13/2018] [Indexed: 01/04/2023] Open
Abstract
Our present work was aimed to study on the regulatory role of MALAT1/miR-145-5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX-resistant PCa cell lines (DU-145-DTX and PC-3-DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT-PCR analysis was performed to measure MALAT1 expression in DTX-sensitive and DTX-resistant tissues/cells. The human DTX-resistant cell lines DU145-PTX and PC3-DTX were established as in vitro cell models, and the expression of MALAT1, miR-145-5p and AKAP12 was manipulated in DTX-sensitive and DTX-resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual-luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR-145-5p, as well as between miR-145-5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR-145-5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up-regulated in clinical DTX-resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR-145-5p as a target of MALAT1. MiR-145-5p overexpression in PC3-DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR-145-5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX-chemoresistance in vivo. There was an lncRNA MALAT1/miR-145-5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.
Collapse
Affiliation(s)
- Dong Xue
- Department of Urology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China
| | - Hao Lu
- Department of Urology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China
| | - Han-Yan Xu
- Department of Urology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China
| | - Cui-Xing Zhou
- Department of Urology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China
| | - Xiao-Zhou He
- Department of Urology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
102
|
Ippolito L, Marini A, Cavallini L, Morandi A, Pietrovito L, Pintus G, Giannoni E, Schrader T, Puhr M, Chiarugi P, Taddei ML. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget 2018; 7:61890-61904. [PMID: 27542265 PMCID: PMC5308698 DOI: 10.18632/oncotarget.11301] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/27/2016] [Indexed: 01/24/2023] Open
Abstract
Drug resistance of cancer cells is recognized as the primary cause of failure of chemotherapeutic treatment in most human cancers. Growing evidences support the idea that deregulated cellular metabolism is linked to such resistance. Indeed, both components of the glycolytic and mitochondrial pathways are involved in altered metabolism linked to chemoresistance of several cancers. Here we investigated the drug-induced metabolic adaptations able to confer advantages to docetaxel resistant prostate cancer (PCa) cells. We found that docetaxel-resistant PC3 cells (PC3-DR) acquire a pro-invasive behavior undergoing epithelial-to-mesenchymal-transition (EMT) and a decrease of both intracellular ROS and cell growth. Metabolic analyses revealed that PC3-DR cells have a more efficient respiratory phenotype than sensitive cells, involving utilization of glucose, glutamine and lactate by the mitochondrial oxidative phosphorylation (OXPHOS). Consequently, targeting mitochondrial complex I by metformin administration, impairs proliferation and invasiveness of PC3-DR cells without effects on parental cells. Furthermore, stromal fibroblasts, which cause a "reverse Warburg" phenotype in PCa cells, reduce docetaxel toxicity in both sensitive and resistant PCa cells. However, re-expression of miR-205, a microRNA strongly down-regulated in EMT and associated to docetaxel resistance, is able to shift OXPHOS to a Warburg metabolism, thereby resulting in an elevated docetaxel toxicity in PCa cells. Taken together, these findings suggest that resistance to docetaxel induces a shift from Warburg to OXPHOS, mandatory for conferring a survival advantage to resistant cells, suggesting that impairing such metabolic reprogramming could be a successful therapeutic approach.
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alberto Marini
- Department of Biomedical Sciences, Laboratory of Cell Signaling and Redox Biology, University of Sassari, Sassari, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Laboratory of Cell Signaling and Redox Biology, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Thomas Schrader
- Department of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
103
|
Abstract
Prostate cancer (PCa) is one of the most common malignant cancers in male and docetaxel is commonly used as an effective chemotherapeutic drug for PCa patients. However, docetaxel resistance inhibits the therapeutic effect of this agent, thus investigating the mechanism of chemoresistance to docetaxel of PCa may help to improve the prognosis of PCa patients. In our present study, we found that miR-223-3p was up-regulated in PCa cell lines (C4-2, LNCap, PC3, DU-145). Transfection with miR-223-3p inhibitor increased chemo-sensitivity to docetaxel and cell apoptosis rate in PCa cells compared with docetaxel + miR-223-3p mock group, especially in DU-145 cells which were more resistant to docetaxel. Bioinformatics study and luciferase reporter assay indicated that FOXO3 was a target of miR-223-3p and the results from western blot suggested that FOXO3 was negatively regulated by miR-223-3p. Further study revealed that up-regulation of FOXO3 by transfection with pCMV-FOXO3 decreased the IC50 values of docetaxel and increased cell apoptosis rate compared with docetaxel + pCMV-vector group, suggesting that overexpressed FOXO3 suppressed cell survival and sensitized PCa cells to docetaxel. Moreover, siRNA-mediated knockdown of FOXO3 abolished the effects of miR-223-3p inhibitor on chemo-sensitivity and apoptosis in PCa cells by increasing chemoresistance and decreasing cell apoptosis rate. Finally, the in vivo experiments showed that miR-223-3p inhibitor sensitized prostatic cancer mouse model to docetaxel by increasing the expression of FOXO3. In conclusion, our present study indicated that miR-223-3p regulated cell chemo-sensitivity by targeting FOXO3 in prostatic cancer both in vitro and in vivo, providing new potential therapeutic strategy for PCa treatment.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Urology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Peng He
- Department of Urology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, China.
| | - Yu Wang
- Department of Urology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, China
| |
Collapse
|
104
|
Inhibiting autophagy overcomes docetaxel resistance in castration-resistant prostate cancer cells. Int Urol Nephrol 2018; 50:675-686. [PMID: 29460131 PMCID: PMC5878207 DOI: 10.1007/s11255-018-1801-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022]
Abstract
Background This study investigates the docetaxel-resistant mechanism and explores the effect of tea polyphenols (TP) on autophagy and its related mechanism in human castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145. Methods Immunofluorescence assay and annexin V-FITC/PI double staining flow cytometry were used to analyze the apoptosis and autophagy of PC3 and DU145 cells. The expression of autophagy-related proteins was detected by western bolt. Results Docetaxel could induce autophagy and apoptosis, together with the expression increase in p-JNK, p-Bcl-2 and Beclin1. The level of autophagy was remarkably decreased, but apoptosis was increased after combining with TP. In addition, the expression of p-mTOR was increased after combining with TP. Conclusion Docetaxel induces protective autophagy in CRPC cells by JNK pathway activation and then Bcl-2 phosphorylation and Beclin1 dissociation. TP activates mTOR pathway, which ultimately inhibits docetaxel-induced autophagy and improves therapeutic efficacy of docetaxel in CRPC cells.
Collapse
|
105
|
Zoni E, Karkampouna S, Thalmann GN, Kruithof-de Julio M, Spahn M. Emerging aspects of microRNA interaction with TMPRSS2-ERG and endocrine therapy. Mol Cell Endocrinol 2018; 462:9-16. [PMID: 28189568 DOI: 10.1016/j.mce.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy detected in males and the second most common cause of cancer death in western countries. The development of the prostate gland, is finely regulated by androgens which modulate also its growth and function. Importantly, androgens exert a major role in PCa formation and progression and one of the hypothesized mechanism proposed has been linked to the chromosomal rearrangement of the androgen regulated gene TMPRSS2 with ERG. Androgens have been therefore used as main target for therapies in the past. However, despite the development of endocrine therapies (e.g. androgen ablation), when PCa progress, tumors become resistant to this therapeutic castration and patients develop incurable metastases. A strategy to better understand how patients respond to therapy, in order to achieve a better patient stratification, consists in monitoring the levels of small noncoding RNAs (microRNAs). microRNAs are a class of small molecules that regulate protein abundance and their application as biomarkers to monitor disease progression has been intensely studied in the last years. In this review, we highlight the interactions between microRNAs and endocrine-related aspects of PCa in tissues. We focus on the modulation of TMPRSS2-ERG and Glucocorticoid Receptor (GR) by microRNAs and detail the influence of steroidal hormonal therapies on microRNAs expression.
Collapse
Affiliation(s)
- Eugenio Zoni
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Urology Research Laboratory, Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Spahn
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
106
|
Functions and dysfunctions of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Arch Biochem Biophys 2018; 640:83-92. [DOI: 10.1016/j.abb.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
107
|
Erb HHH, Guggenberger F, Santer FR, Culig Z. Interleukin-4 induces a CD44 high /CD49b high PC3 subpopulation with tumor-initiating characteristics. J Cell Biochem 2018; 119:4103-4112. [PMID: 29236307 PMCID: PMC5900863 DOI: 10.1002/jcb.26607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Pro‐ and anti‐inflammatory cytokines may influence proliferation, migration, invasion, and other cellular events of prostate cancer (PCa) cells. The hyaluronan receptor CD44, which is regulated by Interleukin (IL)‐4, is a prostate basal cell marker. CD44high/CD49bhigh expressing cells have been demonstrated to have tumor‐initiating characteristics. Here, we aimed to analyze the effects of long‐term IL‐4 treatment on CD44/CD49b expression, migration, proliferation, and clonogenic potential of basal‐like PCa cells. To this end PC3 cells were treated over 30 passages with 5 ng/mL IL‐4 (PC3‐IL4) resulting in an increased population of CD44high expressing cells. This was concurrent with a clonal outgrowth of cuboid‐shaped cells, with increased size and light absorbance properties. Flow cytometry revealed that the PC3‐IL4 CD44high expressing subpopulation corresponds to the CD49bhigh population. Isolation of the PC3‐IL4 CD44high/CD49bhigh subpopulation via fluorescence‐associated cell sorting showed increased migrative, proliferative, and clonogenic potential compared to the CD44low/CD49blow subpopulation. In conclusion, IL‐4 increases a PC3 subpopulation with tumor‐initiating characteristics. Thus, IL‐4, similar to other cytokines may be a regulator of tumor‐initiation and hence, may present a suitable therapy target in combination with current treatment options.
Collapse
Affiliation(s)
- Holger H H Erb
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Fabian Guggenberger
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Annés University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
108
|
Rane JK, Erb HHH, Nappo G, Mann VM, Simms MS, Collins AT, Visakorpi T, Maitland NJ. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget 2018; 7:51965-51980. [PMID: 27340920 PMCID: PMC5239528 DOI: 10.18632/oncotarget.10207] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.
Collapse
Affiliation(s)
- Jayant K Rane
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Rayne Institute, London, SE5 9NU, UK
| | - Holger H H Erb
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Giovanna Nappo
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Vincent M Mann
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Matthew S Simms
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Anne T Collins
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere and Tampere University Hospital, Tampere, 33520 Finland
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK
| |
Collapse
|
109
|
Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSA-/lo castration-resistant cells. Oncotarget 2017; 7:14220-40. [PMID: 26871947 PMCID: PMC4924710 DOI: 10.18632/oncotarget.7303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
We have recently demonstrated that the undifferentiated PSA−/lo prostate cancer (PCa) cell population harbors self-renewing long-term tumor-propagating cells that are refractory to castration, thus representing a therapeutic target. Our goals here are, by using the same lineage-tracing reporter system, to track the dynamic changes of PSA−/lo and PSA+ cells upon castration in vitro, investigate the molecular changes accompanying persistent castration, and develop large numbers of PSA−/lo PCa cells for drug screening. To these ends, we treated LNCaP cells infected with the PSAP-GFP reporter with three regimens of castration, i.e., CDSS, CDSS plus bicalutamide, and MDV3100 continuously for up to ~21 months. We observed that in the first ~7 months, castration led to time-dependent increases in PSA−/lo cells, loss of AR and PSA expression, increased expression of cancer stem cell markers, and many other molecular changes. Meanwhile, castrated LNCaP cells became resistant to high concentrations of MDV3100, chemotherapeutic drugs, and other agents. However, targeted and medium-throughput library screening identified several kinase (e.g., IGF-1R, AKT, PI3K/mTOR, Syk, GSK3) inhibitors as well as the BCL2 inhibitor that could effectively sensitize the LNCaP-CRPC cells to killing. Of interest, LNCaP cells castrated for >7 months showed evidence of cyclic changes in AR and the mTOR/AKT signaling pathways potentially involving epigenetic mechanisms. These observations indicate that castration elicits numerous molecular changes and leads to enrichment of PSA−/lo PCa cells. The ability to generate large numbers of PSA−/lo PCa cells should allow future high-throughput screening to identify novel therapeutics that specifically target this population.
Collapse
|
110
|
Yang Z, Chen JS, Wen JK, Gao HT, Zheng B, Qu CB, Liu KL, Zhang ML, Gu JF, Li JD, Zhang YP, Li W, Wang XL, Zhang Y. Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:178. [PMID: 29216925 PMCID: PMC5721613 DOI: 10.1186/s13046-017-0649-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Docetaxel-based chemotherapy failure in advanced prostate carcinoma has partly been attributed to the resistance of prostate cancer (PC) cells to docetaxel-induced apoptosis. Hence, there is an urgent need to identify mechanisms of docetaxel chemoresistance and to develop new combination therapies. METHODS miR-193a-5p level was evaluated by qPCR in prostate tissues and cell lines, and its expression in the tissues was also examined by in situ hybridization. PC cell line (PC3 cell) was transfected with miR-193a-5p mimic or its inhibitor, and then cell apoptosis and the expression of its downstream genes Bach2 and HO-1 were detected by TUNEL staining and Western blotting. Luciferase reporter assay was used to detect the effect of miR-193a-5p and Bach2 on HO-1 expression. Xenograft animal model was used to test the effect of miR-193a-5p and docetaxel on PC3 xenograft growth. RESULTS miR-193a-5p was upregulated in PC tissues and PC cell lines, with significant suppression of PC3 cell apoptosis induced by oxidative stress. Mechanistically, miR-193a-5p suppressed the expression of Bach2, a repressor of the HO-1 gene, by directly targeting the Bach2 mRNA 3'-UTR. Docetaxel treatment modestly decreased Bach2 expression and increased HO-1 level in PC3 cells, whereas a modest increase of HO-1 facilitated docetaxel-induced apoptosis. Notably, docetaxel-induced miR-193a-5p upregulation, which in turn inhibits Bach2 expression and thus relieves Bach2 repression of HO-1 expression, partly counteracted docetaxel-induced apoptosis, as evidenced by the increased Bcl-2 and decreased Bax expression. Accordingly, silencing of miR-193a-5p enhanced sensitization of PC3 cells to docetaxel-induced apoptosis. Finally, depletion of miR-193a-5p significantly reduced PC xenograft growth in vivo. CONCLUSIONS Silencing of miR-193a-5p or blockade of the miR-193a-5p-Bach2-HO-1 pathway may be a novel therapeutic approach for castration-resistant PC.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China.,Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.,Department of Science and Technology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jin-Suo Chen
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Hai-Tao Gao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Man-Li Zhang
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.,Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jun-Fei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jing-Dong Li
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
111
|
Chen W, Kong KK, Xu XK, Chen C, Li H, Wang FY, Peng XF, Zhang Z, Li P, Li JL, Li FC. Downregulation of miR‑205 is associated with glioblastoma cell migration, invasion, and the epithelial-mesenchymal transition, by targeting ZEB1 via the Akt/mTOR signaling pathway. Int J Oncol 2017; 52:485-495. [PMID: 29345288 DOI: 10.3892/ijo.2017.4217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor. In spite of recent advancements in surgical techniques, chemotherapy, and radiation therapy, patients with GBM often face a dire prognosis. MicroRNAs have been shown to modulate the aggressiveness of various cancers, and have emerged as possible therapeutic agents for the management of GBM. miR‑205 is dysregulated in glioma and act as a prognostic indicator. However, the role of miR‑205 in the development of GBM has not been elucidated. To better understand the pathogenesis of GBM, we examine the biological significance and molecular mechanisms of miR‑205 in GBM cells. Zinc finger E-box binding homeobox 1 (ZEB1) has been shown to regulate the epithelial-mesenchymal transition (EMT), which is strongly associated with GBM malignancy. In the present study, we show miR‑205 expression is reduced in GBM tissues and cell lines, and ZEB1 expression is inversely correlated with miR‑205 expression. We also show ZEB1 is a downstream target of miR‑205 and the Akt/mTOR signaling pathway is activated when miR‑205 interacts with ZEB1. Increased activity of miR‑205 in GBM cells significantly inhibits migration and invasion, and prevents EMT. Furthermore, overexpression of ZEB1 partially abolishes these inhibitory effects of miR‑205. We show that miR‑205 negatively regulates the expression of ZEB1 in GBM, inhibits cell migration and invasion, and prevents EMT, at least in part through the inhibition of the activation of the Akt/mTOR signaling pathway. Our results indicate miR‑205 may be an efficacious therapeutic agent in the treatment of GBM.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Kuan-Kei Kong
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Xin-Ke Xu
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Hui Li
- Department of Respiratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Fang-Yu Wang
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Xiao-Fang Peng
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Zhan Zhang
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Ping Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Jun-Liang Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Fang-Cheng Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
112
|
Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D, Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 2017; 7:11002-17. [PMID: 26716904 PMCID: PMC4905454 DOI: 10.18632/oncotarget.6760] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) is one of the most important strategies in cancer treatment. Radioresistance (the failure to RT) results in locoregional recurrence and metastasis. Therefore, it is critically important to investigate the mechanisms leading to cancer radioresistance to overcome this problem and increase patients' survival. Currently, the majority of the radioresistance-associated researches have focused on preclinical studies. Although the exact mechanisms of cancer radioresistance have not been fully uncovered, accumulating evidence supports that cancer stem cells (CSCs) and different signaling pathways play important roles in regulating radiation response and radioresistance. Therefore, targeting CSCs or signaling pathway proteins may hold promise for developing novel combination modalities and overcoming radioresistance. The present review focuses on the key evidence of CSC markers and several important signaling pathways in cancer radioresistance and explores innovative approaches for future radiation treatment.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - David Malouf
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - David Gillatt
- Department of Urology, St George Hospital, Kogarah, NSW, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
113
|
Gravina GL, Mancini A, Colapietro A, Marampon F, Sferra R, Pompili S, Biordi LA, Iorio R, Flati V, Argueta C, Landesman Y, Kauffman M, Shacham S, Festuccia C. Pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget 2017; 8:111225-111245. [PMID: 29340049 PMCID: PMC5762317 DOI: 10.18632/oncotarget.22760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Background and aims Docetaxel (DTX) modestly increases patient survival of metastatic castration-resistant prostate cancer (mCRPC) due to insurgence of pharmacological resistance. Deregulation of Chromosome Region Maintenance (CRM-1)/ exportin-1 (XPO-1)-mediated nuclear export may play a crucial role in this phenomenon. Material and methods Here, we evaluated the effects of two Selective Inhibitor of Nuclear Export (SINE) compounds, selinexor (KPT-330) and KPT-251, in association with DTX by using 22rv1, PC3 and DU145 cell lines with their. DTX resistant derivatives. Results and conclusions We show that DTX resistance may involve overexpression of β-III tubulin (TUBB3) and P-glycoprotein as well as increased cytoplasmic accumulation of Foxo3a. Increased levels of XPO-1 were also observed in DTX resistant cells suggesting that SINE compounds may modulate DTX effectiveness in sensitive cells as well as restore the sensitivity to DTX in resistant ones. Pretreatment with SINE compounds, indeed, sensitized to DTX through increased tumor shrinkage and apoptosis by preventing DTX-induced cell cycle arrest. Basally SINE compounds induce FOXO3a activation and nuclear accumulation increasing the expression of FOXO-responsive genes including p21, p27 and Bim causing cell cycle arrest. SINE compounds-catenin and survivin supporting apoptosis. βdown-regulated Cyclin D1, c-myc, Nuclear sequestration of p-Foxo3a was able to reduce ABCB1 and TUBB3 H2AX levels, prolonged γ expression. Selinexor treatment increased DTX-mediated double strand breaks (DSB), and reduced the levels of DNA repairing proteins including DNA PKc and Topo2A. Our results provide supportive evidence for the therapeutic use of SINE compounds in combination with DTX suggesting their clinical use in mCRPC patients.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, Division of Applied Biology, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
114
|
Niu XB, Fu GB, Wang L, Ge X, Liu WT, Wen YY, Sun HR, Liu LZ, Wang ZJ, Jiang BH. Insulin-like growth factor-I induces chemoresistence to docetaxel by inhibiting miR-143 in human prostate cancer. Oncotarget 2017; 8:107157-107166. [PMID: 29291019 PMCID: PMC5739804 DOI: 10.18632/oncotarget.22362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of insulin-like growth factor-I (IGF-I) are associated with carcinogenesis and cancer progression. However, the molecular mechanisms by which IGF-I promotes prostate cancer development remain to be elucidated. Docetaxel chemotherapy is an important therapeutic strategy in many types of human cancers including prostate cancer. In this study, we showed that IGF-I rendered PC-3 and DU145 cells more resistant to docetaxel treatment. IGF-I treatment decreased miR-143 expression, but increased the expression levels of IGF-I receptor (IGF-IR) and insulin receptor substrate 1 (IRS1), direct targets of miR-143. Overexpression of miR-143 abolished IGF-I-induced chemoresistance to docetaxel treatment, decreased expression levels of IGF-I, IRS1, and vascular endothelial growth factor (VEGF) in prostate cancer cell lines. Furthermore, docetaxel treatment significantly inhibited VEGF transcriptional activation, whereas IGF-I treatment induced VEGF transcriptional activation in a dose-dependent manner. Forced expression of IGF-IR and IRS1 cDNAs without the 3’ UTR regions restored miR-143-inhibited VEGF transcriptional activation. Finally, miR-143 inhibited tumor growth and made cells more sensitive to docetaxel treatment for decreasing tumor growth in vivo. Taken together, our data demonstrates that IGF-I induces docetaxel resistance and upregulates IGF-IR and IRS1 expression through miR-143 downregulation, whereas miR-143 acts as a tumor suppressor by targeting its targets IGF-IR and IRS1.
Collapse
Affiliation(s)
- Xiao-Bing Niu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Guang-Bo Fu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Lin Wang
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Ge
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Wei-Tao Liu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Yi-Yang Wen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Hao-Ran Sun
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Ling-Zhi Liu
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Zeng-Jun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Hua Jiang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
115
|
Lo UG, Lee CF, Lee MS, Hsieh JT. The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. Int J Mol Sci 2017; 18:ijms18102079. [PMID: 28973968 PMCID: PMC5666761 DOI: 10.3390/ijms18102079] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Cheng-Fan Lee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
116
|
|
117
|
de Souza MF, Kuasne H, Barros-Filho MDC, Cilião HL, Marchi FA, Fuganti PE, Paschoal AR, Rogatto SR, Cólus IMDS. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS One 2017; 12:e0184094. [PMID: 28910345 PMCID: PMC5598937 DOI: 10.1371/journal.pone.0184094] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Circulating nucleic acids are found in free form in body fluids and may serve as minimally invasive tools for cancer diagnosis and prognosis. Only a few studies have investigated the potential application of circulating mRNAs and microRNAs (miRNAs) in prostate cancer (PCa). The Cancer Genome Atlas (TCGA) database was used for an in silico analysis to identify circulating mRNA and miRNA as potential markers of PCa. A total of 2,267 genes and 49 miRNAs were differentially expressed between normal and tumor samples. The prediction analyses of target genes and integrative analysis of mRNA and miRNA expression revealed eleven genes and eight miRNAs which were validated by RT-qPCR in plasma samples from 102 untreated PCa patients and 50 cancer-free individuals. Two genes, OR51E2 and SIM2, and two miRNAs, miR-200c and miR-200b, showed significant association with PCa. Expression levels of these transcripts distinguished PCa patients from controls (67% sensitivity and 75% specificity). PCa patients and controls with prostate-specific antigen (PSA) ≤ 4.0 ng/mL were discriminated based on OR51E2 and SIM2 expression levels. The miR-200c expression showed association with Gleason score and miR-200b, with bone metastasis, bilateral tumor, and PSA > 10.0 ng/mL. The combination of circulating mRNA and miRNA was useful for the diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
| | - Hellen Kuasne
- CIPE, AC Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Alexandre Rossi Paschoal
- Department of Computing, Federal University of Technology—Paraná, UTFPR, Cornélio Procópio, Paraná, Brazil
| | - Silvia Regina Rogatto
- CIPE, AC Camargo Cancer Center, São Paulo, São Paulo, Brazil
- Department of Clinical Genetics, Vejle Hospital and Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | | |
Collapse
|
118
|
Culig Z. Innovative Therapies to Overcome Resistance to Enzalutamide: Perspective on the Use of Darolutamide. Eur Urol 2017; 73:9-10. [PMID: 28890248 DOI: 10.1016/j.eururo.2017.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
119
|
Mohr L, Carceles-Cordon M, Woo J, Cordon-Cardo C, Domingo-Domenech J, Rodriguez-Bravo V. Generation of Prostate Cancer Cell Models of Resistance to the Anti-mitotic Agent Docetaxel. J Vis Exp 2017. [PMID: 28930981 PMCID: PMC5607877 DOI: 10.3791/56327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microtubule targeting agents (MTAs) are a mainstay in the treatment of a wide range of tumors. However, acquired resistance to chemotherapeutic drugs is a common mechanism of disease progression and a prognostic-determinant feature of malignant tumors. In prostate cancer (PC), resistance to MTAs such as the taxane Docetaxel dictates treatment failure as well as progression towards lethal stages of disease that are defined by a poor prognosis and high mortality rates. Though studied for decades, the array of mechanisms contributing to acquired resistance are not completely understood, and thus pose a significant limitation to the development of new therapeutic strategies that could benefit patients in these advanced stages of disease. In this protocol, we describe the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises. Despite potential limitations intrinsic to a cell based model, such as the loss of resistance properties over time, the Docetaxel-resistant cell lines produced by this method have been successfully used in recent studies and offer the opportunity to advance our molecular understanding of acquired chemoresistance in lethal prostate cancer.
Collapse
Affiliation(s)
- Lisa Mohr
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Marc Carceles-Cordon
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Jungreem Woo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Carlos Cordon-Cardo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Josep Domingo-Domenech
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Veronica Rodriguez-Bravo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
120
|
Qiu M, Ouyang J, Sun H, Meng F, Cheng R, Zhang J, Cheng L, Lan Q, Deng C, Zhong Z. Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27587-27595. [PMID: 28782928 DOI: 10.1021/acsami.7b10533] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Poly(ethylene glycol)-b-polypeptide block copolymer micelles, with excellent safety, are one of the most clinically studied nanocarriers for anticancer drug delivery. Notably, self-assembled nanosystems based on hydrophobic polypeptides showing typically a low drug loading and burst drug release are limited to preclinical studies. Here, we report that poly(ethylene glycol)-b-poly(α-aminopalmitic acid) (PEG-b-PAPA) block copolymer could be easily prepared with tailored Mn through ring-opening polymerization of α-aminopalmitic acid N-carboxyanhydride (APA-NCA). Interestingly, PEG-b-PAPA copolymers exhibited superb solubility in common organic solvents (including CHCl3, CH2Cl2, and THF), while stable nanomicelles were formed in phosphate buffer, with a small size of 59 nm and a low critical micelle concentration of 2.38 mg/L. These polylipopeptide micelles (Lipep-Ms) allowed facile loading of a potent anticancer drug, docetaxel (DTX), likely due to the existence of a strong interaction between the lipophilic drug and polylipopeptide in the core. Notably, cRGD-peptide-functionalized Lipep-Ms (cRGD-Lipep-Ms) were also obtained with similar biophysical characteristics. The in vitro studies showed efficient cellular uptake of DTX-loaded cRGD-Lipep-Ms by B16F10 cells and fast intracellular drug release due to the enzymatic degradation of PAPA blocks in endo/lysosome, leading to a pronounced anticancer effect (IC50 = 0.15 μg DTX equiv/mL). The in vivo therapy studies showed that DTX-cRGD-Lipep-Ms exhibited superior tumor growth inhibition of B16F10 melanoma, improved survival rate, and little side effects as compared to free DTX. These polylipopeptide micelles appear as a promising and robust nanoplatform for anticancer drug delivery.
Collapse
Affiliation(s)
- Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jia Ouyang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou, 215004, China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou, 215004, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| |
Collapse
|
121
|
Ruan D, He J, Li CF, Lee HJ, Liu J, Lin HK, Chan CH. Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist. Oncogene 2017; 36:4299-4310. [PMID: 28346424 PMCID: PMC5532065 DOI: 10.1038/onc.2017.64] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Abstract
Castration-resistant prostate cancer (CRPC) remains a major clinical challenge because of the lack of effective targeted therapy for its treatment. The mechanism underlying how CRPC gains resistance toward hormone depletion and other forms of chemotherapy is poorly understood. Research on understanding the factors that drive these processes is desperately needed to generate new therapies to cure the disease. Here, we discovered a fundamental role of S-phase protein kinase 2 (Skp2) in the formation and progression of CRPC. In transgenic adenocarcinoma mouse prostate model, Skp2 depletion leads to a profound repression of prostate tumor growth and distal metastasis and substantially prolonged overall survival. We revealed that Skp2 regulates CRPC through Twist-mediated oncogenic functions including epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) acquisitions. Mechanistically, Skp2 interacted with Twist and promoted the non-degradative ubiquitination of Twist. Consequently, Skp2 stabilized Twist protein expression by preventing proteasomal degradation of Twist by β-TrCP. We found that Twist overexpression augments CSC self-renewal and population and that Skp2 inhibition reverts Twist's effects on CSC regulation. Furthermore, genetically depleting or pharmacologically inactivating Skp2 synergistically re-sensitized CRPC cells toward chemotherapies such as paclitaxel or doxorubicin. Together, this study uncovering Skp2-mediated Twist stabilization and oncogenic functions in CRPC offers new knowledge on how CRPC progresses and acquires chemoresistance during tumor progression. It provides proof of principle that Skp2 targeting is a promising approach to combat metastatic CRPC by targeting Twist and CSCs.
Collapse
Affiliation(s)
- Diane Ruan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiabei He
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingxuan Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
122
|
Dorris E, O'Neill A, Hanrahan K, Treacy A, Watson RW. MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer. Oncotarget 2017; 8:72021-72030. [PMID: 29069765 PMCID: PMC5641108 DOI: 10.18632/oncotarget.18894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. METHODS Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. RESULTS MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. CONCLUSIONS In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell.
Collapse
Affiliation(s)
- Emma Dorris
- UCD School of Medicine, Conway Institute for Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute for Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karen Hanrahan
- UCD School of Medicine, Conway Institute for Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ann Treacy
- Pathology Department, Mater Private Hospital, Dublin 7, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute for Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
123
|
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S. New insights into the role of EMT in tumor immune escape. Mol Oncol 2017; 11:824-846. [PMID: 28614624 PMCID: PMC5496499 DOI: 10.1002/1878-0261.12093] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023] Open
Abstract
Novel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks. Here, we review the current knowledge of how cellular heterogeneity and plasticity could be involved in shaping the tumor microenvironment (TME) and in controlling antitumor immunity. Indeed, recent findings have led to increased interest in the mechanisms by which cancer cells undergoing epithelial‐mesenchymal transition (EMT), or oscillating within the EMT spectrum, might contribute to immune escape through multiple routes. This includes shaping of the TME and decreased susceptibility to immune effector cells. Although much remains to be learned on the mechanisms at play, cancer cell clones with mesenchymal features emerging from the TME seem to be primed to face immune attacks by specialized killer cells of the immune system, the natural killer cells, and the cytotoxic T lymphocytes. Recent studies investigating patient tumors have suggested EMT as a candidate predictive marker to be explored for immunotherapy outcome. Promising data also exist on the potential utility of targeting these cancer cell populations to at least partly overcome such resistance. Research is now underway which may lead to considerable progress in optimization of treatments.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Savagner
- Institut de Recherche en Cancérologie de Montpellier, France.,U1194, INSERM, Montpellier, France.,Université Montpellier, France.,Institut du Cancer Montpellier, France
| | - Sandra Ortiz-Cuaran
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Linda Mahjoubi
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Saintigny
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Jean-Paul Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France.,CNRS UMR 7057, Matter and Complex Systems, Paris, France.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
124
|
Aksoy A, Artas G, Sevindik OG. Predictive value of stathmin-1 and osteopontin expression for taxan resistance in metastatic castrate-resistant prostate cancer. Pak J Med Sci 2017; 33:560-565. [PMID: 28811771 PMCID: PMC5510103 DOI: 10.12669/pjms.333.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Several pathways are known to be activated during metastasis and treatment of cancer. We investigated the role of osteopontin (OPN) and stathmin-1 (STHMN1) in metastatic castrate-resistant (mCRPC). Methods: We included 30 patients who received at least 6 cycles of taxane regimen for metastatic mPC in the present study. For this study retrospective data was taken from Firat University, Faculty of Medicine, Medical Oncology Department between 2009 and 2015. OPN expression and STHMN1 expression were retrospectively evaluated by immunohistochemical staining in biopsy specimens. The relationship between the expression levels of OPN and STMN1 and the response to taxane based regimen and survival was analyzed. Results: There was mild or strong overexpression of OPN and STHMN1 in all the patients. STHMN1 expression was mildly positive (+2) in four of the cases (13.2%) while it was strongly positive (+3) in 25 (83.4%) cases. Similarly, OPN expression was mildly positive (+2) and strongly positive (+3) in five (16.6%) and 25 (87.4%) patients, respectively. There was no significant correlation between the expression levels of STHMN1 and OPN, survival, and response to taxane based regimen (p>0.05); however, OPN overexpression showed a significant correlation with lower Gleason scores (GS) (p:0.032). Conclusions: STHMN1 and OPN may be prognostic markers although they are not predictive markers of response to treatment in mCRPC. The overexpression of OPN may help identifying patients with lower GS.
Collapse
Affiliation(s)
- Asude Aksoy
- Asude Aksoy, Department of Medical Oncology, Medical Faculty, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Gokhan Artas, Department of Pathology, Medical Faculty, Firat University, Elazig, Turkey
| | - Omur Gokmen Sevindik
- Omur Gokmen Sevindik, Department of Hematology, Medical Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
125
|
Libardi do Amaral C. Epithelial-Mesenchymal Transition in Docetaxel-Resistant Prostate Cancer. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Castration-resistant prostate cancer (CRPCa) is an advanced stage of prostate cancer in which a tumour progresses even under androgen deprivation. Treatment alternatives for CRPCa remain very limited and mostly rely on docetaxel-based chemotherapy. Despite being shown to increase patients’ overall survival, docetaxel’s clinical efficacy is impaired by development of chemoresistance. Most patients do not respond to docetaxel treatment and even those initially responsive ultimately develop resistance. Recently, chemoresistance was found to be closely related to epithelial-mesenchymal transition (EMT), a process in which epithelial cells transition into a mesenchymal phenotype. In fact, EMT markers are overexpressed in prostate cancer and are correlated to a higher Gleason score. For this reason, new therapeutic strategies are being studied to inhibit this process in several cancers. However, the clinical usefulness of targeting EMT as a way to overcome docetaxel resistance in CRPCa is still questionable and suffers from some significant limitations. This review briefly summarises the most common mechanisms of EMT-induced chemoresistance and evaluates its use as a new approach to overcome docetaxel resistance in CRPCa.
Collapse
Affiliation(s)
- Camila Libardi do Amaral
- Laboratory of Disorders of Metabolism, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
126
|
Armstrong CM, Liu C, Lou W, Lombard AP, Evans CP, Gao AC. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate 2017; 77:1020-1028. [PMID: 28485104 PMCID: PMC5448975 DOI: 10.1002/pros.23358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. METHODS Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. RESULTS miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. CONCLUSIONS Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response. This is due, in part, to modulation of p53 phosphorylation and apoptosis.
Collapse
Affiliation(s)
| | - Chengfei Liu
- Department of Urology, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urology, University of California Davis, CA, USA
| | - Alan P. Lombard
- Department of Urology, University of California Davis, CA, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Allen C. Gao
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
127
|
The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 2017; 6:e342. [PMID: 28553931 PMCID: PMC5523058 DOI: 10.1038/oncsis.2017.23] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Interleukin-4 plays a critical role in the regulation of immune responses and has been detected at high levels in the tumour microenvironment of cancer patients, where concentrations correlate with the grade of malignancy. In prostate cancer, interleukin-4 has been associated with activation of the androgen receptor, increased proliferation and activation of survival pathways such as Akt and NF-κB. However, its role in therapy resistance has not yet been determined. Here we investigate the influence of interleukin-4 on primary epithelial cells from prostate cancer patients. Our data demonstrate an increase in the clonogenic potential of these cells when cultured in the presence of interleukin-4. In addition, a Phospho-Kinase Array revealed that in contrast to previously published work, signal transducer and activator of transcription6 (STAT6) is the only signalling molecule activated after interleukin-4 treatment. Using the STAT6-specific inhibitor AS1517499 we could confirm the role of STAT6 in increasing colony-forming frequency. However, clonogenic recovery assays revealed that interleukin-4 does not rescue the effects of either irradiation or docetaxel treatment. We therefore propose that although the interleukin-4/STAT6 axis does not appear to be involved in therapy resistance, it does play a crucial role in the colony-forming abilities of the basal cell population in prostate cancer. IL-4 may therefore contribute to disease relapse by providing a niche that is favourable for the clonogenic growth of prostate cancer stem cells.
Collapse
|
128
|
Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57:16-27. [PMID: 28527407 DOI: 10.1016/j.ctrv.2017.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.
Collapse
|
129
|
Qin Y, Chen W, Liu B, Zhou L, Deng L, Niu W, Bao D, Cheng C, Li D, Liu S, Niu C. MiR-200c Inhibits the Tumor Progression of Glioma via Targeting Moesin. Am J Cancer Res 2017; 7:1663-1673. [PMID: 28529643 PMCID: PMC5436519 DOI: 10.7150/thno.17886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/08/2017] [Indexed: 12/27/2022] Open
Abstract
We attempt to demonstrate the regulatory role of miR-200c in glioma progression and its mechanisms behind. Here, we show that miR-200c expression was significantly reduced in the glioma tissues compared to paratumor tissues, especially in malignant glioma. Exogenous overexpression of miR-200c inhibited the proliferation and invasion of glioma cells. In addition, the in vivo mouse xenograft model showed that miR-200c inhibited glioma growth and liver metastasis, which is mainly regulated by targeting moesin (MSN). We demonstrated that the expression of MSN in glioma specimens were negatively correlated with miR-200c expression, and MSN overexpression rescued the phenotype about cell proliferation and invasion induced by miR-200c. Moreover, knockdown of MSN was able to mimic the effects induced by miR-200c in glioma cells. These results indicate that miR-200c plays an important role in the regulation of glioma through targeting MSN.
Collapse
|
130
|
Wang W, Wang L, Mizokami A, Shi J, Zou C, Dai J, Keller ET, Lu Y, Zhang J. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. CHINESE JOURNAL OF CANCER 2017; 36:35. [PMID: 28356132 PMCID: PMC5372329 DOI: 10.1186/s40880-017-0203-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/23/2017] [Indexed: 01/09/2023]
Abstract
Background The chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease. New emerging evidence indicates that the epithelial-to-mesenchymal transition (EMT) may play pivotal roles in the development of chemoresistance and metastasis. As a hallmark of EMT, E-cadherin is suggested to be a key marker in the development of chemoresistance. However, the molecular mechanisms underlying PCa chemoresistance remain unclear. The current study aimed to explore the association between EMT and chemoresistance in PCa as well as whether changing the expression of E-cadherin would affect PCa chemoresistance. Methods Parental PC3 and DU145 cells and their chemoresistant PC3-TxR and DU145-TxR cells were analyzed. PC3-TxR and DU145-TxR cells were transfected with E-cadherin-expressing lentivirus to overexpress E-cadherin; PC3 and DU145 cells were transfected with small interfering RNA to silence E-cadherin. Changes of EMT phenotype-related markers and signaling pathways were assessed by Western blotting and quantitative real-time polymerase chain reaction. Tumor cell migration, invasion, and colony formation were then evaluated by wound healing, transwell, and colony formation assays, respectively. The drug sensitivity was evaluated using MTS assay. Results Chemoresistant PC3-TxR and DU145-TxR cells exhibited an invasive and metastatic phenotype that associated with EMT, including the down-regulation of E-cadherin and up-regulation of Vimentin, Snail, and N-cadherin, comparing with that of parental PC3 and DU145 cells. When E-cadherin was overexpressed in PC3-TxR and DU145-TxR cells, the expression of Vimentin and Claudin-1 was down-regulated, and tumor cell migration and invasion were inhibited. In particular, the sensitivity to paclitaxel was reactivated in E-cadherin-overexpressing PC3-TxR and DU145-TxR cells. When E-cadherin expression was silenced in parental PC3 and DU145 cells, the expression of Vimentin and Snail was up-regulated, and, particularly, the sensitivity to paclitaxel was decreased. Interestingly, Notch-1 expression was up-regulated in PC3-TxR and DU145-TxR cells, whereas the E-cadherin expression was down-regulated in these cells comparing with their parental cells. The use of γ-secretase inhibitor, a Notch signaling pathway inhibitor, significantly increased the sensitivity of chemoresistant cells to paclitaxel. Conclusion The down-regulation of E-cadherin enhances PCa chemoresistance via Notch signaling, and inhibiting the Notch signaling pathway may reverse PCa chemoresistance.
Collapse
Affiliation(s)
- Wenchu Wang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China.,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lihui Wang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Atsushi Mizokami
- Department of Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junlin Shi
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Chunlin Zou
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Jinlu Dai
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China. .,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China.
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China. .,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China. .,Department of Biology and School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China. .,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
131
|
Mittal K, Donthamsetty S, Kaur R, Yang C, Gupta MV, Reid MD, Choi DH, Rida PCG, Aneja R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer 2017; 116:1186-1194. [PMID: 28334734 PMCID: PMC5418452 DOI: 10.1038/bjc.2017.78] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Docetaxel is the only FDA-approved first-line treatment for castration-resistant prostate cancer (CRPC) patients. Docetaxel treatment inevitably leads to tumour recurrence after an initial therapeutic response with generation of multinucleated polyploid (MP) cells. Here we investigated role of MP cells in clinical relapse of CRPC. METHODS Prostate cancer (PC-3) cells were treated with docetaxel (5 nM) for 3 days followed by a washout and samples were collected at close intervals over 35 days post drug washout. The tumorigenic potential of the giant MP cells was studied by implanting MP cells subcutaneously as tumour xenografts in nude mice. RESULTS Docetaxel-induced polyploid cells undergo mitotic slippage and eventually spawn mononucleated cells via asymmetric cell division or neosis. Both MP and cells derived from polyploid cells had increased survival signals, were positive for CD44 and were resistant to docetaxel chemotherapy. Although MP cells were tumorigenic in nude mice, these cells took a significantly longer time to form tumours compared with parent PC-3 cells. CONCLUSIONS Generation of MP cells upon docetaxel therapy is an adaptive response of apoptosis-reluctant cells. These giant cells ultimately contribute to the generation of mononucleated aneuploid cells via neosis and may have a fundamental role precipitating clinical relapse and chemoresistance in CRPC.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Ramneet Kaur
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Michelle D Reid
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Da Hoon Choi
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Padmashree C G Rida
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA.,Novazoi Theranostics, Inc., Rolling Hills Estates, CA 90274, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| |
Collapse
|
132
|
Abstract
Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Channing Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
133
|
Hanrahan K, O'Neill A, Prencipe M, Bugler J, Murphy L, Fabre A, Puhr M, Culig Z, Murphy K, Watson RW. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Oncol 2017; 11:251-265. [PMID: 28133913 PMCID: PMC5527446 DOI: 10.1002/1878-0261.12030] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022] Open
Abstract
Docetaxel is the main treatment for advanced castration‐resistant prostate cancer; however, resistance eventually occurs. The development of intratumoral drug‐resistant subpopulations possessing a cancer stem cell (CSC) morphology is an emerging mechanism of docetaxel resistance, a process driven by epithelial–mesenchymal transition (EMT). This study characterised EMT in docetaxel‐resistant sublines through increased invasion, MMP‐1 production and ZEB1 and ZEB2 expression. We also present evidence for differential EMT across PC‐3 and DU145 in vitro resistance models as characterised by differential migration, cell colony scattering and susceptibility to the CSC inhibitor salinomycin. siRNA manipulation of ZEB1 and ZEB2 in PC‐3 and DU145 docetaxel‐resistant sublines identified ZEB1, through its transcriptional repression of E‐cadherin, to be a driver of both EMT and docetaxel resistance. The clinical relevance of ZEB1 was also determined through immunohistochemical tissue microarray assessment, revealing significantly increased ZEB1 expression in prostate tumours following docetaxel treatment. This study presents evidence for a role of ZEB1, through its transcriptional repression of E‐cadherin to be a driver of both EMT and docetaxel resistance in docetaxel‐resistant prostate cancer. In addition, this study highlights the heterogeneity of prostate cancer and in turn emphasises the complexity of the clinical management of docetaxel‐resistant prostate cancer.
Collapse
Affiliation(s)
- Karen Hanrahan
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Maria Prencipe
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Jane Bugler
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Lisa Murphy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Aurelie Fabre
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Austria
| | - Keefe Murphy
- UCD School of Mathematical Sciences, University College Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
134
|
Dekervel J, Bulle A, Windmolders P, Lambrechts D, Van Cutsem E, Verslype C, van Pelt J. Acriflavine Inhibits Acquired Drug Resistance by Blocking the Epithelial-to-Mesenchymal Transition and the Unfolded Protein Response. Transl Oncol 2016; 10:59-69. [PMID: 27987431 PMCID: PMC5217771 DOI: 10.1016/j.tranon.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is linked to tumor invasion, drug resistance and aggressive disease and this is largely dependent on the cell's microenvironment. Acriflavine (ACF) is an old antibacterial drug recently also suggested as anticancer agent and HIF inhibitor. We wanted to study the effect of acriflavine on EMT in different human cancer models. Pancreatic cancer cells (Panc-1) were exposed to TGF-β1 or cobalt chloride (to mimick severe hypoxia) to induce EMT. For our third model we exposed HepG2 liver cancer cells to sorafenib which resulted in development of acquired drug resistance with strong features of EMT and aggressive behavior. These models were morphologically and functionally (invasion assay) characterized. Markers of EMT were determined using qRT-PCR and Western blotting. Transcriptome analysis was performed following gene expression determination and combining the iRegulon tool and Gene Set Enrichment Analysis (GSEA). We made the following observations: (1) acriflavine inhibited EMT based on changes in cell morphology, invasive capacities and markers of EMT (at protein and gene expression level). (2) Transcriptome analysis revealed potent inhibition of ATF4 target genes and of the unfolded protein response. We showed that acriflavine blocked eIF2a phosphorylation and reduced ATF4 translation thereby inhibiting the PERK/eIF2a/ATF4 UPR pathway. (3) ACF restored drug sensitivity of cells that obtained acquired resistance. Conclusions: We identified acriflavine as a potent inhibitor of EMT and the UPR, thereby re-sensitizing the cancer cells to antineoplastic drugs.
Collapse
Affiliation(s)
- Jeroen Dekervel
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven
| | - Ashenafi Bulle
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium
| | - Eric Van Cutsem
- Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Chris Verslype
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
135
|
Ceder Y, Bjartell A, Culig Z, Rubin MA, Tomlins S, Visakorpi T. The Molecular Evolution of Castration-resistant Prostate Cancer. Eur Urol Focus 2016; 2:506-513. [PMID: 28723516 DOI: 10.1016/j.euf.2016.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
CONTEXT Androgen deprivation therapy (ADT) is the backbone of treatment for advanced prostate cancer. However, castration-resistant prostate cancer (CRPC) nearly invariably develops through a range of different molecular mechanisms accompanied by progression to a more aggressive phenotype. OBJECTIVE To understand the key molecular mechanisms leading to CRPC and the functional implications of this progression. Understanding molecular evolutionary mechanisms in CRPC is essential for the development of novel curative therapeutic approaches. EVIDENCE ACQUISITION A systematic literature search to identify relevant original articles was conducted using PubMed. Findings verified in independent studies and supported by in vivo data were prioritised. From the eligible collection, 50 papers were selected. EVIDENCE SYNTHESIS The majority of CRPC tumours harbour alterations in the androgen receptor (AR) at the DNA, RNA, and/or protein level, and/or other alterations involving the AR signalling pathway, so this central molecule is the focus of this review. To survive and resume growth despite low levels of circulating androgens, prostate cancer cells can also adapt androgen synthesis or induce alternative pathways. CONCLUSIONS Despite more efficient ADT strategies, most evidence points to persistent AR signalling as a major mechanism of progression to CRPC. Resistance due to transdifferentiation or AR independence is also emerging as a mechanism of resistance. The diversity of potential resistance mechanisms supports the need for combination treatment and serial monitoring for adaptive treatment strategies. PATIENT SUMMARY In this review, we summarise how prostate cancer cells evade androgen deprivation therapy and become more aggressive. Defining the molecular mechanisms will be critical for the development of new treatment approaches and hence improved survival.
Collapse
Affiliation(s)
- Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden.
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
136
|
Wang Y, Lieberman R, Pan J, Zhang Q, Du M, Zhang P, Nevalainen M, Kohli M, Shenoy NK, Meng H, You M, Wang L. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer 2016; 15:70. [PMID: 27832783 PMCID: PMC5105253 DOI: 10.1186/s12943-016-0556-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Treatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically are centered on docetaxel-based chemotherapy. We previously reported that elevated miR-375 levels were significantly associated with poor overall survival of mCRPC patients. In this study, we evaluated if miR-375 induced chemo-resistance to docetaxel through regulating target genes associated with drug resistance. METHODS We first compared miR-375 expression level between prostate cancer tissues and normal prostate tissues using data from The Cancer Genome Atlas (TCGA). To examine the role of miR-375 in docetaxel resistance, we transfected miR-375 using a pre-miRNA lentiviral vector and examined the effects of exogenously overexpressed miR-375 on cell growth in two prostate cancer cell lines, DU145 and PC-3. To determine the effect of overexpressed miR-375 on tumor growth and chemo-resistance in vivo, we injected prostate cancer cells overexpressing miR-375 into nude mice subcutaneously and evaluated tumor growth rate during docetaxel treatment. Lastly, we utilized qRT-PCR and Western blot assay to examine two miR-375 target genes, SEC23A and YAP1, for their expression changes after miR-375 transfection. RESULTS By examining 495 tumor tissues and 52 normal tissues from TCGA data, we found that compared to normal prostate, miR-375 was significantly overexpressed in prostate cancer tissues (8.45-fold increase, p value = 1.98E-23). Docetaxel treatment induced higher expression of miR-375 with 5.83- and 3.02-fold increases in DU145 and PC-3 cells, respectively. Interestingly, miR-375 appeared to play a dual role in prostate cancer proliferation. While miR-375 overexpression caused cell growth inhibition and cell apoptosis, elevated miR-375 also significantly reduced cell sensitivity to docetaxel treatment in vitro, as evidenced by decreased apoptotic cells. In vivo xenograft mouse study showed that tumors with increased miR-375 expression were more tolerant to docetaxel treatment, demonstrated by greater tumor weight and less apoptotic cells in miR-375 transfected group when compared to empty vector control group. In addition, we examined expression levels of the two miR-375 target genes (SEC23A and YAP1) and observed significant reduction in the expression at both protein and mRNA levels in miR-375 transfected prostate cancer cell lines. TCGA dataset analysis further confirmed the negative correlations between miR-375 and the two target genes (r = -0.62 and -0.56 for SEC23A and YAP1, respectively; p < 0.0001). CONCLUSIONS miR-375 is involved in development of chemo-resistance to docetaxel through regulating SEC23A and YAP1 expression. Our results suggest that miR-375 or its target genes, SEC23A or YAP1, might serve as potential predictive biomarkers to docetaxel-based chemotherapy and/or therapeutic targets to overcome chemo-resistance in mCRPC stage.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province's Universities, Dalian Ocean University, Dalian, 116021, China.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Rachel Lieberman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jing Pan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qi Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meijun Du
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Peng Zhang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marja Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Niraj K Shenoy
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hui Meng
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ming You
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
137
|
New Biomarkers for Selecting the Best Therapy Regimens in Metastatic Castration-Resistant Prostate Cancer. Target Oncol 2016; 12:37-45. [DOI: 10.1007/s11523-016-0461-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Slabáková E, Kharaishvili G, Smějová M, Pernicová Z, Suchánková T, Remšík J, Lerch S, Straková N, Bouchal J, Král M, Culig Z, Kozubík A, Souček K. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget 2016; 6:36156-71. [PMID: 26416355 PMCID: PMC4742168 DOI: 10.18632/oncotarget.5392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023] Open
Abstract
Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.
Collapse
Affiliation(s)
- Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Smějová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Pernicová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic
| | - Ján Remšík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislav Lerch
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Milan Král
- Department of Urology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zoran Culig
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
139
|
Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, Carpentier G, Semprez F, Céraline J, Allory Y, Courty J, De La Taille A, Vacherot F. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget 2016; 7:69397-69411. [PMID: 26993766 PMCID: PMC5342486 DOI: 10.18632/oncotarget.8043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 01/03/2023] Open
Abstract
Despite the advent of several new treatment options over the past years, advanced/metastatic prostate carcinoma (PCa) still remains incurable, which justifies the search for novel targets and therapeutic molecules. Nucleophosmin (NPM1) is a shuttling nucleoprotein involved in tumor growth and its targeting could be a potential approach for cancer therapy. We previously demonstrated that the multivalent pseudopeptide N6L binds to NPM1 potently affecting in vitro and in vivo tumor cell growth of various tumor types as well as angiogenesis. Furthermore, NPM1 binds to androgen receptor (AR) and modulate its activity. In this study, we first investigated the implication of the NPM1 and its Thr199 and Thr234/237 phosphorylated forms in PCa. We showed that phosphorylated forms of NPM1 interact with androgen receptor (AR) in nucleoplasm. N6L treatment of prostate tumor cells led to inhibition of NPM1 phosphorylation in conjunction with inhibition of AR activity. We also found that total and phosphorylated NPM1 were overexpressed in castration-resistant PCa. Assessment of the potential therapeutic role of N6L in PCa indicated that N6L inhibited tumor growth both in vitro and in vivo when used either alone or in combination with the standard-of-care first- (hormonotherapy) and second-line (docetaxel) treatments for advanced PCa. Our findings reveal the role of Thr199 and Thr234/237 phosphorylated NPM1 in PCa progression and define N6L as a new drug candidate for PCa therapy.
Collapse
Affiliation(s)
- Damien Destouches
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Maha Sader
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Stéphane Terry
- INSERM, U1186, Gustave Roussy Cancer Campus, Villejuif, F-94805, France
| | - Charles Marchand
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Pascale Maillé
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département de Pathologie, Créteil, F-94000, France
| | - Pascale Soyeux
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Gilles Carpentier
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Fannie Semprez
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Jocelyn Céraline
- INSERM, U1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, F-67000, France
| | - Yves Allory
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département de Pathologie, Créteil, F-94000, France
| | - José Courty
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Alexandre De La Taille
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département d'Urologie, Créteil, F-94000, France
| | - Francis Vacherot
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| |
Collapse
|
140
|
Puhr M, De Marzo A, Isaacs W, Lucia MS, Sfanos K, Yegnasubramanian S, Culig Z. Inflammation, Microbiota, and Prostate Cancer. Eur Urol Focus 2016; 2:374-382. [DOI: 10.1016/j.euf.2016.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/31/2023]
|
141
|
Lynch SM, O'Neill KM, McKenna MM, Walsh CP, McKenna DJ. Regulation of miR-200c and miR-141 by Methylation in Prostate Cancer. Prostate 2016; 76:1146-59. [PMID: 27198154 PMCID: PMC5082568 DOI: 10.1002/pros.23201] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND In prostate cancer (PCa), abnormal expression of several microRNAs (miRNAs) has been previously reported. Increasing evidence shows that aberrant epigenetic regulation of miRNAs is a contributing factor to their altered expression in cancer. In this study, we investigate whether expression of miR-200c and miR-141 in PCa is related to the DNA methylation status of their promoter. METHODS PCR analysis of miR-200c and miR-141, and CpG methylation analysis of their common promoter, was performed in PCa cell-lines and in archived prostate biopsy specimens. The biological significance of miR-200c and miR-141 expression in prostate cancer cells was assessed by a series of in vitro bioassays and the effect on proposed targets DNMT3A and TET1/TET3 was investigated. The effect on promoter methylation status in cells treated with demethylating agents was also examined. RESULTS miR-200c and miR-141 are both highly elevated in LNCaP, 22RV1, and DU145 cells, but significantly reduced in PC3 cells. This correlates inversely with the methylation status of the miR-200c/miR-141 promoter, which is unmethylated in LNCaP, 22RV1, and DU145 cells, but hypermethylated in PC3. In PC3 cells, miR-200c and miR-141 expression is subsequently elevated by treatment with the demethylating drug decitabine (5-aza-2'deoxycytidine) and by knockdown of DNA methyltransferase 1 (DNMT1), suggesting their expression is regulated by methylation. Expression of miR-200c and miR-141 in prostate biopsy tissue was inversely correlated with methylation in promoter CpG sites closest to the miR-200c/miR-141 loci. In vitro, over-expression of miR-200c in PC3 cells inhibited growth and clonogenic potential, as well as inducing apoptosis. Expression of the genes DNMT3A and TET1/TET3 were down-regulated by miR-200c and miR-141 respectively. Finally, treatment with the soy isoflavone genistein caused demethylation of the promoter CpG sites closest to the miR-200c/miR-141 loci resulting in increased miR-200c expression. CONCLUSIONS Our findings provide evidence that miR-200c and miR-141 are under epigenetic regulation in PCa cells. We propose that profiling their expression and methylation status may have potential as a novel biomarker or focus of therapeutic intervention in the diagnosis and prognosis of PCa. Prostate 76:1146-1159, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Karla M. O'Neill
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
- School of MedicineDentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Michael M. McKenna
- Department of Cellular PathologyWestern Health and Social Care TrustAltnagelvin Area HospitalDerryUK
| | - Colum P. Walsh
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Declan J. McKenna
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| |
Collapse
|
142
|
Yang R, Mondal G, Wen D, Mahato RI. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:391-401. [PMID: 27520724 DOI: 10.1016/j.nano.2016.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/24/2023]
Abstract
Repeated treatments with chemotherapeutic agent(s) fail due to cancer stem cells (CSCs) and chemoresistance regulated by microRNAs (miRNA) whose expression alters owing to dysfunctional signaling pathways including Hedgehog (Hh) signaling. We previously demonstrated the combination of Hh inhibitor cyclopamine (CYP) and paclitaxel (PTX) effectively inhibit PTX-resistant cells and side population, a cell fraction rich in CSCs. In this study, we synthesized mPEG-b-PCC-g-PTX-g-DC (P-PTX) and mPEG-b-PCC-g-CYP-g-DC (P-CYP) polymer-drug conjugates, which they self-assembled into micelles. The combination of P-PTX and P-CYP alleviated PTX resistance and suppressed tumor colony formation. Further, combination therapy inhibited Hh signaling and up-regulated tumor suppressor miRNAs. We established orthotopic prostate tumor in nude mice and there was significant tumor growth inhibition in the group treated with the combination therapy of P-PTX and P-CYP compared with monotherapy. In conclusion, this combination therapy of P-PTX and P-CYP has the potential to treat chemoresistant prostate cancer.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
143
|
Kolijn K, Verhoef EI, van Leenders GJLH. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget 2016; 6:24488-98. [PMID: 26041890 PMCID: PMC4695200 DOI: 10.18632/oncotarget.4177] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process known to be associated with aggressive tumor behavior, metastasis and treatment resistance. It is characterized by coincidental upregulation of mesenchymal markers such as vimentin, fibronectin and N-cadherin concurrent with E-cadherin downregulation. Studies on EMT are generally performed in cell lines and mouse models, while the histopathological and phenotypical properties in clinical prostate cancer (PCa) are still unclear. The objective of this study was to identify EMT in PCa patients. We demonstrated that N-cadherin, vimentin and fibronectin were generally not co-expressed in corresponding tumor regions. Immunofluorescent double stainings confirmed that co-expression of mesenchymal markers was uncommon, as we found no prostate cancer cells that co-expressed N-cadherin with fibronectin and only rare (<1%) cells that co-expressed N-cadherin with vimentin. Downregulation of E-cadherin was demonstrated in all N-cadherin positive tumor cells, but not in vimentin or fibronectin positive tumor cells. We further analyzed N-cadherin expression in morphologically distinct PCa growth patterns in a radical prostatectomy cohort (n = 77) and found that N-cadherin is preferentially expressed in ill-defined Gleason grade 4 PCa. In conclusion, we demonstrate that N-cadherin is the most reliable marker for EMT in clinical PCa and is preferentially expressed in ill-defined Gleason grade 4 growth pattern.
Collapse
Affiliation(s)
- Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
144
|
Cha YJ, Lee JH, Han HH, Kim BG, Kang S, Choi YD, Cho NH. MicroRNA alteration and putative target genes in high-grade prostatic intraepithelial neoplasia and prostate cancer: STAT3 and ZEB1 are upregulated during prostate carcinogenesis. Prostate 2016; 76:937-47. [PMID: 27017949 DOI: 10.1002/pros.23183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/08/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND We aimed to identify alteration of cancer-related miRNAs in HGPIN and PCa, and to investigate the clinical implications of HGPIN as a precancerous lesion of PCa. METHODS Clinicopathologic analysis based on the status of HGPIN was performed in 388 patients who received radical prostatectomy between January 2005 and December 2008 in Severance Hospital. Among them, 10 paired HGPIN and PCa were prepared to perform miRNA microarray and quantitative real-time PCR. Fifty-two prostatectomy specimens were used to further validation of protein expression that was assessed by immunohistochemical staining (IHC) in matched non-neoplastic prostatic tissue (NPT), HGPIN, and PCa. Functional analysis was performed using a prostate normal cell line (RWPE-1) and two prostate cancer cell lines (LNCaP, PC-3) for comparison of expression of miR-155 and STAT3 mRNA before and after treatment of miR-155 mimetics/antagomir into each cell line. RESULTS Patients with HGPIN had significantly less lymphovascular invasion, less lymph node metastasis, lower tumor volume, lower Gleason score, lower incidence of death, and longer overall survival compared to patients without HGPIN. MiR-155, miR-210, miR-153, and miR-200c were downregulated in HGPIN and PCa in common, compared to NPT. As putative target mRNAs, mRNA expression level of STAT3, ZEB1, and BACH1 was increased in PCa and HGPIN compared to NPT. mRNA expression level of ephrin-A3 was increased in PCa compared to NPT, and FGFRL1 was decreased in PCa compared to HGPIN and NPT. Protein expression assessed by IHC showed correlated results in STAT3, ZEB1, and ephrin-A3. Moreover, STAT3 and ZEB1 increased in a stepwise manner, from NPT to PCa. Treatment of miR-155 antagomir increased STAT3 mRNA expression in RWPE-1 cells, whereas treatment of miR-155 mimetics into PC-3 cells significantly decreased STAT3 expression. CONCLUSIONS STAT3 and ZEB1 could be the key molecules altered at the early stages of carcinogenesis, especially in HGPIN. Prostate 76:937-947, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hyun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Baek Gil Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Suki Kang
- Severance Biomedical Science Institute (SBSI), Yonsei University, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University, Seoul, Korea
| |
Collapse
|
145
|
miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis 2016; 7:e2291. [PMID: 27362808 PMCID: PMC5108343 DOI: 10.1038/cddis.2016.194] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) have critical roles in regulating cancer cell survival, proliferation and sensitivity to chemotherapy. The potential application of using miRNAs to predict chemotherapeutic response to cancer treatment is highly promising. However, the underlying mechanisms of chemotherapy response control by miRNAs remain to be fully identified and their prognostic value has not been fully evaluated. Here we show a strong correlation between miR-205 expression and chemosensitivtiy to TAC (docetaxol, doxorubicin plus cyclophosphamide), a widely-used neoadjuvant chemotherapy (NAC) regimen, for breast cancer patients. High level of miR-205 predicted better response to TAC regimen NAC in breast cancer patients. We found miR-205 downregulated in both MCF-7/A02 and CALDOX cells, two drug-resistant derivatives of MCF-7 and Cal51 cells, and its ectopic expression led to an increase in apoptosis resensitization of both drug-resistant cell lines to doxorubicin and taxol. We further show that miR-205 directly binds VEGFA and FGF2 mRNA 3′-UTRs and confirm that miR-205 levels are negatively correlated with VEGFA and FGF2 mRNA expression in breast cancer patients. Adding VEGFA and FGF2 exogenously to chemosensitive breast cancer cells and chemoresistant cells with miR-205 overexpression led to drug resistance. Consistently, low VEGFA and FGF2 expression correlated with better response to NAC in breast cancer patients. In addition, inhibition of tumor growth and resensitization to doxorubicin were also observed in mouse tumor xenografts from cells overexpressing miR-205. Taken together, our data suggest that miR-205 enhances chemosensitivity of breast cancer cells to TAC chemotherapy by suppressing both VEGFA and FGF2, leading to evasion of apoptosis. MiR-205 may serve as a predictive biomarker and a potential therapeutic target in breast cancer treatment.
Collapse
|
146
|
Chen H, Li H, Chen Q. INPP4B reverses docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer. Biochem Biophys Res Commun 2016; 477:467-72. [PMID: 27318090 DOI: 10.1016/j.bbrc.2016.06.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Docetaxel efficiency in the therapy of prostate cancer (PCa) patients is limited due to the development of chemoresistance. Recent studies have implied a role of INPP4B in tumor chemoresistance, while the effects of INPP4B on docetaxel resistance in PCa have not been elucidated. In the present study, the docetaxel-resistant human PCa cell lines PC3-DR and DU-145-DR were established from the parental cell lines PC3 and DU-145, and the expression and role of INPP4B in docetaxel-resistant PCa cells were investigated. The results demonstrated that INPP4B expression was significantly downregulated in docetaxel-resistant cells. Overexpression of INPP4B increased the sensitivity to docetaxel and promoted cell apoptosis in PC3-DR and DU-145-DR cells. In addition, INPP4B overexpression downregulated the expression of the mesenchymal markers fibronectin, N-cadherin, and vimentin, and upregulated the expression level of the epithelial maker E-cadherin. Furthermore, INPP4B overexpression markedly inhibited the PI3K/Akt pathway. We also found that IGF-1, the inhibitor of PI3K/Akt, markedly blocked the change in EMT markers induced by overexpression of INPP4B, and reversed the resistance of PC3-DR and DU-145-DR cells to docetaxel, which is sensitized by Flag-INPP4B. In summary, the presented data indicate that INPP4B is crucial for docetaxel-resistant PCa cell survival, potentially by regulating EMT through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haiwen Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China
| | - Hongliang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China.
| | - Qi Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiao Tong University, PR China
| |
Collapse
|
147
|
Kroon J, Kooijman S, Cho NJ, Storm G, van der Pluijm G. Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate Cancer. Trends Pharmacol Sci 2016; 37:451-462. [DOI: 10.1016/j.tips.2016.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 01/26/2023]
|
148
|
The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors. Oncotarget 2016; 6:14399-412. [PMID: 25973542 PMCID: PMC4546475 DOI: 10.18632/oncotarget.3882] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 01/05/2023] Open
Abstract
Tumor cell invasion, dissemination and metastasis is triggered by an aberrant activation of epithelial-to-mesenchymal transition (EMT), often mediated by the transcription factor ZEB1. Disseminating tumor cells must acquire specific features that allow them to colonize at different organ sites. Here we identify a set of genes that is highly expressed in breast cancer bone metastasis and activated by ZEB1. This gene set includes various secreted factors, e.g. the BMP-inhibitor FST, that are described to reorganize the bone microenvironment. By inactivating BMP-signaling, BMP-inhibitors are well-known to induce osteolysis in development and disease. We here demonstrate that the expression of ZEB1 and BMP-inhibitors is correlated with bone metastasis, but not with brain or lung metastasis of breast cancer patients. In addition, we show that this correlated expression pattern is causally linked, as ZEB1 induces the expression of the BMP-inhibitors NOG, FST and CHRDL1 both by directly increasing their gene transcription, as well as by indirectly suppressing their reduction via miR-200 family members. Consequently, ZEB1 stimulates BMP-inhibitor mediated osteoclast differentiation. These findings suggest that ZEB1 is not only driving EMT, but also contributes to the formation of osteolytic bone metastases in breast cancer.
Collapse
|
149
|
Puhr M, Hoefer J, Eigentler A, Dietrich D, van Leenders G, Uhl B, Hoogland M, Handle F, Schlick B, Neuwirt H, Sailer V, Kristiansen G, Klocker H, Culig Z. PIAS1 is a determinant of poor survival and acts as a positive feedback regulator of AR signaling through enhanced AR stabilization in prostate cancer. Oncogene 2016; 35:2322-32. [PMID: 26257066 PMCID: PMC4865476 DOI: 10.1038/onc.2015.292] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023]
Abstract
Novel drugs like Abiraterone or Enzalutamide, which target androgen receptor (AR) signaling to improve androgen deprivation therapy (ADT), have been developed during the past years. However, the application of these drugs is limited because of occurrence of inherent or acquired therapy resistances during the treatment. Thus, identification of new molecular targets is urgently required to improve current therapeutic prostate cancer (PCa) treatment strategies. PIAS1 (protein inhibitor of activated STAT1 (signal transducer and activator of transcription-1)) is known to be an important cell cycle regulator and PIAS1-mediated SUMOylation is essential for DNA repair. In this context, elevated PIAS1 expression has already been associated with cancer initiation. Thus, in the present study, we addressed the question of whether PIAS1 targeting can be used as a basis for an improved PCa therapy in combination with anti-androgens. We show that PIAS1 significantly correlates with AR expression in PCa tissue and in cell lines and demonstrate that high PIAS1 levels predict shorter relapse-free survival. Our patient data are complemented by mechanistic and functional in vitro experiments that identify PIAS1 as an androgen-responsive gene and a crucial factor for AR signaling via prevention of AR degradation. Furthermore, PIAS1 knockdown is sufficient to decrease cell proliferation as well as cell viability. Strikingly, Abiraterone or Enzalutamide treatment in combination with PIAS1 depletion is even more effective than single-drug treatment in multiple PCa cell models, rendering PIAS1 as a promising target protein for a combined treatment approach to improve future PCa therapies.
Collapse
Affiliation(s)
- M Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Hoefer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - G van Leenders
- Institute of Pathology Erasmus Medical Center, Rotterdam, The Netherlands
| | - B Uhl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - M Hoogland
- Institute of Pathology Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Schlick
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - V Sailer
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - G Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - H Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
150
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|