101
|
Potera RM, Jensen MJ, Hilkin BM, South GK, Hook JS, Gross EA, Moreland JG. Neutrophil azurophilic granule exocytosis is primed by TNF-α and partially regulated by NADPH oxidase. Innate Immun 2016; 22:635-646. [PMID: 27655046 DOI: 10.1177/1753425916668980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte) activation with release of granule contents plays an important role in the pathogenesis of acute lung injury, prompting clinical trials of inhibitors of neutrophil elastase. Despite mounting evidence for neutrophil-mediated host tissue damage in a variety of disease processes, mechanisms regulating azurophilic granule exocytosis at the plasma membrane, and thus release of elastase and other proteases, are poorly characterized. We hypothesized that azurophilic granule exocytosis would be enhanced under priming conditions similar to those seen during acute inflammatory events and during chronic inflammatory disease, and selected the cytokine TNF-α to model this in vitro. Neutrophils stimulated with TNF-α alone elicited intracellular reactive oxygen species (ROS) generation and mobilization of secretory vesicles, specific, and gelatinase granules. p38 and ERK1/2 MAPK were involved in these components of priming. TNF-α priming alone did not mobilize azurophilic granules to the cell surface, but did markedly increase elastase release into the extracellular space in response to secondary stimulation with N-formyl-Met-Leu-Phe (fMLF). Priming of fMLF-stimulated elastase release was further augmented in the absence of NADPH oxidase-derived ROS. Our findings provide a mechanism for host tissue damage during neutrophil-mediated inflammation and suggest a novel anti-inflammatory role for the NADPH oxidase.
Collapse
Affiliation(s)
- Renee M Potera
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA
| | - Melissa J Jensen
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Brieanna M Hilkin
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Gina K South
- 2 Department of Pediatrics, The University of Iowa, USA
| | - Jessica S Hook
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA.,4 Department of Microbiology, University of Texas Southwestern Medical Center, USA
| | - Emily A Gross
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Jessica G Moreland
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA.,4 Department of Microbiology, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
102
|
Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 2016; 16:34-47. [PMID: 27666815 DOI: 10.1016/j.autrev.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Galectins are evolutionary conserved β-galactoside binding proteins with a carbohydrate-recognition domain (CRD) of approximately 130 amino acids. In mammals, 15 members of the galectin family have been identified and classified into three subtypes according to CRD organization: prototype, tandem repeat-type and chimera-type galectins. Galectin-3 (gal-3) is the only chimera type galectin in vertebrates containing one CRD linked to an unusual long N-terminal domain which displays non-lectin dependent activities. Although recent studies revealed unique, pleiotropic and context-dependent functions of gal-3 in both extracellular and intracellular space, gal-3 specific pathways and its ligands have not been clearly defined yet. In the kidney gal-3 is involved in later stages of nephrogenesis as well as in renal cell cancer. However, gal-3 has recently been associated with lupus glomerulonephritis, with Familial Mediterranean Fever-induced proteinuria and renal amyloidosis. Gal-3 has been studied in experimental acute kidney damage and in the subsequent regeneration phase as well as in several models of chronic kidney disease, including nephropathies induced by aging, ischemia, hypertension, diabetes, hyperlipidemia, unilateral ureteral obstruction and chronic allograft injury. Because of the pivotal role of gal-3 in the modulation of immune system, wound repair, fibrosis and tumorigenesis, it is not surprising that gal-3 can be an intriguing prognostic biomarker as well as a promising therapeutic target in a great variety of diseases, including chronic kidney disease, chronic heart failure and cardio-renal syndrome. This review summarizes the functions of gal-3 in kidney pathophysiology focusing on the reported role of gal-3 in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Saccon
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Leonardo Punzi
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy.
| |
Collapse
|
103
|
The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation? Mediators Inflamm 2016; 2016:2856213. [PMID: 27597803 PMCID: PMC4997018 DOI: 10.1155/2016/2856213] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.
Collapse
|
104
|
Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation. Mar Drugs 2016; 14:md14080141. [PMID: 27472345 PMCID: PMC4999902 DOI: 10.3390/md14080141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets.
Collapse
|
105
|
|
106
|
Berthelot JM, Le Goff B, Neel A, Maugars Y, Hamidou M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine 2016; 84:255-262. [PMID: 27426444 DOI: 10.1016/j.jbspin.2016.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
Suicidal NETosis differs from other mechanisms of cell death by the release of a lattice, composed of DNA associated with proteins citrullinated by protein-arginine deiminase 4, from neutrophils. These 'NETs' are composed of granule-derived proteins with microbicidal activity. A similar type of release occurs during vital NETosis, in which anuclear neutrophils maintain their chemotactic ability and imprison live bacteria, even after NET extrusion. Mitochondrial NETosis is limited to the expulsion of oxidised mitochondrial DNA and cytoplasmic enzymes. NETs include the targets of most autoantibodies found in rheumatoid arthritis, lupus, and vasculitis. The clinical and biological overlaps sometimes observed between bronchectiasis and RA, RA and SLE, or SLE and vasculitis, implicate NETosis as a major triggering event common to these disorders. NETosis increases the possibility of association between autoantigens and infectious antigens in mucosal biofilms, impairing the clearance of pathogens and possibly triggering autoimmune reactions. NETosis aggravates these three conditions and increases endothelial damage and the risk of thrombosis. However, the pathogenesis of RA, SLE, and vasculitis is not confined to autoantibodies against NET components, and other mechanisms have been suggested to explain the breakdown of tolerance to NET autoantigens, such as hypercitrullination. The question of whether continuous presentation of autoantigens mixed with antigens from dormant intracellular pathogens (released following suicidal, vital, or mitochondrial NETosis) is required to induce and sustain autoimmunity must be addressed. Inhibiting NETois may not be sufficient to improve autoimmune disorders whereas such latent infections remain uncontrolled.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France.
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France
| | - Antoine Neel
- Internal Medicine Unit, Nantes University Hospital, 44093 Nantes, France
| | - Yves Maugars
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France
| | - Mohamed Hamidou
- Internal Medicine Unit, Nantes University Hospital, 44093 Nantes, France
| |
Collapse
|
107
|
Jarrot PA, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: An update. Autoimmun Rev 2016; 15:704-13. [DOI: 10.1016/j.autrev.2016.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
|
108
|
Maugeri N, Rovere-Querini P, Manfredi AA. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases. Front Immunol 2016; 7:182. [PMID: 27242789 PMCID: PMC4871869 DOI: 10.3389/fimmu.2016.00182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.
Collapse
Affiliation(s)
- Norma Maugeri
- San Raffaele Scientific Institute, Università Vita Salute San Raffaele , Milano , Italy
| | | | - Angelo A Manfredi
- San Raffaele Scientific Institute, Università Vita Salute San Raffaele , Milano , Italy
| |
Collapse
|
109
|
Magna M, Pisetsky DS. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins. Clin Ther 2016; 38:1029-41. [DOI: 10.1016/j.clinthera.2016.02.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
|
110
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
111
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Noncanonical intercellular communication in immune response. World J Immunol 2016; 6:67-74. [DOI: 10.5411/wji.v6.i1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
The classical view of signaling between cells of immune system includes two major routes of intercellular communication: Through the release of extracellular molecules or a direct interaction between membrane bound receptor and its membrane bound ligand, which initiate a cascade of signaling in target cell. However, recent studies indicate that besides these canonical modes of signaling there are also noncanonical routs of intercellular communications through membrane stripping/membrane exchange/trogocytosis, extracellular traps, exosomes and ectososmes/microparticles. In this review we discuss what are the components of noncanonical pathways of signaling and what role they play in immune cells interactions.
Collapse
|
112
|
Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol 2016; 28:146-58. [PMID: 26936034 DOI: 10.1016/j.smim.2016.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023]
Abstract
Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and - upon extravasation - with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology.
Collapse
|
113
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|
114
|
A link: Allergic rhinitis, Asthma & Systemic Lupus Erythematosus. Autoimmun Rev 2016; 15:487-91. [PMID: 26851551 DOI: 10.1016/j.autrev.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/29/2023]
Abstract
This review has discussed a link between allergic rhinitis, asthma and systemic lupus erythematosus (SLE) and a case report in this area. A clear link with symptoms of allergic rhinitis, asthma and SLE exists. Several articles found on pubmed in the literature are listed on allergic rhinitis and allergy, Th1-immune responses, mast cells in autoimmunity, total immunoglobulin E levels in lupus, atopic diseases and SLE are reviewed. In addition, risks and correlations, genetic predisposition, environmental factors, immune regulation, elevated serum IgE levels, regulatory B cells for both allergic and autoimmune diseases are mentioned, Asthma and the vascular endothelial cell growth factor, asthma and autoimmune diseases, allergy and autoimmunity, neutrophils, innate and adaptive immunity in the development of SLE, the (Tim) gene family, complement activation in SLE and immunomodulation, hypersensitivity reactions in autoimmunity are discussed.
Collapse
|
115
|
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res 2016; 76:1367-80. [PMID: 26759232 DOI: 10.1158/0008-5472.can-15-1591] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
Risks of tumor recurrence after surgical resection have been known for decades, but the mechanisms underlying treatment failures remain poorly understood. Neutrophils, first-line responders after surgical stress, may play an important role in linking inflammation to cancer progression. In response to stress, neutrophils can expel their protein-studded chromatin to form local snares known as neutrophil extracellular traps (NET). In this study, we asked whether, as a result of its ability to ensnare moving cells, NET formation might promote metastasis after surgical stress. Consistent with this hypothesis, in a cohort of patients undergoing attempted curative liver resection for metastatic colorectal cancer, we observed that increased postoperative NET formation was associated with a >4-fold reduction in disease-free survival. In like manner, in a murine model of surgical stress employing liver ischemia-reperfusion, we observed an increase in NET formation that correlated with an accelerated development and progression of metastatic disease. These effects were abrogated by inhibiting NET formation in mice through either local treatment with DNAse or inhibition of the enzyme peptidylarginine deaminase, which is essential for NET formation. In growing metastatic tumors, we found that intratumoral hypoxia accentuated NET formation. Mechanistic investigations in vitro indicated that mouse neutrophil-derived NET triggered HMGB1 release and activated TLR9-dependent pathways in cancer cells to promote their adhesion, proliferation, migration, and invasion. Taken together, our findings implicate NET in the development of liver metastases after surgical stress, suggesting that their elimination may reduce risks of tumor relapse.
Collapse
Affiliation(s)
- Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ahmed B Al-Khafaji
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexis P Chidi
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kerri Mowen
- Department of Pharmacology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California
| | - Yanming Wang
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
116
|
Frieri M, Stampfl H. Systemic lupus erythematosus and atherosclerosis: Review of the literature. Autoimmun Rev 2016; 15:16-21. [DOI: 10.1016/j.autrev.2015.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/15/2015] [Indexed: 12/21/2022]
|
117
|
Gregersen I, Holm S, Dahl TB, Halvorsen B, Aukrust P. A focus on inflammation as a major risk factor for atherosclerotic cardiovascular diseases. Expert Rev Cardiovasc Ther 2015; 14:391-403. [PMID: 26641944 DOI: 10.1586/14779072.2016.1128828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a dynamic, pathogenic process in the artery wall, with potential adverse outcome for the host. Acute events such as myocardial infarction and ischemic stroke often result from rupture of unstable atherosclerotic lesions. Understanding the underlying pathology of such lesions and why and when they rupture, is therefore of great interest for the development of new diagnostics and treatment. Inflammation is one of the key drivers of atherosclerotic plaque development and the interplay between inflammation and lipids constitutes the hallmark of atherosclerotic disease. This review summarizes the role of inflammation in atherosclerosis and presents some of the latest discoveries as well as unmet needs regarding the role of inflammation as major risk factor in atherosclerotic disease.
Collapse
Affiliation(s)
- Ida Gregersen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Sverre Holm
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,c Hospital for Rheumatic Diseases , Lillehammer , Norway
| | - Tuva B Dahl
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway
| | - Pål Aukrust
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway.,e Section of Clinical Immunology and Infectious Diseases , Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
118
|
Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun Rev 2015; 14:1142-6. [DOI: 10.1016/j.autrev.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
119
|
Interleukin-36γ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. J Neuroinflammation 2015; 12:173. [PMID: 26377915 PMCID: PMC4574267 DOI: 10.1186/s12974-015-0392-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is a model of inflammatory demyelinating diseases mediated by different types of leukocytes. How these cells communicate with each other to orchestrate autoimmune attacks is not fully understood, especially in the case of neutrophils, whose importance in EAE is newly established. The present study aimed to determine the expression pattern and role of different components of the IL-36 signaling pathway (IL-36α, IL-36β, IL-36γ, IL-36R) in EAE. Methods EAE was induced by either active immunization with myelin peptide, passive transfer of myelin-reactive T cells or injection of pertussis toxin to transgenic 2D2 mice. The molecules of interest were analyzed using a combination of techniques, including quantitative real-time PCR (qRT-PCR), flow cytometry, Western blotting, in situ hybridization, and immunohistochemistry. Microglial cultures were treated with recombinant IL-36γ and analyzed using DNA microarrays. Different mouse strains were subjected to clinical evaluation and flow cytometric analysis in order to compare their susceptibility to EAE. Results Our observations indicate that both IL-36γ and IL-36R are strongly upregulated in nervous and hematopoietic tissues in different forms of EAE. IL-36γ is specifically expressed by neutrophils, while IL-36R is expressed by different immune cells, including microglia and other myeloid cells. In culture, microglia respond to recombinant IL-36γ by expressing molecules involved in neutrophil recruitment, such as Csf3, IL-1β, and Cxcl2. However, mice deficient in either IL-36γ or IL-36R develop similar clinical and histopathological signs of EAE compared to wild-type controls. Conclusion This study identifies IL-36γ as a neutrophil-related cytokine that can potentially activate microglia, but that is only correlative and not contributory in EAE. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0392-7) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Cañas CA, Cañas F, Bonilla-Abadía F, Ospina FE, Tobón GJ. Epigenetics changes associated to environmental triggers in autoimmunity. Autoimmunity 2015; 49:1-11. [PMID: 26369426 DOI: 10.3109/08916934.2015.1086996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases (AIDs) are chronic conditions initiated by the loss of immunological tolerance to self-antigens and represent a heterogeneous group of disorders that affect specific target organs or multiple organs in different systems. While the pathogenesis of AID remains unclear, its aetiology is multifunctional and includes a combination of genetic, epigenetic, immunological and environmental factors. In AIDs, several epigenetic mechanisms are defective including DNA demethylation, abnormal chromatin positioning associated with autoantibody production and abnormalities in the expression of RNA interference (RNAi). It is known that environmental factors may interfere with DNA methylation and histone modifications, however, little is known about epigenetic changes derived of regulation of RNAi. An approach to the known environmental factors and the mechanisms that alter the epigenetic regulation in AIDs (with emphasis in systemic lupus erythematosus, the prototype of systemic AID) are showed in this review.
Collapse
Affiliation(s)
- Carlos A Cañas
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Felipe Cañas
- b Department of Internal Medicine, Fundación Valle del Lili, Cali , CES University School of Medicine , Medellín, Cali , Colombia
| | - Fabio Bonilla-Abadía
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Fabio E Ospina
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Gabriel J Tobón
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| |
Collapse
|
121
|
Vorobjeva NV, Pinegin BV. Effects of the antioxidants Trolox, Tiron and Tempol on neutrophil extracellular trap formation. Immunobiology 2015; 221:208-19. [PMID: 26371849 DOI: 10.1016/j.imbio.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/16/2015] [Accepted: 09/04/2015] [Indexed: 02/01/2023]
Abstract
Neutrophils can entrap and kill pathogens by releasing of neutrophil extracellular traps (NETs), in addition to their routine functions such as phagocytosis and degranulation. NETs consist of a DNA backbone supplemented by multiple bactericidal proteins from the nucleus, the cytoplasm and the granules. Neutrophils release NETs after their activation by a number of physiological and pharmacological stimuli. In addition to the antimicrobial function, NETs are involved in the pathogenesis of various autoimmune and inflammatory diseases. Since NET formation predominantly depends on the generation of reactive oxygen species (ROS), all substances that are capable of scavenging ROS or inhibiting the enzymes responsible for their synthesis should prevent ROS-associated NET release. The aim of this study was to test substances with an antioxidant activity, such as Trolox, Tiron, and Tempol, for their capacity to inhibit NET formation by primary human neutrophils in vitro. We revealed for the first time an inhibitory effect of Trolox on ROS-dependent NET release. We also established a suppressive effect of Tempol on NET formation that manifested itself in a wide range of concentrations. In this study, no inhibitory influence of Tiron on NET release was revealed. All tested substances exerted a significant dose-dependent antioxidative effect on ROS generation induced by phorbol 12-myristate 13-acetate (PMA). We suggest that the antioxidants Trolox and Tempol should be recommended for treating autoimmune and inflammatory diseases that implicate ROS-dependent NET release.
Collapse
Affiliation(s)
- Nina V Vorobjeva
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119991 Moscow, Russia.
| | - Boris V Pinegin
- Institute of Immunology, Federal Medical Biological Agency, Kashirskoe Shosse 24/2, 115478 Moscow, Russia.
| |
Collapse
|
122
|
Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota. Immunity 2015; 43:304-17. [PMID: 26253786 DOI: 10.1016/j.immuni.2015.07.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development.
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Laetitia Furio
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1163, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Ramine Mecheri
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Anne M van der Does
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Erik Lundeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Loredana Saveanu
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Yongquan Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Peter van Endert
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Birgitta Agerberth
- Medical Microbial Pathogenesis Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Julien Diana
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France.
| |
Collapse
|