101
|
Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int 2015; 2016:9451492. [PMID: 26798367 PMCID: PMC4699068 DOI: 10.1155/2016/9451492] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.
Collapse
|
102
|
Wang YJ, Herlyn M. The emerging roles of Oct4 in tumor-initiating cells. Am J Physiol Cell Physiol 2015; 309:C709-18. [PMID: 26447206 DOI: 10.1152/ajpcell.00212.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Octamer-binding transcription factor 4 (Oct4), a homeodomain transcription factor, is well established as a master factor controlling the self-renewal and pluripotency of pluripotent stem cells. Also, a large body of research has documented the detection of Oct4 in tumor cells and tissues and has indicated its enrichment in a subpopulation of undifferentiated tumor-initiating cells (TICs) that critically account for tumor initiation, metastasis, and resistance to anticancer therapies. There is circumstantial evidence for low-level expression of Oct4 in cancer cells and TICs, and the participation of Oct4 in various TIC functions such as its self-renewal and survival, epithelial-mesenchymal transition (EMT) and metastasis, and drug resistance development is implicated from considerable Oct4 knockdown and overexpression-based studies. In a few studies, efforts have been made to identify Oct4 target genes in TICs of different sources. Based on such information, Oct4 in TICs appears to act via mechanisms quite distinct from those in pluripotent stem cells, and a main challenge for future studies is to unravel the molecular mechanisms of action of Oct4, particularly to address the question on how such low levels of Oct4 may exert its functions in TICs. Acquiring cells from their native microenvironment that are of high enough quantity and purity is the key to reliably analyze Oct4 functions and its target genes in TICs, and the information gained may greatly facilitate targeting and eradicating those cells.
Collapse
Affiliation(s)
- Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
103
|
Hao Q, An JQ, Hao F, Yang C, Lu T, Qu TY, Zhao LR, Duan WM. Inducible Lentivirus-Mediated Expression of theOct4Gene Affects Multilineage Differentiation of Adult Human Bone Marrow–Derived Mesenchymal Stem Cells. Cell Reprogram 2015; 17:347-59. [DOI: 10.1089/cell.2015.0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Qiang Hao
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Jia-Qiang An
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Fei Hao
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Chun Yang
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Tao Lu
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Ting-Yu Qu
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612
| | - Li-Ru Zhao
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY, 13210
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
104
|
Tapia N, MacCarthy C, Esch D, Gabriele Marthaler A, Tiemann U, Araúzo-Bravo MJ, Jauch R, Cojocaru V, Schöler HR. Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci Rep 2015; 5:13533. [PMID: 26314899 PMCID: PMC4551974 DOI: 10.1038/srep13533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022] Open
Abstract
The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate.
Collapse
Affiliation(s)
- Natalia Tapia
- Heinrich Heine University, Faculty of Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.,Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Caitlin MacCarthy
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Daniel Esch
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Adele Gabriele Marthaler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Ulf Tiemann
- Heinrich Heine University, Faculty of Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Doctor Begiristain s/n, 20014 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao, Spain
| | - Ralf Jauch
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| |
Collapse
|
105
|
Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases. Neurosci Bull 2015; 31:589-600. [PMID: 26077704 DOI: 10.1007/s12264-015-1527-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 01/13/2023] Open
Abstract
Recent research has shown that defined sets of exogenous factors are sufficient to convert rodent and human somatic cells directly into induced neural stem cells or neural precursor cells (iNSCs/iNPCs). The process of transdifferentiation bypasses the step of a pluripotent state and reduces the risk of tumorigenesis and genetic instability while retaining the self-renewing capacity. This iNSC/iNPC technology has fueled much excitement in regenerative medicine, as these cells can be differentiated into target cells for re placement therapy for neurodegenerative diseases. Patients' somatic cell-derived iNSCs/iNPCs have also been proposed to serve as disease models with potential value in both fundamental studies and clinical applications. This review focuses on the mechanisms, techniques, and app lications of iNSCs/iNPCs from a series of related studies, as well as further efforts in designing novel strategies using iNSC/iNPC technology and its potential applications in neurodegenerative diseases.
Collapse
|
106
|
Merino F, Bouvier B, Cojocaru V. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery. PLoS Comput Biol 2015; 11:e1004287. [PMID: 26067358 PMCID: PMC4465831 DOI: 10.1371/journal.pcbi.1004287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022] Open
Abstract
Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. Pluripotent stem cells can give rise to all somatic lineages. When taken out of the context of the embryo they can be maintained and for this a core transcriptional regulatory circuitry is crucial. OCT4 and SOX2, two factors of this network, are also critical for the induction of pluripotency in somatic cells. In pluripotent cells, OCT4 and SOX2 associate on DNA regulatory regions, enhancing or modifying each other's sequence specificity. In contrast, in the early stages during induction of pluripotency, it was proposed that OCT4 explores the genome independent of SOX2. Here we report the mechanism by which SOX2 influences the orientation, dynamics, and unbinding free energy profile of OCT4. This involves an interplay of protein-protein interactions and DNA-mediated allostery. We consider that this mechanism enables OCT4 to use its DNA binding domains and the interaction partners available in a certain biological context to access alternative genome exploration routes. This study enhances the understanding of the context specific function of OCT4 and provides a general perspective on how DNA-binding cooperativity is modulated by different types of interactions.
Collapse
Affiliation(s)
- Felipe Merino
- Computational Structural Biology Group, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Benjamin Bouvier
- Bioinformatics: Structures and Interactions, Bases Moléculaires et Structurales des Systèmes Infectieux, Univ. Lyon I/CNRS UMR5086, IBCP, Lyon, France
| | - Vlad Cojocaru
- Computational Structural Biology Group, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| |
Collapse
|
107
|
Liu P, Zhang Y, Chen S, Cai J, Pei D. Application of iPS cells in dental bioengineering and beyond. Stem Cell Rev Rep 2015; 10:663-70. [PMID: 24917330 DOI: 10.1007/s12015-014-9531-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stem-cell-based tissue-engineering approaches are widely applied in establishing functional organs and tissues for regenerative medicine. Successful generation of induced pluripotent stem cells (iPS cells) and rapid progress of related technical platform provide great promise in the development of regenerative medicine, including organ regeneration. We have previously reported that iPS cells could be an appealing stem cells source contributing to tooth regeneration. In the present paper, we mainly review the application of iPS technology in dental bioengineering and discuss the challenges for iPS cells in the whole tooth regeneration.
Collapse
Affiliation(s)
- Pengfei Liu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, People's Republic of China
| | | | | | | | | |
Collapse
|
108
|
Liu S, Cheng T, Yuan W. [Research progress in tumorigenicity of human induced pluripotent stem cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:258-61. [PMID: 25854478 PMCID: PMC7342526 DOI: 10.3760/cma.j.issn.0253-2727.2015.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuping Liu
- Institute of Hematology and Blood Diseases Hospital, State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| | - Tao Cheng
- Institute of Hematology and Blood Diseases Hospital, State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| | - Weiping Yuan
- Institute of Hematology and Blood Diseases Hospital, State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
109
|
Curry EL, Moad M, Robson CN, Heer R. Using induced pluripotent stem cells as a tool for modelling carcinogenesis. World J Stem Cells 2015; 7:461-469. [PMID: 25815129 PMCID: PMC4369501 DOI: 10.4252/wjsc.v7.i2.461] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Cancer is a highly heterogeneous group of diseases that despite improved treatments remain prevalent accounting for over 14 million new cases and 8.2 million deaths per year. Studies into the process of carcinogenesis are limited by lack of appropriate models for the development and pathogenesis of the disease based on human tissues. Primary culture of patient samples can help but is difficult to grow for a number of tissues. A potential opportunity to overcome these barriers is based on the landmark study by Yamanaka which demonstrated the ability of four factors; Oct4, Sox2, Klf4, and c-Myc to reprogram human somatic cells in to pluripotency. These cells were termed induced pluripotent stem cells (iPSCs) and display characteristic properties of embryonic stem cells. This technique has a wide range of potential uses including disease modelling, drug testing and transplantation studies. Interestingly iPSCs also share a number of characteristics with cancer cells including self-renewal and proliferation, expression of stem cell markers and altered metabolism. Recently, iPSCs have been generated from a number of human cancer cell lines and primary tumour samples from a range of cancers in an attempt to recapitulate the development of cancer and interrogate the underlying mechanisms involved. This review will outline the similarities between the reprogramming process and carcinogenesis, and how these similarities have been exploited to generate iPSC models for a number of cancers.
Collapse
|
110
|
Zhao QW, Zhou YW, Li WX, Kang B, Zhang XQ, Yang Y, Cheng J, Yin SY, Tong Y, He JQ, Yao HP, Zheng M, Wang YJ. Akt‑mediated phosphorylation of Oct4 is associated with the proliferation of stem‑like cancer cells. Oncol Rep 2015; 33:1621-9. [PMID: 25625591 PMCID: PMC4358081 DOI: 10.3892/or.2015.3752] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Oct4 protein encoded by POU5F1 plays a pivotal role in maintaining the self‑renewal of pluripotent stem cells; however, its presence in cancer cells remains controversial. In the present study, we provided evidence that the transcripts of authentic OCT4 gene (OCT4A) and its multiple pseudogenes were detected in a variety of cancer cell lines. A few major bands were also detected by western blotting using an anti‑Oct4A monoclonal antibody. Moreover, an anti‑Oct4‑pT235 antibody was used to identify a band in the majority of the tested cancer cell lines that coincided with one of the anti‑Oct4A bands which was decreasable by a specific shRNA. The Oct4‑pT235 signals were also detected in human glioblastoma and liver cancer specimens by immunofluorescence microscopy and immunohistochemistry. U87 glioblastoma cells were cultured in a neural stem cell medium to induce the formation of neurospheres rich in stem‑like cancer cells. The levels of Oct4‑pT235 in the sphere cells were markedly increased compared to their monolayer parental cells, a result that was accompanied by upregulation of the PI3K‑Akt pathway. Akti‑1/2, a specific inhibitor of Akt, effectively reduced the level of Oct4‑pT235 and attenuated the proliferation of U87 sphere cells. ITE, an agonist of the aryl hydrocarbon receptor, also significantly attenuated the Akt‑mediated phosphorylation of Oct4 in glioblastoma and liver cancer cells, and reduced their tumorigenic potential in a xenograft tumor model. Taken together, we concluded that the Akt‑mediated phosphorylation of Oct4A or its homolog protein was associated with the proliferation of stem‑like cancer cells that may serve as a novel biomarker and drug target for certain types of cancer.
Collapse
Affiliation(s)
- Qing-Wei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yan-Wen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Wen-Xin Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Qian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jie Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Sheng-Yong Yin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying Tong
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jian-Qin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
111
|
Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 2015; 35:1014-25. [PMID: 25582194 DOI: 10.1128/mcb.01105-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.
Collapse
|
112
|
Bornstein C, Winter D, Barnett-Itzhaki Z, David E, Kadri S, Garber M, Amit I. A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States. Mol Cell 2014; 56:749-62. [PMID: 25453760 DOI: 10.1016/j.molcel.2014.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
During hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into alternative cell fates are not fully understood. Here, we identify cell-fate-determining transcription factors (TFs) governing dendritic cell (DC) development by annotating the enhancer landscapes of the DC lineage. Combining these analyses with detailed overexpression, knockdown, and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, a pulse of TF expression can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes.
Collapse
Affiliation(s)
| | - Deborah Winter
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Sabah Kadri
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology and Program in Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
113
|
Ordóñez R, Gallo-Oller G, Martínez-Soto S, Legarra S, Pata-Merci N, Guegan J, Danglot G, Bernheim A, Meléndez B, Rey JA, Castresana JS. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells. PLoS One 2014; 9:e113105. [PMID: 25392930 PMCID: PMC4231109 DOI: 10.1371/journal.pone.0113105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Collapse
Affiliation(s)
- Raquel Ordóñez
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Soledad Martínez-Soto
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Sheila Legarra
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A. Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| |
Collapse
|
114
|
Puls F, Arbajian E, Magnusson L, Douis H, Kindblom LG, Mertens F. Myoepithelioma of bone with a novelFUS-POU5F1fusion gene. Histopathology 2014; 65:917-22. [DOI: 10.1111/his.12517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Florian Puls
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Foundation Trust; Birmingham UK
| | - Elsa Arbajian
- Department of Clinical Genetics; University and Regional Laboratories; Skåne University Hospital; Lund University; Lund Sweden
| | - Linda Magnusson
- Department of Clinical Genetics; University and Regional Laboratories; Skåne University Hospital; Lund University; Lund Sweden
| | - Hassan Douis
- Department of Musculoskeletal Radiology; Royal Orthopaedic Hospital NHS Foundation Trust; Birmingham UK
| | - Lars-Gunnar Kindblom
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Foundation Trust; Birmingham UK
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | - Fredrik Mertens
- Department of Clinical Genetics; University and Regional Laboratories; Skåne University Hospital; Lund University; Lund Sweden
| |
Collapse
|
115
|
Merino F, Ng C, Veerapandian V, Schöler H, Jauch R, Cojocaru V. Structural Basis for the SOX-Dependent Genomic Redistribution of OCT4 in Stem Cell Differentiation. Structure 2014; 22:1274-1286. [DOI: 10.1016/j.str.2014.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 01/12/2023]
|
116
|
Soufi A. Mechanisms for enhancing cellular reprogramming. Curr Opin Genet Dev 2014; 25:101-9. [PMID: 24607881 DOI: 10.1016/j.gde.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/26/2013] [Indexed: 01/23/2023]
Abstract
During development, the genome adopts specific chromatin states to establish and maintain functionally distinct cell types in a well-controlled environment. A select group of transcription factors have the ability to drive the transition of the genome from a pluripotent to a more specialized chromatin state. The same set of factors can be used as reprogramming factors to reset the already established chromatin state back to pluripotency or directly to an alternative cell type. However, under the suboptimal reprogramming conditions, these factors fall short in guiding the majority of cells to their new fate. In this review, we visit the recent findings addressing the manipulation of chromatin structure to enhance the performance of transcription factors in reprogramming. The main emphasis is on the mechanisms underlying the conversion of somatic cells to pluripotency using OSKM. This review is intended to highlight the windows of opportunities for developing mechanistically based approaches to replace the phenotypically guided methods currently employed in reprogramming, in an attempt to move the field of cell conversion towards using next generation technologies.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|