101
|
Kõiv V, Tenson T. Gluten-degrading bacteria: availability and applications. Appl Microbiol Biotechnol 2021; 105:3045-3059. [PMID: 33837830 PMCID: PMC8053163 DOI: 10.1007/s00253-021-11263-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Gluten is a mixture of storage proteins in wheat and occurs in smaller amounts in other cereal grains. It provides favorable structure to bakery products but unfortunately causes disease conditions with increasing prevalence. In the human gastrointestinal tract, gluten is cleaved into proline and gluten rich peptides that are not degraded further. These peptides trigger immune responses that might lead to celiac disease, wheat allergy, and non-celiac gluten sensitivity. The main treatment option is a gluten-free diet. Alternatively, using enzymes or microorganisms with gluten-degrading properties might alleviate the disease. These components can be used during food production or could be introduced into the digestive tract as food supplements. In addition, natural food from the environment is known to enrich the microbial communities in gut and natural environmental microbial communities have high potential to degrade gluten. It remains to be investigated if food and environment-induced changes in the gut microbiome could contribute to the triggering of gluten-related diseases. KEY POINTS: • Wheat proteins, gluten, are incompletely digested in human digestive tract leading to gluten intolerance. • The only efficient treatment of gluten intolerance is life-long gluten-free diet. • Environmental bacteria acquired together with food could be source of gluten-degrading bacteria detoxifying undigested gluten peptides.
Collapse
Affiliation(s)
- Viia Kõiv
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
102
|
Kang D, Huang Y, Nesme J, Herschend J, Jacquiod S, Kot W, Hansen LH, Lange L, Sørensen SJ. Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143281. [PMID: 33190895 DOI: 10.1016/j.scitotenv.2020.143281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Keratin is an insoluble fibrous protein from natural environments, which can be recycled to value-added products by keratinolytic microorganisms. A microbial consortium with efficient keratinolytic activity was previously enriched from soil, but the genetic basis behind its remarkable degradation properties was not investigated yet. To identify the metabolic pathways involved in keratinolysis and clarify the observed synergy among community members, shotgun metagenomic sequencing was performed to reconstruct metagenome-assembled genomes. More than 90% genera of the enriched bacterial consortium were affiliated to Chryseobacterium, Stenotrophomonas, and Pseudomonas. Metabolic potential and putative keratinases were predicted from the metagenomic annotation, providing the genetic basis of keratin degradation. Furthermore, metabolic pathways associated with keratinolytic processes such as amino acid metabolism, disulfide reduction and urea cycle were investigated from seven high-quality metagenome-assembled genomes, revealing the potential metabolic cooperation related to keratin degradation. This knowledge deepens the understanding of microbial keratinolytic mechanisms at play in a complex community, pinpointing the significance of synergistic interactions, which could be further used to optimize industrial keratin degradation processes.
Collapse
Affiliation(s)
- Dingrong Kang
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yuhong Huang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark; Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, France
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lene Lange
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark; Bioeconomy, Research & Advisory, Karensgade 5, DK-2500 Valby, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
103
|
Bezus B, Ruscasso F, Garmendia G, Vero S, Cavello I, Cavalitto S. Revalorization of chicken feather waste into a high antioxidant activity feather protein hydrolysate using a novel psychrotolerant bacterium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|