101
|
|
102
|
Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJR, Carver JA. Monitoring the interaction between β2-microglobulin and the molecular chaperone αB-crystallin by NMR and mass spectrometry: αB-crystallin dissociates β2-microglobulin oligomers. J Biol Chem 2013; 288:17844-58. [PMID: 23645685 PMCID: PMC3682583 DOI: 10.1074/jbc.m112.448639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein β2-microglobulin (β2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aβ2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aβ2m. From analysis of the NMR spectra collected at various R3Aβ2m to αB-crystallin molar subunit ratios, it is concluded that the structured β-sheet core and the apical loops of R3Aβ2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type β2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type β2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated β2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing β2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation.
Collapse
Affiliation(s)
- Gennaro Esposito
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Megan Garvey
- the School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Vera Alverdi
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Fabio Pettirossi
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Alessandra Corazza
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Federico Fogolari
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Maurizio Polano
- From the Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - P. Patrizia Mangione
- the Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università di Pavia, 27100 Pavia, Italy
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Sofia Giorgetti
- the Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università di Pavia, 27100 Pavia, Italy
| | - Monica Stoppini
- the Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università di Pavia, 27100 Pavia, Italy
| | - Agata Rekas
- the National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2522, Australia, and
| | - Vittorio Bellotti
- the Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università di Pavia, 27100 Pavia, Italy
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Albert J. R. Heck
- the Department of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 Utrecht, The Netherlands
| | - John A. Carver
- the School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
103
|
Chaari A, Hoarau-Véchot J, Ladjimi M. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease. Int J Biol Macromol 2013; 60:196-205. [PMID: 23748003 DOI: 10.1016/j.ijbiomac.2013.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Ali Chaari
- Department of Biochemistry, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha, Qatar.
| | | | | |
Collapse
|
104
|
Hilton GR, Hochberg GKA, Laganowsky A, McGinnigle SI, Baldwin AJ, Benesch JLP. C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110405. [PMID: 23530258 PMCID: PMC3638394 DOI: 10.1098/rstb.2011.0405] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
αB-crystallin is a highly dynamic, polydisperse small heat-shock protein that can form oligomers ranging in mass from 200 to 800 kDa. Here we use a multifaceted mass spectrometry approach to assess the role of the C-terminal tail in the self-assembly of αB-crystallin. Titration experiments allow us to monitor the binding of peptides representing the C-terminus to the αB-crystallin core domain, and observe individual affinities to both monomeric and dimeric forms. Notably, we find that binding the second peptide equivalent to the core domain dimer is considerably more difficult than the first, suggesting a role of the C-terminus in regulating assembly. This finding motivates us to examine the effect of point mutations in the C-terminus in the full-length protein, by quantifying the changes in oligomeric distribution and corresponding subunit exchange rates. Our results combine to demonstrate that alterations in the C-terminal tail have a significant impact on the thermodynamics and kinetics of αB-crystallin. Remarkably, we find that there is energy compensation between the inter- and intra-dimer interfaces: when one interaction is weakened, the other is strengthened. This allosteric communication between binding sites on αB-crystallin is likely important for its role in binding target proteins.
Collapse
Affiliation(s)
- Gillian R Hilton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | | | | | | | | | | |
Collapse
|
105
|
Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110409. [PMID: 23530259 DOI: 10.1098/rstb.2011.0409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1-HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.
Collapse
Affiliation(s)
- Serena Carra
- Dipartimento di Scienze Biomediche, Universita' degli Studi di Modena e Reggio Emilia, , via G. Campi 287, Modena 41125, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yerbury JJ, Gower D, Vanags L, Roberts K, Lee JA, Ecroyd H. The small heat shock proteins αB-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 2013; 18:251-7. [PMID: 22993064 PMCID: PMC3581626 DOI: 10.1007/s12192-012-0371-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease. The mechanism that underlies amyotrophic lateral sclerosis (ALS) pathology remains unclear, but protein inclusions are associated with all forms of the disease. Apart from pathogenic proteins, such as TDP-43 and SOD1, other proteins are associated with ALS inclusions including small heat shock proteins. However, whether small heat shock proteins have a direct effect on SOD1 aggregation remains unknown. In this study, we have examined the ability of small heat shock proteins αB-crystallin and Hsp27 to inhibit the aggregation of SOD1 in vitro. We show that these chaperone proteins suppress the increase in thioflavin T fluorescence associated with SOD1 aggregation, primarily through inhibiting aggregate growth, not the lag phase in which nuclei are formed. αB-crystallin forms high molecular mass complexes with SOD1 and binds directly to SOD1 aggregates. Our data are consistent with an overload of proteostasis systems being associated with pathology in ALS.
Collapse
Affiliation(s)
- Justin J. Yerbury
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Dane Gower
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Laura Vanags
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Kate Roberts
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Jodi A. Lee
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| |
Collapse
|
107
|
Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ, Griffin MDW. Avoiding the oligomeric state: αB‐crystallin inhibits fragmentation and induces dissociation of apolipoprotein C‐II amyloid fibrils. FASEB J 2012; 27:1214-22. [DOI: 10.1096/fj.12-220657] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katrina J. Binger
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- Commonwealth Scientific and Industrial Research Organisation Molecular Health TechnologiesParkvilleVictoriaAustralia
| | - Heath Ecroyd
- School of Biological SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNew South WalesAustralia
| | - Shuo Yang
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - John A. Carver
- School of Chemistry and PhysicsThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
108
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
109
|
Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci U S A 2012; 109:12479-84. [PMID: 22802614 DOI: 10.1073/pnas.1117799109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded oligomers preformed from three different proteins added extracellularly to cultured cells. All the chaperones were found to decrease oligomer toxicity significantly, even at very low chaperone/protein molar ratios, provided that they were added extracellularly rather than being overexpressed in the cytosol. Infrared spectroscopy and site-directed labeling experiments using pyrene ruled out structural reorganizations within the discrete oligomers. Rather, confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and chaperones. Moreover, atomic force microscopy imaging indicated that larger assemblies of oligomers are formed in the presence of the chaperones. This suggests that the chaperones bind to the oligomers and promote their assembly into larger species, with consequent shielding of the reactive surfaces and a decrease in their diffusional mobility. Overall, the data indicate a generic ability of chaperones to neutralize extracellular misfolded oligomers efficiently and reveal that further assembly of protein oligomers into larger species can be an effective strategy to neutralize such extracellular species.
Collapse
|
110
|
Waudby CA, Mantle MD, Cabrita LD, Gladden LF, Dobson CM, Christodoulou J. Rapid Distinction of Intracellular and Extracellular Proteins Using NMR Diffusion Measurements. J Am Chem Soc 2012; 134:11312-5. [DOI: 10.1021/ja304912c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Christopher A. Waudby
- Institute of Structural and
Molecular Biology, University College London and Birkbeck College, Gower Street, London WC1E 6BT, U.K
| | - Mick D. Mantle
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, U.K
| | - Lisa D. Cabrita
- Institute of Structural and
Molecular Biology, University College London and Birkbeck College, Gower Street, London WC1E 6BT, U.K
| | - Lynn F. Gladden
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, U.K
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, U.K
| | - John Christodoulou
- Institute of Structural and
Molecular Biology, University College London and Birkbeck College, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
111
|
Duennwald ML, Echeverria A, Shorter J. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 2012; 10:e1001346. [PMID: 22723742 PMCID: PMC3378601 DOI: 10.1371/journal.pbio.1001346] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase. How small heat shock proteins (sHsps) might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders. Amyloid fibers are protein aggregates that are associated with numerous neurodegenerative diseases, including Parkinson's disease, for which there are no effective treatments. They can also play beneficial roles; in yeast, for example, they are associated with increased survival and the evolution of new traits. Amyloid fibers are also central to many revolutionary concepts and important questions in biology and nanotechnology, including long-term memory formation and versatile self-organizing nanostructures. Thus, there is an urgent need to understand how we can promote beneficial amyloid assembly, or reverse pathogenic assembly, at will. In this study, we define the mechanisms by which small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial yeast prion. We then exploit this knowledge to discover an amyloid depolymerase machinery that is conserved from yeast to humans. Remarkably, the human small heat shock protein, HspB5, stimulates Hsp110, Hsp70, and Hsp40 chaperones to gradually depolymerize amyloid fibers formed by α-synuclein (which are implicated in Parkinson's disease) from their ends on a biologically relevant timescale. This newly identified and highly conserved amyloid-depolymerase system could have important therapeutic applications for various neurodegenerative disorders.
Collapse
Affiliation(s)
- Martin L. Duennwald
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - AnaLisa Echeverria
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
112
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
113
|
Waudby CA, Christodoulou J. An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 219:46-52. [PMID: 22609525 DOI: 10.1016/j.jmr.2012.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 05/11/2023]
Abstract
Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional manner by the discrete Fourier transform, making the analysis of sensitivity much more straightforward than for NUS data. Previously, 2-3 fold increases in signal-to-noise ratio (SNR) have been reported using NUWS. However, as the sampling schedule acts as a window function, the observed SNR must be compared with uniformly sampled data apodized using the same weighting function. On doing this, we calculate more modest improvements of 10-20% in SNR, and these are verified experimentally for spectra of α-synuclein and YFP. Nevertheless, we prove that NUWS always improves the sensitivity compared with identically processed uniformly sampled data, and when combined with rapid recycling experiments such as the SOFAST-HMQC, NUWS methods have the potential to make a useful and practical contribution to sensitivity-limited measurements.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK.
| | | |
Collapse
|
114
|
Rapid degradation kinetics of amyloid fibrils under mild conditions by an archaeal chaperonin. Biochem Biophys Res Commun 2012; 422:97-102. [DOI: 10.1016/j.bbrc.2012.04.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/21/2012] [Indexed: 11/24/2022]
|
115
|
Effect of αB-crystallin on protein aggregation in Drosophila. J Biomed Biotechnol 2012; 2012:252049. [PMID: 22505806 PMCID: PMC3312385 DOI: 10.1155/2012/252049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023] Open
Abstract
Disorganisation and aggregation of proteins containing expanded polyglutamine (polyQ) repeats, or ectopic expression of α-synuclein, underlie neurodegenerative diseases including Alzheimer's, Parkinson, Huntington, Creutzfeldt diseases. Small heat-shock proteins, such as αB-crystallin, act as chaperones to prevent protein aggregation and play a key role in the prevention of such protein disorganisation diseases. In this study, we have explored the potential for chaperone activity of αB-crystallin to suppress the formation of protein aggregates. We tested the ability of αB-crystallin to suppress the aggregation of a polyQ protein and α-synuclein in Drosophila. We found that αB-crystallin suppresses both the compound eye degeneration induced by polyQ and the α-synuclein-induced rough eye phenotype. Furthermore, by using histochemical staining we have determined that αB-crystallin inhibits the aggregation of polyQ in vivo. These data provide a clue for the development of therapeutics for neurodegenerative diseases.
Collapse
|
116
|
Gregory JM, Barros TP, Meehan S, Dobson CM, Luheshi LM. The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PLoS One 2012; 7:e31899. [PMID: 22384095 PMCID: PMC3284513 DOI: 10.1371/journal.pone.0031899] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/14/2012] [Indexed: 02/07/2023] Open
Abstract
Almost all cases of sporadic amyotrophic lateral sclerosis (ALS), and some cases of the familial form, are characterised by the deposition of TDP-43, a member of a family of heteronuclear ribonucleoproteins (hnRNP). Although protein misfolding and deposition is thought to be a causative feature of many of the most prevalent neurodegenerative diseases, a link between TDP-43 aggregation and the dysfunction of motor neurons has yet to be established, despite many correlative neuropathological studies. We have investigated this relationship in the present study by probing the effect of altering TDP-43 aggregation behaviour in vivo by modulating the levels of molecular chaperones in a Drosophila model. More specifically, we quantify the effect of either pharmacological upregulation of the heat shock response or specific genetic upregulation of a small heat shock protein, CG14207, on the neurotoxicity of both TDP-43 and of its disease associated 25 kDa fragment (TDP-25) in a Drosophila model. Inhibition of the aggregation of TDP-43 by either method results in a partial reduction of its neurotoxic effects on both photoreceptor and motor neurons, whereas inhibition of the aggregation of TDP-25 results not only in a complete suppression of its toxicity but also its clearance from the brain in both neuronal subtypes studied. The results demonstrate, therefore, that aggregation plays a crucial role in mediating the neurotoxic effects of both full length and truncated TDP-43, and furthermore reveal that the in vivo propensity of these two proteins to aggregate and their susceptibility to molecular chaperone mediated clearance are quite distinct.
Collapse
Affiliation(s)
- Jenna M. Gregory
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Teresa P. Barros
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Leila M. Luheshi
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
117
|
Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TPJ, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 2012; 101:1681-9. [PMID: 21961594 DOI: 10.1016/j.bpj.2011.07.056] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022] Open
Abstract
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ(42) fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ(42). Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.
Collapse
Affiliation(s)
- Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Aggregated a-synuclein is the major component of inclusions in Parkinson's disease and other synucleinopathy brains indicating that a-syn aggregation is associated with the pathogenesis of neurodegenerative disorders. Although the mechanisms underlying a-syn aggregation and toxicity are not fully elucidated, it is clear that a-syn undergoes post-translational modifications and interacts with numerous proteins and other macromolecules, metals, hormones, neurotransmitters, drugs and poisons that can all modulate its aggregation propensity. The current and most recent findings regarding the factors modulating a-syn aggregation process are discussed in detail.
Collapse
|
119
|
Gestwicki JE, Garza D. Protein quality control in neurodegenerative disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:327-53. [PMID: 22482455 DOI: 10.1016/b978-0-12-385883-2.00003-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The accumulation of misfolded proteins is a common feature of many neurodegenerative diseases. These observations suggest a potential link between these disorders and protein quality control, a collection of cellular pathways that sense damage to proteins and facilitate their turnover. Consistent with this idea, activation of quality control components, such as molecular chaperones, has been shown to be protective in multiple neurodegenerative disease models. In addition, key studies have suggested that quality control deteriorates with age, further supporting a relationship between these processes. In this chapter, we discuss the evidence linking neurodegeneration to quality control and present the emerging models. We also speculate on why proper quality control is so difficult for certain proteins.
Collapse
Affiliation(s)
- Jason E Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
120
|
Rochet JC, Hay BA, Guo M. Molecular insights into Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:125-88. [PMID: 22482450 DOI: 10.1016/b978-0-12-385883-2.00011-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in SNCA, PINK1, parkin, and DJ-1 are associated with autosomal-dominant or autosomal-recessive forms of Parkinson's disease (PD), the second most common neurodegenerative disorder. Studies on the structural and functional properties of the corresponding gene products have provided significant insights into the molecular underpinnings of familial PD and the much more common sporadic forms of the disease. Here, we review recent advances in our understanding of four PD-related gene products: α-synuclein, parkin, PINK1, and DJ-1. In Part 1, we review new insights into the role of α-synuclein in PD. In Part 2, we summarize the latest developments in understanding the role of mitochondrial dysfunction in PD, emphasizing the role of the PINK1/parkin pathway in regulating mitochondrial dynamics and mitophagy. The role of DJ-1 is also discussed. In Part 3, we point out converging pathways and future directions.
Collapse
Affiliation(s)
- Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
121
|
Basha E, O'Neill H, Vierling E. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 2011; 37:106-17. [PMID: 22177323 DOI: 10.1016/j.tibs.2011.11.005] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
The small heat shock proteins (sHSPs) and the related α-crystallins (αCs) are virtually ubiquitous proteins that are strongly induced by a variety of stresses, but that also function constitutively in multiple cell types in many organisms. Extensive research has demonstrated that a majority of sHSPs and αCs can act as ATP-independent molecular chaperones by binding denaturing proteins and thereby protecting cells from damage due to irreversible protein aggregation. As a result of their diverse evolutionary history, their connection to inherited human diseases, and their novel protein dynamics, sHSPs and αCs are of significant interest to many areas of biology and biochemistry. However, it is increasingly clear that no single model is sufficient to describe the structure, function or mechanism of action of sHSPs and αCs. In this review, we discuss recent data that provide insight into the variety of structures of these proteins, their dynamic behavior, how they recognize substrates, and their many possible cellular roles.
Collapse
Affiliation(s)
- Eman Basha
- Department of Chemistry & Biochemistry, 1007 E. Lowell Street, University of Arizona, Tucson, AZ 85743, USA
| | | | | |
Collapse
|
122
|
Kiselev GG, Naletova IN, Sheval EV, Stroylova YY, Schmalhausen EV, Haertlé T, Muronetz VI. Chaperonins induce an amyloid-like transformation of ovine prion protein: The fundamental difference in action between eukaryotic TRiC and bacterial GroEL. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1730-8. [DOI: 10.1016/j.bbapap.2011.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/15/2023]
|
123
|
Carrotta R, Canale C, Diaspro A, Trapani A, Biagio PLS, Bulone D. Inhibiting effect of α(s1)-casein on Aβ(1-40) fibrillogenesis. Biochim Biophys Acta Gen Subj 2011; 1820:124-32. [PMID: 22155633 DOI: 10.1016/j.bbagen.2011.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND α(s1)-Casein is one of the four types of caseins, the largest protein component of bovine milk. The lack of a compact folded conformation and the capability to form micelles suggest a relationship of α(s1)-casein with the class of the intrinsically disordered (or natively unfolded) proteins. These proteins are known to exert a stabilizing activity on biomolecules through specific interaction with hydrophobic surfaces. In the present work we focused on the effect of α(s1)-casein on the fibrillogenesis of 1-40 β-amyloid peptide, involved in Alzheimer's disease. METHODS The aggregation kinetics of β-peptide in presence and absence of α(s1)-casein was followed under shear at 37°C by recording the Thioflavine fluorescence, usually taken as an indicator of fibers formation. Measurements of Static and Dynamic Light Scattering, Circular Dichroism, and AFM imaging were done to reveal the details of α(s1)-casein-Aβ(1-40) interaction. RESULTS AND DISCUSSIONS α(s1)-Casein addition sizably increases the lag-time of the nucleation phase and slows down the entire fibrillization process. α(s1)-Casein sequesters the amyloid peptide on its surface thus exerting a chaperone-like activity by means a colloidal inhibition mechanism. GENERAL SIGNIFICANCE Insights on the working mechanism of natural chaperones in preventing or controlling the amyloid aggregation.
Collapse
Affiliation(s)
- R Carrotta
- Inst. of Biophysics, National Research Council, Via U. La Malfa 153, I-90146, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
124
|
Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A. Biochem Biophys Res Commun 2011; 416:130-4. [DOI: 10.1016/j.bbrc.2011.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/03/2011] [Indexed: 11/22/2022]
|
125
|
Buell AK, Esbjörner EK, Riss PJ, White DA, Aigbirhio FI, Toth G, Welland ME, Dobson CM, Knowles TPJ. Probing small molecule binding to amyloid fibrils. Phys Chem Chem Phys 2011; 13:20044-52. [PMID: 22006124 DOI: 10.1039/c1cp22283j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions. We discuss in detail two recently developed techniques within this framework: linear dichroism, a promising extension of the more traditional spectroscopic techniques, and biosensing methods, where surface-bound amyloid fibrils are exposed to solutions of small molecules. Both techniques rely on the measurement of physical properties that are very directly linked to the binding of small molecules to amyloid aggregates and therefore provide an attractive route to probe these important interactions.
Collapse
Affiliation(s)
- Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Bruinsma IB, Bruggink KA, Kinast K, Versleijen AAM, Segers-Nolten IMJ, Subramaniam V, Bea Kuiperij H, Boelens W, de Waal RMW, Verbeek MM. Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 2011; 79:2956-67. [DOI: 10.1002/prot.23152] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/28/2011] [Indexed: 01/26/2023]
|
127
|
Cabrita LD, Waudby CA, Dobson CM, Christodoulou J. Solution-state nuclear magnetic resonance spectroscopy and protein folding. Methods Mol Biol 2011; 752:97-120. [PMID: 21713633 DOI: 10.1007/978-1-60327-223-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A protein undergoes a variety of structural changes during its folding and misfolding and a knowledge of its behaviour is key to understanding the molecular details of these events. Solution-state NMR spectroscopy is unique in that it can provide both structural and dynamical information at both high-resolution and at a residue-specific level, and is particularly useful in the study of dynamic systems. In this chapter, we describe NMR strategies and how they are applied in the study of protein folding and misfolding.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Department of Structural and Molecular Biology, University College London, London, UK
| | | | | | | |
Collapse
|
128
|
Taler-Verčič A, Zerovnik E. Binding of amyloid peptides to domain-swapped dimers of other amyloid-forming proteins may prevent their neurotoxicity. Bioessays 2010; 32:1020-4. [PMID: 21086533 DOI: 10.1002/bies.201000079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ajda Taler-Verčič
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | |
Collapse
|