101
|
Wang T, Wang G, Hao D, Liu X, Wang D, Ning N, Li X. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer 2015; 14:125. [PMID: 26123544 PMCID: PMC4512107 DOI: 10.1186/s12943-015-0402-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.
Collapse
Affiliation(s)
- Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Dapeng Hao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Xi Liu
- Center of Cardiovascular, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Ning Ning
- Department of Gastrointestinal Surgery, International Hospital of Pecking University, Beijing, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
102
|
Huang SM, Lin C, Lin HY, Chiu CM, Fang CW, Liao KF, Chen DR, Yeh WL. Brain-derived neurotrophic factor regulates cell motility in human colon cancer. Endocr Relat Cancer 2015; 22:455-64. [PMID: 25876647 DOI: 10.1530/erc-15-0007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.
Collapse
Affiliation(s)
- Ssu-Ming Huang
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Ch
| | - Chingju Lin
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Hsiao-Yun Lin
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Chien-Ming Chiu
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Chia-Wei Fang
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Kuan-Fu Liao
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Ch
| | - Dar-Ren Chen
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Wei-Lan Yeh
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| |
Collapse
|
103
|
Xia YY, Yin L, Jiang N, Guo WJ, Tian H, Jiang XS, Wu J, Chen M, Wu JZ, He X. Downregulating HMGA2 attenuates epithelial-mesenchymal transition-induced invasion and migration in nasopharyngeal cancer cells. Biochem Biophys Res Commun 2015; 463:357-63. [PMID: 26025649 DOI: 10.1016/j.bbrc.2015.05.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is associated with invasion and metastasis of cancer cells. High-mobility group AT-hook 2 (HMGA2) has been found to play a critical role in EMT in a number of malignant tumors. However, whether HMGA2 regulates the EMT in human nasopharyngeal carcinoma (NPC) is unclear. OBJECTIVE The aim of this study was to investigate the effect and mechanism of HMGA2 in inducing invasion and migration in NPC. METHODS In NPC tissues samples, the association of HMGA2 mRNA expression with clinicopathological characteristics were estimated by real-time quantitative RT-PCR(qRT-PCR). In vitro, following the silencing of HMGA2 in CNE-1 and CNE-2 cell lines, the viability and metastatic ability were analyzed using Cell Counting Kit-8 (CCK8), colony formation assay, and transwell assay. EMT and transforming growth factor-beta (TGFβ)/Smad3 signaling pathway-related protein expression changes were evaluated using western blot. RESULTS HMGA2 was upregulated in NPC cell lines and clinical specimens (P < 0.01), and HMGA2 expression correlated significantly with metastasis (P = 0.02) and disease-free survival of NPC (hazard ratio: 3.52; 95% confidence interval: 1.34-7.79; P = 0.01). In addition, following in vitro knockdown of HMGA2, the aggressiveness of cells was markedly inhibited, Vimentin and Snail level was downregulated and E-cadherin expression was upregulated. Moreover, the expression of key proteins TGFβRII and p-Smad3 of the TGFβ/Smad3 signaling pathway was inhibited by the downregulation of HMGA2. CONCLUSION HMGA2 might maintain EMT-induced invasion and migration through the TGFβ/Smad3 signaling pathway in NPC cell lines.
Collapse
Affiliation(s)
- You-You Xia
- Department of Radiation Oncology, Lianyungang First People's Hospital, Lianyungang, Jiangsu, China; The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Jie Guo
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Tian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Song Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Chen
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
104
|
Pallante P, Sepe R, Puca F, Fusco A. High mobility group a proteins as tumor markers. Front Med (Lausanne) 2015; 2:15. [PMID: 25859543 PMCID: PMC4373383 DOI: 10.3389/fmed.2015.00015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/07/2015] [Indexed: 01/24/2023] Open
Abstract
Almost 30 years ago, overexpression of HMGA proteins was associated with malignant phenotype of rat thyroid cells transformed with murine retroviruses. Thereafter, several studies have analyzed HMGA expression in a wide range of human neoplasias. Here, we summarize all these results that, in the large majority of the cases, confirm the association of HMGA overexpression with high malignant phenotype as outlined by chemoresistance, spreading of metastases, and a global poor survival. Even though HMGA proteins’ overexpression indicates a poor prognosis in almost all malignancies, their detection may be particularly useful in determining the prognosis of breast, lung, and colon carcinomas, suggesting for the treatment a more aggressive therapy. In particular, the expression of HMGA2 in lung carcinomas is frequently associated with the presence of metastases. Moreover, recent data revealed that often the cause for the high HMGA proteins levels detected in human malignancies is a deregulated expression of non-coding RNA. Therefore, the HMGA proteins represent tumor markers whose detection can be a valid tool for the diagnosis and prognosis of neoplastic diseases.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Romina Sepe
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Francesca Puca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy ; Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| |
Collapse
|
105
|
Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu-Kaoud N, Halabi N, Guerrouahen BS, Rafii S, Rafii A. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med 2015; 13:27. [PMID: 25623554 PMCID: PMC4336716 DOI: 10.1186/s12967-015-0386-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
Background Endothelial cells (ECs) are responsible for creating a tumor vascular niche as well as producing angiocrine factors. ECs demonstrate functional and phenotypic heterogeneity when located under different microenvironments. Here, we describe a tumor-stimulated mesenchymal phenotype in ECs and investigate its impact on tumor growth, stemness, and invasiveness. Methods Xenograft tumor assay in NOD/SCID mice and confocal imaging were conducted to show the acquisition of mesenchymal phenotype in tumor-associated ECs in vivo. Immunocytochemistry, qPCR and flow cytometry techniques showed the appearance of mesenchymal traits in ECs after contact with breast tumor cell lines MDA-MB231 or MCF-7. Cell proliferation, cell migration, and sphere formation assays were applied to display the functional advantages of mesenchymal ECs in tumor growth, invasiveness, and enrichment of tumor initiating cells. qPCR and western blotting were used to investigate the mechanisms underlying EC mesenchymal transition. Results Our results showed that co-injection of ECs and tumor cells in NOD/SCID mice significantly enhanced tumor growth in vivo with tumor-associated ECs expressing mesenchymal markers while maintaining their intrinsic endothelial trait. We also showed that a mesenchymal phenotype is possibly detectable in human neoplastic breast biopsies as well as ECs pre-exposed to tumor cells (ECsMes) in vitro. The ECsMes acquired prolonged survival, increased migratory behavior and enhanced angiogenic properties. In return, ECsMes were capable of enhancing tumor survival and invasiveness. The mesenchymal phenotypes in ECsMes were the result of a contact-dependent transient phenomenon and reversed upon removal of the neoplastic contexture. We showed a synergistic role for TGFβ and notch pathways in this phenotypic change, as simultaneous inhibition of notch and TGFβ down-regulated Smad1/5 phosphorylation and Jag1KD tumor cells were unable to initiate the process. Conclusions Overall, our data proposed a crosstalk mechanism between tumor and microenvironment where tumor-stimulated mesenchymal modulation of ECs enhanced the constitution of a transient mesenchymal/endothelial niche leading to significant increase in tumor proliferation, stemness, and invasiveness. The possible involvement of notch and TGFβ pathways in the initiation of mesenchymal phenotype may propose new stromal targets. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0386-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pegah Ghiabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Jie Jiang
- Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| | - Mahtab Maleki
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Nadine Abu-Kaoud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| | - Bella S Guerrouahen
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New york city, NY, USA.
| |
Collapse
|
106
|
Li G, Yang Y, Xu S, Ma L, He M, Zhang Z. Slug signaling is up-regulated by CCL21/CCR7 [corrected] to induce EMT in human chondrosarcoma. Med Oncol 2015; 32:478. [PMID: 25556164 DOI: 10.1007/s12032-014-0478-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 01/05/2023]
Abstract
In recent decades, the CXC chemokine receptor 7 (CCR7) [corrected] and its ligand CCL21 have been extensively reported to be associated with tumorigenesis. Meanwhile, Slug signaling induces the epithelial-mesenchymal transition (EMT) process in chondrosarcoma development. In the present study, we explored the functions of CCL21/CCR7 [corrected] in Slug-mediated EMT in the chondrosarcoma. We analyzed protein expression of CCR7 [corrected] and Slug in human chondrosarcoma samples. Effects of CCR7 [corrected] on chondrosarcoma cells were assessed by in vitro assays. Additionally, CCR7 [corrected] pathways were further investigated by pharmacological and genetic approaches. We found that the altered CCR7 [corrected] (81.7 %) and Slug (85.0 %) expression in human chondrosarcoma tissues were significantly associated with grade, recurrence, and 5-year overall survival. According to in vitro assays, CCL21 stimulation induced the expression of phosph-ERK, phosph-AKT, Slug and N-cadherin in SW1353 cells, while the expression of E-cadherin was down-regulated. Furthermore, Slug signaling modulated E- to N-cadherin switch, which was influenced by the kinase inhibitor PD98059 and LY294002. In addition, the genetic silencing of Slug inhibited the capacity of migration and invasion of SW1353 cells. In conclusion, CCL21/CCR7 [corrected] pathway activates ERK and PI3K/AKT signallings to up-regulate Slug pathway, leading to the occurrence of EMT process in human chondrosarcoma. This study lays a new foundation for molecule-targeted therapy of human chondrosarcoma.
Collapse
Affiliation(s)
- Guosong Li
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, 243# Yangmeigang, Longgang Street, Longgang District, Shenzhen, 518116, Guangdong, China
| | | | | | | | | | | |
Collapse
|
107
|
Wang X, Xu J, Wang H, Wu L, Yuan W, Du J, Cai S. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial-mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem Biophys Res Commun 2014; 456:320-6. [PMID: 25434997 DOI: 10.1016/j.bbrc.2014.11.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
Trichostatin A (TSA) is a kind of classical histone deacetylase (HDAC) inhibitor. In this study, we reported the reversal effects of TSA on EMT and investigated the possible involved molecular mechanisms in SW480 and PC3 cells. Firstly, we observed that TSA induced the reversal process of epithelial-mesenchymal transition (EMT) in SW480 and PC3 cells, resulting in attenuated cell invasion and migration abilities. TSA-induced EMT reversal was characterized by up-regulation of E-cadherin and down-regulation of Vimentin. Then, treatment with TSA also decreased the expression of transcription factor Slug. Furthermore, over-expression of Slug significantly caused down-regulation of E-cadherin and up-regulation of Vimentin. Meanwhile, TSA treatment in Slug-expressing cells could prevent these changes. These findings suggested that Slug played a crucial role in TSA-induced EMT reversal. Additionally, the study showed that TSA could induce the increase of HDAC1 and HDAC2 on the Slug gene promoter, which might be responsible for the suppression of Slug. Overall, TSA could reverse EMT in SW480 and PC3 cells and TSA-mediated down-regulation of Slug was involved in the reversal process.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Hao Wang
- Department of Medical Laboratory, Anhui Provincial Hospital, Hefei 230001, China
| | - Long Wu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Weiqi Yuan
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shaohui Cai
- Pharmacy College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|