101
|
Functionalization of Cellulose-Based Hydrogels with Bi-Functional Fusion Proteins Containing Carbohydrate-Binding Modules. MATERIALS 2021; 14:ma14123175. [PMID: 34207652 PMCID: PMC8227779 DOI: 10.3390/ma14123175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.
Collapse
|
102
|
Conformational and rheological properties of bacterial cellulose sulfate. Int J Biol Macromol 2021; 183:2326-2336. [PMID: 34089760 DOI: 10.1016/j.ijbiomac.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
In this study, a water-soluble bacterial cellulose sulfate (BCS) was prepared with sulfur trioxide pyridine complex (SO3· Py) in a lithium chloride (LiCl)/dimethylacetamide (DMAc) homogeneous solution system using bacterial cellulose (BC). The structural study showed that the value for the degrees of substitution of BCS was 1.23. After modification, the C-6 hydroxyl group of BC was completely substituted and the C-2 and C-3 hydroxyl groups were partially substituted. In an aqueous solution, the BCS existed as a linear polymer with irregular coil conformation, which was consistent with the findings observed using atomic force microscopy. The steady-state shear flow and dynamic viscoelasticity were systematically determined over a range of BCS concentrations (1 %-4 %, w/v) and temperature (5 °C-50 °C). Steady-state flow experiments revealed that BCS exhibited shear thinning behavior, which increased with an increase in concentration and a decrease in temperature. These observations were quantitatively demonstrated using the cross model. Moreover, based on the dynamical viscoelastic properties, we confirmed that BCS was a temperature-sensitive and weak elastic gel, which was somewhere between a dilute solution and an elastic gel. Therefore, considering the special synthetic strategy and rheological behavior, BCS might be used as a renewable material in the field of biological tissue engineering, especially in the manufacture of injectable hydrogels, cell scaffolds, and as a drug carrier.
Collapse
|
103
|
Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
104
|
Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 2021; 13. [PMID: 34075893 DOI: 10.1088/1758-5090/ac00c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
In vitroresearch for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1Eβ-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generateβ-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producingβ-cells, representing a suitable technique to generateβ-cell clusters to study pancreatic islet function.
Collapse
Affiliation(s)
- Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
105
|
Abstract
Since their development, surface acoustic wave (SAW) devices have attracted much research attention due to their unique functional characteristics, which make them appropriate for the detection of chemical species. The scientific community has directed its efforts toward the development and integration of new materials as sensing elements in SAW sensor technology with a large area of applications, such as for example the detection of volatile organic compounds, warfare chemicals, or food spoilage, just to name a few. Thin films play an important role and are essential as recognition elements in sensor structures due to their wide range of capabilities. In addition, other requisites are the development and application of new thin film deposition techniques as well as the possibility to tune the size and properties of the materials. This review article surveys the latest progress in engineered complex materials, i.e., polymers or functionalized carbonaceous materials, for applications as recognizing elements in miniaturized SAW sensors. It starts with an overview of chemoselective polymers and the synthesis of functionalized carbon nanotubes and graphene, which is followed by surveys of various coating technologies and routes for SAW sensors. Different coating techniques for SAW sensors are highlighted, which provides new approaches and perspective to meet the challenges of sensitive and selective gas sensing.
Collapse
|
106
|
Zennifer A, Senthilvelan P, Sethuraman S, Sundaramurthi D. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr Polym 2021; 256:117561. [PMID: 33483063 DOI: 10.1016/j.carbpol.2020.117561] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Carboxymethyl cellulose (CMC) is a water-soluble derivative of cellulose and a major type of cellulose ether prepared by the chemical attack of alkylating reagents on the activated non-crystalline regions of cellulose. It is the first FDA approved cellulose derivative which can be targeted for desired chemical modifications. In this review, the properties along with current advances in the physical and chemical modifications of CMC are discussed. Further, CMC and modified CMC could be engineered to fabricate scaffolds for tissue engineering applications. In recent times, CMC and its derivatives have been developed as smart bioinks for 3D bioprinting applications. From these perspectives, the applications of CMC in tissue engineering and current knowledge on peculiar features of CMC in 3D and 4D bioprinting applications are elaborated in detail. Lastly, future perspectives of CMC for wider applications in tissue engineering and 3D/4D bioprinting are highlighted.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Praseetha Senthilvelan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India.
| |
Collapse
|
107
|
A series of carboxymethyl cellulose-based antimicrobial peptide mimics were synthesized for antimicrobial applications. Carbohydr Polym 2021; 261:117822. [PMID: 33766332 DOI: 10.1016/j.carbpol.2021.117822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Inspired by antimicrobial peptides (AMP) which could alleviate drug resistance pressure, antimicrobial peptide mimics (AMPMs) were designed timely. Here, carboxymethyl cellulose (CMC) -based AMPMs were constructed by introducing different diamines on CMC effectively. Firstly, CMC was degraded to be oligomers with different molecular weights, followed by amination reactions with different diamines respectively. After protonation, a series of AMPMs with different structures were synthesized successfully. Their antibacterial effect has been evaluated by dynamic growth curves and microdilution method. The images snapped by the confocal laser scanning microscope and transmission electron microscope have fully proved its great lethality. And the antibacterial mechanism measured by flow cytometry analysis and zeta potential detection demonstrated that the destruction of membrane potential leads to bacteria death. The excellent blood compatibility and negligible drug resistance has also been confirmed. In addition, the synthesis method is simple and environmental-friendly.
Collapse
|
108
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
109
|
Tsioptsias C. Glass chemical transition: An unknown thermal transition observed in cellulose acetate butyrate. Carbohydr Polym 2021; 259:117754. [PMID: 33674008 DOI: 10.1016/j.carbpol.2021.117754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Cellulose acetate butyrate (CAB) belongs to cellulose esters, an important category of polymers, that are derived from the most abundant organic substance on earth (cellulose). As most cellulose esters, CAB is believed to exhibit a melting point. In this study, carefully selected experiments were performed, in order to test if the endothermic peak, observed in the Differential Scanning Calorimetry (DSC) scan of CAB, is a melting point. It was found that it is not a melting peak but a chemically induced transition (appearing as glass transition) occurring simultaneously with mass loss (decomposition and vaporization). For this phenomenon, the term "glass chemical transition" is proposed. Various literature misinterpretations/confusions are clarified and the potential consequences of this discovery are shortly discussed. Based on literature data and the presented results, it seems almost certain that secondary cellulose esters exhibit this behavior. It is likely, that other polymers, also exhibit this peculiar thermal transition.
Collapse
Affiliation(s)
- Costas Tsioptsias
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
110
|
Zha L, Zheng Y, Che J, Xiao Y. Mineralization of phosphorylated cellulose/sodium alginate sponges as biomaterials for bone tissue engineering. NEW J CHEM 2021. [DOI: 10.1039/d1nj04397h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of SA in the cellulose matrix effectively increased the macroporous ability of composite scaffolds. Furthermore, the phosphorylation has a certain induction capability for the growth of HA.
Collapse
Affiliation(s)
- Li Zha
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yahui Zheng
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yinghong Xiao
- Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| |
Collapse
|
111
|
Zhou Z, Dong Z, Wang L, Song R, Mei N, Chen T, Luo L, Ding Q, Wang X, Tang S. Cellulose membrane modified with LED209 as an antibacterial and anti-adhesion material. Carbohydr Polym 2021; 252:117138. [DOI: 10.1016/j.carbpol.2020.117138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023]
|
112
|
Menazea A, Awwad NS, Ibrahium HA, Ahmed M. Casted polymeric blends of carboxymethyl cellulose/polyvinyl alcohol doped with gold nanoparticles via pulsed laser ablation technique; morphological features, optical and electrical investigation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
113
|
Oprea M, Voicu SI. Cellulose Composites with Graphene for Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5347. [PMID: 33255827 PMCID: PMC7728350 DOI: 10.3390/ma13235347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering is an interdisciplinary field that combines principles of engineering and life sciences to obtain biomaterials capable of maintaining, improving, or substituting the function of various tissues or even an entire organ. In virtue of its high availability, biocompatibility and versatility, cellulose was considered a promising platform for such applications. The combination of cellulose with graphene or graphene derivatives leads to the obtainment of superior composites in terms of cellular attachment, growth and proliferation, integration into host tissue, and stem cell differentiation toward specific lineages. The current review provides an up-to-date summary of the status of the field of cellulose composites with graphene for tissue engineering applications. The preparation methods and the biological performance of cellulose paper, bacterial cellulose, and cellulose derivatives-based composites with graphene, graphene oxide and reduced graphene oxide were mainly discussed. The importance of the cellulose-based matrix and the contribution of graphene and graphene derivatives fillers as well as several key applications of these hybrid materials, particularly for the development of multifunctional scaffolds for cell culture, bone and neural tissue regeneration were also highlighted.
Collapse
Affiliation(s)
- Madalina Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
114
|
Zhou Z, Wang L, Hu Y, Song R, Mei N, Chen T, Tang S. Preparation of AAEK-functionalized cellulose film with antibacterial and anti-adhesion activities. Int J Biol Macromol 2020; 167:66-75. [PMID: 33242549 DOI: 10.1016/j.ijbiomac.2020.11.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Bacterial adhesion infection caused by medical materials in clinical application has become a serious threat, and it urgently needs new strategies to deal with these clinical challenges. The purpose of this study is to explore the effectiveness of surface-decorated aryl (β-amino) ethyl ketones (AAEK), a promising sorting enzyme A (SrtA) inhibitor of Staphylococcus aureus, to improve the anti-adhesion ability of biomaterials. AAEK was covalently grafted onto cellulose films (CF) via copper-catalyzed azide-alkyne 1, 3-dipolar cycloaddition click reaction. The data of contact angle measurements, ATR-FTIR and XPS proved the successful covalent attachment of AAEK-CF, and the antimicrobial efficacy of AAEK coating was assessed by CFUs, crystal violet staining, scanning electron microscopy and Living/Dead bacteria staining assay. The results illustrated that AAEK-CF exhibited excellent anti-adhesion ability to Staphylococcus aureus, and significantly reduced the number of bacteria adhering to the film. More importantly, AAEK-CF could hinder the formation of bacterial biofilm. Furthermore, AAEK-CF indicated no cytotoxicity to mammalian cells, and the cells could grow normally on the modified surface. Hence, our present work demonstrated that the grafting of the SrtA inhibitor-AAEK onto cellulose films enabled to combat bacterial biofilm formation in biomedical applications.
Collapse
Affiliation(s)
- Zongbao Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China; Biomedical Engineering Institute, Jinan University, Guangzhou 510632, PR China
| | - Lei Wang
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3568 CG Utrecht, the Netherlands
| | - Yingkui Hu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Rijian Song
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Naibin Mei
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Tao Chen
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Shunqing Tang
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China.
| |
Collapse
|
115
|
Neves RM, Ornaghi HL, Zattera AJ, Amico SC. Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydr Polym 2020; 255:117366. [PMID: 33436199 DOI: 10.1016/j.carbpol.2020.117366] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Cellulose and its derivatives are widely explored for films and thickening of pharmaceutical solutions, in paints, as reinforcement in composites, among others. This versatility is due to advantages such as renewability, low cost, and environmental friendliness. When used in polymer composites, due to the hydrophilic character of the cellulose, surface chemical modification is highly recommended to improve its compatibility with the polymeric matrix. Hence, this paper presents a systematic review of chemically modified cellulose/epoxy resin composites focusing on the last five years. The investigation followed the PRISMA protocol that delivers a meticulous summary of all available primary research in response to a research question. After including/excluding steps, thirty-six studies were included in the review. The results were presented focusing on thermal, mechanical and dynamic-mechanical properties of the composites. In brief, this methodology helped identifying the main gaps in knowledge in that field.
Collapse
Affiliation(s)
- Roberta Motta Neves
- Postgraduate Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil.
| | - Heitor Luiz Ornaghi
- Postgraduate Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Ademir José Zattera
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias do Sul (UCS), 95070-490, Caxias do Sul, RS, Brazil
| | - Sandro Campos Amico
- Postgraduate Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
116
|
Oprea M, Panaitescu DM. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4045. [PMID: 32899710 PMCID: PMC7570792 DOI: 10.3390/molecules25184045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
117
|
Karuppusamy S, Marken F, Kulandainathan MA. Role of dissolved oxygen in nitroarene reduction by a heterogeneous silver textile catalyst in water. NEW J CHEM 2020. [DOI: 10.1039/d0nj03713c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of dissolved oxygen concentration on the rate constant of the 4-nitrophenol reduction reaction with a silver-coated textile as a ‘dip-catalyst’ were studied.
Collapse
Affiliation(s)
- Sembanadar Karuppusamy
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
- India
- CSIR-Central Electrochemical Research Institute
- Karaikudi 630003
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | - Manickam Anbu Kulandainathan
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
- India
- CSIR-Central Electrochemical Research Institute
- Karaikudi 630003
| |
Collapse
|