101
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
102
|
Abstract
DNA replication must be tightly regulated to ensure that the genome is accurately duplicated during each cell cycle. When these regulatory mechanisms fail, replicative stress and DNA damage ensue. Activated oncogenes promote replicative stress, inducing a DNA damage response (DDR) early in tumorigenesis. Senescence or apoptosis result, forming a barrier against tumour progression. This may provide a selective pressure for acquisition of mutations in the DDR pathway during tumorigenesis. Despite its potential importance in early cancer development, the precise nature of oncogene-induced replicative stress remains poorly understood. Here, we review our current understanding of replication initiation and its regulation, describe mechanisms by which activated oncogenes might interfere with these processes and discuss how replicative stress might contribute to the genomic instability seen in cancers.
Collapse
Affiliation(s)
- Stephanie A Hills
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK.
| |
Collapse
|
103
|
Grieb BC, Gramling MW, Arrate MP, Chen X, Beauparlant SL, Haines DS, Xiao H, Eischen CM. Oncogenic protein MTBP interacts with MYC to promote tumorigenesis. Cancer Res 2014; 74:3591-602. [PMID: 24786788 DOI: 10.1158/0008-5472.can-13-2149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its involvement in most human cancers, MYC continues to pose a challenge as a readily tractable therapeutic target. Here we identify the MYC transcriptional cofactors TIP48 and TIP49 and MYC as novel binding partners of Mdm2-binding protein (MTBP), a functionally undefined protein that we show is oncogenic and overexpressed in many human cancers. MTBP associated with MYC at promoters and increased MYC-mediated transcription, proliferation, neoplastic transformation, and tumor development. In breast cancer specimens, we determined overexpression of both MYC and MTBP was associated with a reduction in 10-year patient survival compared with MYC overexpression alone. MTBP was also frequently co-amplified with MYC in many human cancers. Mechanistic investigations implicated associations with TIP48/TIP49 as well as MYC in MTBP function in cellular transformation and the growth of human breast cancer cells. Taken together, our findings show MTBP functions with MYC to promote malignancy, identifying this protein as a novel general therapeutic target in human cancer.
Collapse
Affiliation(s)
- Brian C Grieb
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Mark W Gramling
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Maria Pia Arrate
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Xi Chen
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen L Beauparlant
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Dale S Haines
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Hua Xiao
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Christine M Eischen
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| |
Collapse
|
104
|
Myc induced replicative stress response: How to cope with it and exploit it. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:517-24. [PMID: 24735945 DOI: 10.1016/j.bbagrm.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Myc is a cellular oncogene frequently deregulated in cancer that has the ability to stimulate cellular growth by promoting a number of proliferative and pro-survival pathways. Here we will focus on how Myc controls a number of diverse cellular processes that converge to ensure processivity and robustness of DNA synthesis, thus preventing the inherent replicative stress responses usually evoked by oncogenic lesions. While these processes provide cancer cells with a long-term proliferative advantage, they also represent cancer liabilities that can be exploited to devise innovative therapeutic approaches to target Myc overexpressing tumors. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
105
|
Bretones G, Delgado MD, León J. Myc and cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:506-16. [PMID: 24704206 DOI: 10.1016/j.bbagrm.2014.03.013] [Citation(s) in RCA: 533] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/12/2022]
Abstract
Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
106
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
107
|
Abstract
Replication stress is a complex phenomenon that has serious implications for genome stability, cell survival and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATR (ATM- and Rad3-related). Along with its downstream effectors, ATR stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding this response may be key to diagnosing and treating human diseases caused by defective responses to replication stress.
Collapse
Affiliation(s)
- Michelle K Zeman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
108
|
Abstract
The MYC family of proteins is a group of basic-helix-loop-helix-leucine zipper transcription factors that feature prominently in cancer. Overexpression of MYC is observed in the vast majority of human malignancies and promotes an extraordinary set of changes that impact cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation, and metastasis. The purpose of this review is to introduce the reader to the mammalian family of MYC proteins, highlight important functional properties that endow them with their potent oncogenic potential, describe their mechanisms of action and of deregulation in cancer cells, and discuss efforts to target the unique properties of MYC, and of MYC-driven tumors, to treat cancer.
Collapse
|
109
|
Abstract
Replication stress is a complex phenomenon that has serious implications for genome stability, cell survival and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATR (ATM- and Rad3-related). Along with its downstream effectors, ATR stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding this response may be key to diagnosing and treating human diseases caused by defective responses to replication stress.
Collapse
Affiliation(s)
- Michelle K Zeman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
110
|
Transcriptional control of DNA replication licensing by Myc. Sci Rep 2013; 3:3444. [PMID: 24309437 PMCID: PMC3853707 DOI: 10.1038/srep03444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023] Open
Abstract
The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.
Collapse
|
111
|
Abstract
The accurate duplication and transmission of genetic information is critical for cell growth and proliferation, and this is ensured in part by the multi-layered regulation of DNA synthesis. One of the key steps in this process is the selection and activation of the sites of replication initiation, or origins, across the genome. Interestingly, origin usage changes during development and in different pathologies, suggesting an integral interplay between the establishment of replication initiation along the chromosomes and cellular function. The present review discusses how the spatiotemporal organization of replication origin activation may play crucial roles in the control of biological events.
Collapse
Affiliation(s)
- Blanca Gómez-Escoda
- *Institute of Genetics and Development of Rennes, CNRS UMR 6290, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | |
Collapse
|