101
|
Zhou Y, He C, Wang L, Ge B. Post-translational regulation of antiviral innate signaling. Eur J Immunol 2017; 47:1414-1426. [PMID: 28744851 PMCID: PMC7163624 DOI: 10.1002/eji.201746959] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
The innate immune system initiates immune responses by pattern‐recognition receptors (PRR). Virus‐derived nucleic acids are sensed by the retinoic acid‐inducible gene I (RIG‐I)‐like receptor (RLR) family and the toll‐like receptor (TLR) family as well as the DNA sensor cyclic GMP‐AMP (cGAMP) synthase (cGAS). These receptors activate IRF3/7 and NF‐κB signaling pathways to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses within the cell. However, to achieve a favorable outcome for the host, a balanced production of IFNs and activation of antiviral responses is required. Post‐translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are crucial for this immune homeostasis in antiviral responses. Canonical PTMs including phosphorylation and ubiquitination have been extensively studied and other PTMs such as methylation, acetylation, SUMOylation, ADP‐ribosylation and glutamylation are being increasingly implicated in antiviral innate immunity. Here we summarize our recent understanding of the most important PTMs regulating the antiviral innate immune response, and their role in virus‐related immune pathogenesis.
Collapse
Affiliation(s)
- Yilong Zhou
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenxi He
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
102
|
Dawidziak DM, Sanchez JG, Wagner JM, Ganser-Pornillos BK, Pornillos O. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase. Proteins 2017; 85:1957-1961. [PMID: 28681414 DOI: 10.1002/prot.25348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2-ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.
Collapse
Affiliation(s)
- Daria M Dawidziak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jacint G Sanchez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jonathan M Wagner
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
103
|
Nomura K, Klejnot M, Kowalczyk D, Hock AK, Sibbet GJ, Vousden KH, Huang DT. Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat Struct Mol Biol 2017; 24:578-587. [PMID: 28553961 PMCID: PMC6205632 DOI: 10.1038/nsmb.3414] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/01/2017] [Indexed: 02/08/2023]
Abstract
MDM2-MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2-MDMX-E2(UbcH5B)-ubiquitin complex, we designed MDM2 mutants that prevent E2-ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53's transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors.
Collapse
Affiliation(s)
- Koji Nomura
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Marta Klejnot
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Dominika Kowalczyk
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Andreas K. Hock
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Gary J. Sibbet
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | | | - Danny T. Huang
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
104
|
Abstract
Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions.
Collapse
|
105
|
Liu W, Li J, Zheng W, Shang Y, Zhao Z, Wang S, Bi Y, Zhang S, Xu C, Duan Z, Zhang L, Wang YL, Jiang Z, Liu W, Sun L. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses. eLife 2017; 6:e24425. [PMID: 28594325 PMCID: PMC5484619 DOI: 10.7554/elife.24425] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS.
Collapse
Affiliation(s)
- Wei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Zhendong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chongfeng Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ziyuan Duan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Yue L Wang
- Department of Pathology, University of Chicago, Chicago, United States
| | - Zhengfan Jiang
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
106
|
TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein. J Virol 2017; 91:JVI.00088-17. [PMID: 28202764 DOI: 10.1128/jvi.00088-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated.IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated.
Collapse
|
107
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
108
|
Structural determinants of TRIM protein function. Biochem Soc Trans 2017; 45:183-191. [DOI: 10.1042/bst20160325] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of Really Interesting New Gene (RING) E3 ubiquitin ligases and contribute to the regulation of numerous cellular activities, including innate immune responses. The conserved TRIM harbours a RING domain that imparts E3 ligase activity to TRIM family proteins, whilst a variable C-terminal region can mediate recognition of substrate proteins. The knowledge of the structure of these multidomain proteins and the functional interplay between their constituent domains is paramount to understanding their cellular roles. To date, available structural information on TRIM proteins is still largely restricted to subdomains of many TRIMs in isolation. Nevertheless, applying a combination of structural, biophysical and biochemical approaches has recently allowed important progress to be made towards providing a better understanding of the molecular features that underlie the function of TRIM family proteins and has uncovered an unexpected diversity in the link between self-association and catalytic activity.
Collapse
|
109
|
Si Y, Zhang Y, Chen Z, Zhou R, Zhang Y, Hao D, Yan D. Posttranslational Modification Control of Inflammatory Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:37-61. [DOI: 10.1007/978-981-10-5987-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
110
|
Chiang C, Gack MU. Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends Immunol 2016; 38:39-52. [PMID: 27863906 PMCID: PMC5580928 DOI: 10.1016/j.it.2016.10.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023]
Abstract
Mammalian cells recognize virus-derived nucleic acids using a defined set of intracellular sensors including the DNA sensors cyclic GMP–AMP (cGAMP) synthase (cGAS) and interferon gamma (IFNγ)-inducible protein 16 (IFI16) as well as viral RNA receptors of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family. Following innate immune recognition, these sensors launch an immune response that is characterized by the transcriptional upregulation of many antiviral molecules, including proinflammatory cytokines, chemokines, and IFN-stimulated genes. Recent studies have demonstrated that the signal transduction initiated by these sensors is sophisticatedly regulated by post-translational modifications (PTMs) resulting in a robust yet ‘tunable’ cytokine response to maintain immune homeostasis. Here we summarize recent advances in our understanding of how PTMs and regulatory enzymes control the signaling activity of RLRs, cGAS, and IFI16 as well as their proximal adaptor proteins. Positive feedforward regulatory mechanisms serve as an important means of signal amplification to ensure an effective innate immune response. However, negative regulatory circuits are essential for the prevention of premature or overactive proinflammatory responses, which could have harmful consequences for the host organism. Phosphorylation and different types of polyubiquitin chains, particularly K63-linked ubiquitination, are important for fine-tuning signaling initiated by intracellular viral RNA and DNA receptors. Acetylation, glutamylation, and deamidation of innate immune sensors or components in their signaling pathways also dynamically modulate antiviral cytokine induction. Insight into the molecular mechanisms and regulatory enzymes that modulate innate sensing pathways may lead to therapeutics to boost antiviral immunity or dampen proinflammatory/autoimmune responses.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|